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Abstract—The constantly increasing gap between commu-
nication and computation performance emphasizes the im-
portance of communication-avoidance techniques. Caching is
a well-known concept used to reduce accesses to slow local
memories. In this work, we extend the caching idea to MPI-
3 Remote Memory Access (RMA) operations. Here, caching
can avoid inter-node communications and achieve similar
benefits for irregular applications as communication-avoiding
algorithms for structured applications. We propose CLaMPI,
a caching library layered on top of MPI-3 RMA, to auto-
matically optimize code with minimum user intervention. We
demonstrate how cached RMA improves the performance of
a Barnes Hut simulation and a Local Clustering Coefficient
computation up to a factor of 1.8x and 5x, respectively. Due
to the low overheads in the cache miss case and the potential
benefits, we expect that our ideas around transparent RMA
caching will soon be an integral part of many MPI libraries.

I. MOTIVATION

Data caches are among the most performance-critical
components in computer systems. Caches exploit the temporal
and spatial locality that is inherent to many applications. They
are an integral component of hardware architectures such as
CPUs and software systems such as databases or filesystems.
Most of the existing caches are meant to accelerate accesses
between a local slower medium (e.g., a hard disk or DRAM
memory) and a faster medium (e.g., on-chip memory).

We propose a Caching Layer for MPI (CLaMPI) that ex-
tends the MPI-3 remote-memory access parallel programming
environment [14], which has been optimized for systems with
remote-direct memory (RDMA) hardware [2, 21]. Differently
from traditional caching systems, CLaMPI caches remote or
horizontal accesses instead of the above-mentioned traditional
vertical accesses. To illustrate the potential gains, we show the
latency for various distances in a hierarchical Cray Cascade
architecture in Fig. 1. Here, access latencies range from
less than 100ns for a local DRAM access (less than ten
nanoseconds if the access is cached on the CPU chip) up to
2-3 microseconds for remote accesses, spanning three orders
of magnitude. This demonstrates the potential usefulness of
a system that caches remote data in local DRAM.

The analysis of temporal and spatial locality in horizontal
communications has not received much attention so far.
To motivate our work, we analyzed the locality of a
representative Barnes-Hut N-Body simulation in Fig. 2. This

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
0

10

20

30

40

4 16 64 256 1024 8192 65536
Size (bytes)

M
PI

 G
et

 (u
s)

● ● ● ● ● ● ● ● ● ● ● ●0

1

2

3

4

5

4 16 64 256 1024 8192

Inter-Cabinet
Intra-Cabinet

Intra-Slot Intra-Node

Protocol Switch

Figure 1: Latency per message size and processes/nodes mappings.

simulation accesses the same remote data up to 3,500 times.
We argue that repeated remote accesses are typical in many
irregular applications and that a caching layer can reduce the
communication for such data-dependent accesses similarly
to communication-avoiding algorithms that exploit the fixed
access structure of the computation.
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Figure 2: N-Body simulation on 4 processes and 4, 000 bodies. The histogram
shows how many gets (x-axis) are repeated y times (y-axis).

These two observations demonstrate that caching with
CLaMPI has a high potential to improve the performance of
irregular RMA programs in today’s supercomputers. Software
caching in the RMA context is challenging due to the
single-digit latencies of remote accesses. For example, a
generic software caching scheme will require coherence
messages, that alone will be more expensive than issuing
the remote access directly. Thus, we design CLaMPI to
specifically fit into the MPI-3 RMA programming model: we
cache only get calls and we use MPI’s epoch semantics to
guarantee light-weight consistency. Furthermore, we allow
insert operations to fail to guarantee fixed overheads that
never slow down communications. To keep overheads lowest,
we utilize variable-size cache entries and we adapt parameters
of the cache during the runtime. All-in-all, CLaMPI innovates
along several fronts to implement a super-light-weight online-
adaptive caching system that almost seamlessly fits on top
of existing MPI-3 RMA implementations.



A. MPI-3 One Sided

The MPI-3 standard [10] defines the One-Sided commu-
nication interface, also known as Remote Memory Access
(RMA). A set of processes in a specific communicator (e.g.,
MPI_COMM_WORLD) can expose a memory region over the
network by creating a window with the MPI_Win_create
or MPI_Win_allocate. One-sided operations MPI_Put
and MPI_Get are used to write to or read from a window
exposed by a remote processes, respectively. Both the opera-
tions are blocking. One-sided operations are often supported
by remote direct memory access (RDMA) hardware.

RMA operations on a specific window can be issued
only during access epochs. Synchronization calls are used to
start/terminate an access epoch. The MPI standard defines
two target synchronization modes: active and passive. The
passive mode does not require the participation of the
target process: the initiator (i.e., the process that issues
the RMA operation) can access the window of a specific
process during the section delimited by the MPI_Win_lock
and MPI_Win_unlock calls. Any process sharing the
same window can be targeted if the epoch is delimited by
the MPI_Win_lock_all/MPI_Win_unlock_all calls.
On the contrary, active target synchronization requires the
participation of both initiator and target processes. Without
loss of generality, in the following we assume that the passive
mode used. In fact, CLaMPI does not depend on a specific
target synchronization mode but on the epoch closure event,
that is present in both active and passive modes. All the
RMA operations issued during an epoch are completed when
the synchronization call concluding the epoch returns. In the
passive synchronization mode, MPI_Win_flush can be
used to complete preceding RMA communications without
concluding the current epoch.

II. CACHING RMA
Caching RMA operations is different from traditional

cache designs. Other caches (e.g., CPU or filesystem)
usually accelerate synchronous (blocking) accesses that need
to be consumed immediately. MPI enables asynchronous
communication arranging accesses in epochs. Thus, while
it is important for traditional caches to quickly consume
writes, MPI does not benefit from write access caching
because the MPI epoch model forbids conflicting MPI_Put
and MPI_Get operations in the same epoch [14]. As a
consequence, MPI_Puts issued in the same epoch must
target different memory areas - i.e., local caching can thus
not prevent network accesses. Moreover, MPI_Put and
MPI_Get operations cannot target the same memory area
in the same epoch - i.e., read after write patterns cannot be
exploited. Thus, we focus on caching gets.

A get operation can target arbitrarily large data segments,
opposed to the CPU or disk caches that limit the read/write
operations to the cache-line or block size, respectively. A
block-based software cache for RMA would require to fix a

block size. This introduces an internal fragmentation problem,
and raises the question of how to handle requests not fitting
in a block. Possible answers to this question are: 1) not
caching requests targeting data larger than the block size; 2)
distribute such requests on multiple blocks. In the following
discussion we assume that the second solution is adopted.
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Figure 3: Data Size distribution of a Local Clustering Coefficient (LCC) instance,
averaged on 32 nodes. R-MAT input graph: 216 vertices, 220 edges.

As an example, Fig. 3 reports the distribution of the data
segment sizes accessed by an instance of the Local Clustering
Coefficient computation (described in Sec. IV-C). A block
size of 5KB would allow to store the 82% of all the requests
in a single block. However, the average size of such requests
is ∼ 1KB, hence the 80% of the block space will be wasted
in average for all these entries. The remaining 18% of the
entries would require 2 blocks on average. A smaller block
size would reduce the internal fragmentation but increase the
average number of blocks needed to store the cached entries.
Our caching system handles variable-size cache entries
in order to avoid the internal fragmentation and minimize
the CPU cache misses during the data copy phase.

According to the MPI epoch model, the destination buffer
of a get issued in an epoch i can be considered ready - i.e.,
the requested data is available - after the end of epoch i.
No assumptions on the destination buffer can be made by
the MPI layer after that moment. This requires us to keep a
separate storage area for the cached gets. Moreover, RDMA
does not allow to copy the same payload into more than one
destination buffers, so data has to be explicitly copied into
the cache memory at the epoch closure time or after a
synchronization call (i.e., MPI_Win_flush ).

A. Notation

An RMA operation transfers data between the process
from which the operation originates (i.e., the initiator) and a
target process. We define a get as an operation transferring
data from the target to the initiator. A get x initiated by a
process p is uniquely identified (with respect to p) by a tuple:

x = (win, eph, trg, dsp, dtype, count)

Where win is an MPI window, eph is the epoch in which x is
issued, trg is the target rank, dsp is the displacement in win,
dtype is an MPI datatype, and count is the number of entries
of type dtype to transfer. A counter w.eph is associated with
each window w, counting the number of concluded epochs
since the window creation. A get issued on w takes the
current w.eph as epoch identifier: x.eph = w.eph.

A caching-enabled window w is associated with a caching
layer Cw = (Iw, Sw), where Iw and Sw are the data
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Figure 4: Effects of the different operational modes with respect to the issuing
epochs. The ? indicates a cache hit.

structures used for indexing and storing cache entries,
respectively. The get requests targeting a caching-enabled
window w are processed by Cw and are referred to as getc.
The number of entries that can be cached in Cw is |Iw|,
while the size of the memory buffer used to store the cache
entries is |Sw|. An entry i of Iw is identified by the tuple:
i = (trg, dsp, dtype, count, ptr), where ptr is a pointer to
the i’s data that is stored in Sw. We define Cw.G as the
sequence of getc operations on Cw issued in program order.

B. Handling Datatypes

The proposed caching layer uses the MPI Datatype
Library [19] in order to support arbitrary datatypes. It allows
us to flatten the datatype d to a list of data blocks di = (si, oi)
where si is the size of the data block and oi is its offset
in the data buffer. Let x be a get or an entry of Iw, we
define size(x) as the sum of the sizes of all the data block
composing x.dtype multiplied by x.count.

III. CLAMPI

One of our main goals is to minimize the cost of the
cache hit while introducing a minimal overhead with respect
to the non-cached get operation in the cache-miss case.
According to the considerations expressed in Sec. II, an
optimal handling of the cache-hit case would consist of only
the local data-copy from the cache to the local destination
buffer. Similarly, an optimal cache-miss would perform the
get operation for retrieving the data plus one additional
memory copy. However, additional overheads stemming from
cache managing activities - i.e., renaming, lookup, allocation,
and replacement - have to be taken into account.

A. Caching-Enabled Windows

CLaMPI offers three different strategies (i.e., operational
modes) to enable the caching of RMA accesses: transpar-
ent, always-cache, and user-defined. Examples of all these
operational modes are reported in Fig. 4.

Transparent: It allows applications to enable caching
without any code change. All the MPI windows are caching-
enabled. Since no assumptions can be made on the data
access pattern, the cache is invalidated at each epoch closure.

Always-Cache: If the memory area identified by the
window is read-only for the entire window lifespan then
there is no need to perform any cache invalidation. Examples
of such applications are the ones applying graph-processing
algorithms: if the graph structure is not modified, then the
window representing it can be set in the always-cache mode.
Such information can be communicated to CLaMPI as an
MPI_INFO key passed at window creation time.

User-Defined: This strategy let the user define epochs,
or sets of consecutive epochs, in which the memory area
identified by a window is in a read-only state. Use cases
that can take advantage of this operational mode are, for
example, BSP-like (Bulk Synchronous Parallel) applications
presenting steps where no write accesses are performed
towards the specific window. In Sec. IV-B we discuss the
Barnes-Hut algorithm, which falls in this category. With this
strategy, the user creates the window with the always-cache
option. The cache can be explicitly invalidated using the
CLAMPI_Invalidate(MPI_Win win) call when the
sequence of read-only epochs terminates.

MPI_Win_lock(MPI_LOCK_SHARED, peer, 0, win);
while (!terminate){

MPI_Get(lbuf1, ..., peer, off1, ..., win);
MPI_Get(lbuf2, ..., peer, off2, ..., win);
MPI_Win_flush(peer, win); //closes epoch
terminate = computation(lbuf1, lbuf2);

}
CLAMPI_Invalidate(win);
MPI_Win_unlock(peer, win);

Listing 1: Example of User-Defined Caching Strategy

Listing 1 shows an usage example of the user-defined
mode: a set of read-only epochs - i.e., where no write accesses
are issued - is delimited by the MPI_Win_lock and
MPI_Win_unlock calls. All the gets performed in these
epochs are cached. The cache is explicitly invalidated with a
CLAMPI_Invalidate before the last epoch termination.

The transparent and always-cache strategies do not require
any modification to the MPI standard, while an explicit cache
invalidation call is required by the user-defined operational
mode. Alternatively, the MPI standard could be extended
in order to offer a special get call, allowing the user to
use/bypass the caching on a per-operation basis. In the current
MPI-compliant model, the user could achieve the same by
creating two windows, with the same local memory, and
enabling just one of the two for caching. At this point the user
can issue operations on the two different windows according
with the need to cache such operations or not.

B. Processing Gets

When a getc is issued on a window w, the index Iw is
queried to check if the entry is already in cache: the query
result is the state of the searched cache entry. A cache entry
can be in one of the following states: MISSING, PENDING,
or CACHED. Fig. 5 sketches the possible state transitions.
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Figure 5: Cache entry state diagram. The initial state of any cache entry
is MISSING. Accesses of type direct, capacity or conflicting are reported as
success.

1) Hitting Access: Given a getc x targeting a window w,
we have a cache hit if there exists an entry i in Iw such
that x.trg = xc.trg ∧ x.dsp = i.dsp. If size(x) ≤ size(i)
we have full hit, it is a partial hit otherwise. This definition
allows us to implement Iw as a constant lookup time data
structure (see Sec. III-C1). A different approach would
look up for overlapping gets with different displacements.
However, this would lead to a O(logN) lookup cost, where
N is the number of cached entries (e.g., interval trees [23]).
A lookup returning an entry in the CACHED or PENDING
state is defined as hitting access. An entry in the CACHED
state can be directly copied into the destination buffer. If the
entry is PENDING, the same data has already been requested
from a different get in the same epoch: it will be copied
into the destination buffer at the end of the current epoch.
If the hit is only partial, a remote get is issued to acquire
the missing data. The entry is extended only if Sw contains
enough space to store it. A CACHED entry that is selected
as victim by the eviction procedure is set as MISSING.

2) Direct/Conflicting/Capacity Access: If the lookup re-
turns a MISSING entry, a remote get is issued to acquire the
requested data. The cost of the remote get can be overlapped
with the caching overheads that are required to check if Iw
and Sw are able to respectively index and store the new data
and to execute the eviction procedure if this check fails. An
access is direct if it does not require any eviction. We have
a conflicting access if an eviction is required due to conflicts
in Iw or a capacity access if the eviction is due to missing
space in Sw and enough space to store the new data is freed
after it. The access is defined as failing otherwise. A direct,
conflicting, or capacity access move the targeted cache entry
from the MISSING to the PENDING state.

C. Data Structures

The core of CLaMPI consists of the index Iw and storage
Sw data structures. Now we discuss a their possible imple-
mentation, assuming a caching layer Cw on a window w.

1) Naming - Indexing Entries: In CLaMPI, cache entries
are indexed using a hash table. We employ the Cuckoo
scheme [11, 17] for resolving hash collisions. It uses p hash
functions h0(e)...hp−1(e) to identify the possible locations
of an entry e in the hash table, leading to a lookup cost
linear in p. Universal hashing [5] can be used in order to
derive the p hash functions. We use p = 4, that showed to
achieve up to 97% space utilization of the hash table [11].

As described by Fotakis et al. [11], the insertion procedure
tries to insert a new element x in hi(x) where i is randomly
chosen in [0, p). If hi(x) already contains an element y (i.e.,
hi(x) = hi(y)) then x is inserted in hi(x) and a new location
for y is searched. The procedure continues iterating trying
to insert y in hj(y) with j randomly selected among the
p− 1 remaining positions. We define the insertion path as
the sequence of hash table entries visited during the insertion
procedure. The procedure stops when either an empty position
is found or a maximum number of iterations is reached.
This threshold helps to detect cycles in the Cuckoo graph.
Normally, the second case (insertion failure) is handled by
selecting a new set of hash functions and re-hashing all the
entries. In our approach we handle the insertion failure case
as a conflicting access, triggering the eviction procedure in
order to evict one of the entries in the insertion path.

2) Storage - Allocating Space: Cache entries are contigu-
ously stored in a memory buffer of size M . The memory
buffer size can be fixed or dynamically adjusted at runtime
(see Sec. III-E). We allocate memory regions of size as
multiple of the CPU cache line size, in order to maintain
CPU cache data alignment in Sw. Free memory regions are
indexed with an AVL tree [1], using their sizes as indexes:
the search of a free region requires O(logN) time, where N
is the number of free regions. This solution implies that new
allocations are served with a best-fit policy. A successful
search returns an AVL node representing the free region: the
node is removed from the tree and, if the free region is not
fully occupied by the requested data, a new node is inserted
for indexing the remaining free space.

Storing cache entries in a contiguous space allows us
to exploit hardware prefetching during the memory copy
in the case of a hitting access. However, this layout may
cause external fragmentation of the memory buffer. We have
external fragmentation when free memory is distributed in
a way such that it is not possible to satisfy new allocation
requests, even if the total free memory is enough to satisfy
them. In order to tackle this problem, we associate a
positional score with each entry to give an indication on how
they contribute to the current fragmentation of Sw.

Let us define Cw.ags(i) as the average get size of the
entries processed by Cw after the i-th getc in Cw.G. Let
c be a cache entry in Cw, we define dc as the total free
memory in Sw that is adjacent to c. The positional score
RiP (c) of c after processing the i-th getc is:

RiP (c) = min

{
|Cw.ags(i)− dc|

Cw.ags(i)
, 1

}
After the i-th getc has been issued, an entry c gets a

position score proportional to the difference between the
total free memory adjacent to it (i.e., dc) and Cw.ags(i).
The lower the positional score of c, the higher the probability
that evicting c will make enough space to store new data of
size Cw.ags(i). Fig. 6 reports a sketch of the memory buffer
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Figure 6: The memory buffer is represented by a list of cache entry (C) and
free region (Free) descriptors.

management structures (described in Sec. III-C3). Darker
colors of the cache entry descriptors - marked with C -
indicate a lower positional score of the associated entry.

3) Cache Entries Descriptors: To compute the positional
score of a cache entry c, we need to keep the value of dc
up to date. This value has to be updated at every eviction or
allocation targeting a memory region adjacent to c. Now we
briefly explain how this update can be efficiently performed.

Cache entries and free regions are associated with descrip-
tors. These descriptors store intervals endpoints and they are
organized in a doubly linked list that reflects the order in
which they appear in Sw (see Fig. 6). We use r.prev and
r.next to indicate the previous and the next element of the
r descriptor in this list, respectively. When a new entry is
cached, a free region is searched as described in Sec. III-C2.
Since the found free regions is linked with its descriptor f
and the new cache entry descriptor can be inserted between
f and f.next, we conclude that the insertion in this sorted
list can be performed in constant time. During the insertion,
the values of df.prev and df.next are updated by subtracting
the size of the new allocated region. The eviction procedure
returns the descriptor of the victim entry c: the values of
dc.prev and dc.next can be adjusted starting from it. The
removal from the sorted list takes constant time because we
already know the descriptor to remove. If c is adjacent to
a free region f , then f is enlarged and respective node is
updated in the AVL tree indexing the free regions.

D. Eviction Procedure

In the case of a conflicting or capacity access, the eviction
procedure has to select and evict a cached entry. On a
conflicting access, the victim is selected among the entries
in its insertion path (see Sec. III-C1). Now we describe the
victim selection scheme adopted if a capacity access happens.

The idea is to select the victim among a random sample
of M cache entries, where M is a configurable parameter.
Let us model Iw as a circular array: Iw[i..j] indicates the
set of entries stored from position i to j in Iw. Assuming
that the cached entries are uniformly distributed in Iw1, we
define our random sample as Iw[i..(i +M − 1)], where i
is randomly chosen. If the sample is empty, the procedure
keeps scanning until at least one non-empty entry is found.
Hence, in order to select a victim, the actual number of
visited entries starting from i is vi = max(M,ki), where ki
is the number of consecutive empty entries starting from i.
The value of ki depends on the sparsity of the Iw.

1It relies on the hash functions used by the Cuckoo scheme, see Sec. III-C1

1) Victim Selection: For each cache entry x we define
x.last as the index in Cw.G of the last getc that matched it.
The temporal score of a cache entry x after the i-th get in
Cw is the ratio between x.last and i: RiT (x) =

x.last
i .

We define the score of a cache entry as function of its
temporal and positional score:

Ri(x) = RiP (x)×RiT (x) 0 ≤ Ri(x) ≤ 1

The aim of Ri(x) is to estimate how x contributes to the
fragmentation of Sw and its reuse probability. The eviction
procedure selects the victim as the entry with the lowest
score among the visited ones.

2) Discussion: The missing guarantee to be always able
to store a new cache entry make our proposed caching layer
following a weak-caching approach. We motivate our design
choice with the following points:
• Cache entries have variable size: multiple evictions could

be required in order to make room in Sw to store the
incoming data. This would lead to an overhead proportional
to the current number of cached entries in the worst case.

• If a getc is targeting highly-reused data, then it will be
issued multiple times, leading to multiple evictions, hence
increasing its own probability of being successfully cached.

The proposed solution, that evicts a constant number of
entries, also avoids the case in which multiple entries are
evicted due to a sporadically accessed big data segment.

E. Parameter Tuning

We define the working set Ww(t, τ) [8] as the set of gets
issued to a caching layer Cw over the interval [t− τ, t], where
t and t−τ are indices in the Cw.G sequence. The set of gets
belonging to the working set and that are stored in cache at
time t is defined as γ(t, τ). The CLaMPI parameters |Iw|
and |Sw| introduce the following constraints on the γ(t, τ):

|γ(t, τ)| ≤ |Iw|
∑

g∈γ(t,τ)

size(g) ≤ |Sw|

The index size |Iw| limits the total number of cache entries
that can be indexed |γ(t, τ)|, while the memory buffer size
|Sw| limits the total space that the entries in γ(t, τ) can
occupy. Hence, |Iw| and |Sw| have a direct impact on the
number of conflicting and capacity accesses, respectively.

1) Adaptive Parameter Selection: Tuning the above de-
scribed parameters can be a challenging task for the user,
especially if we consider their direct impact on application
performance. We propose a strategy that allows CLaMPI
to adjust such parameters at runtime by itself. The idea is
that the starting values of |Iw| and |Sw| are predefined. The
caching layer will then increase or decrease those values
keeping track of some statistics about the cache usage at
runtime. It is worth noting that changing the value of any
parameter requires the invalidation of the cache.

A high number of conflicting accesses is a signal that Iw
has to be extended. When the ratio conflicting

total gets is greater than



a conflict threshold, the hash table size |Iw| is increased by a
index increase factor. Let us define q as the ratio between the
number of non-empty and total entries visited by the eviction
procedure. We identify the event of this value getting lower
than a certain threshold as a signal of a highly sparse Iw. In
this case, to improve the quality of the victim selection (i.e.,
increasing q), we decrease |Iw| by a index decrease factor.

The memory buffer size is adjusted according with the total
number of capacity and failed accesses. When we observe that
the number of capacity and failing accesses ( capacity+failedtotal gets )
becomes greater than a capacity threshold, we increase |Sw|
by a memory increase factor. On the other side, if the
working set is stable (i.e., hits

total gets > stable threshold)
and the free space in Sw is above the respective threshold,
then |Sw| is decreased by a memory decrease factor.

In the rest of the paper we use the terms fixed and adaptive
to refer the two strategies where the discussed parameters
are fixed or dynamically adjusted, respectively.

IV. EXPERIMENTS

The benchmarks presented in this section are executed on
Piz Daint@CSCS, a hybrid Cray XC50/XC40 system. Each
compute node is equipped with an eight-core Intel Xeon E5-
2670 clocked at 2.60GHz. The system is interconnected with
Cray’s Aries network arranged in a Dragonfly topology. We
use the optimized, open-source foMPI [12] implementation of
the MPI standard in order to enable a comparison with respect
to the fastest available RMA implementation on the targeted
system. All libraries and benchmarks discussed in this section
are compiled using the Cray Programming Environment
5.2.82. We use the Berkeley UPC compiler 2.22 for UPC
benchmarks and GNU gcc 4.3.4 for applications requiring
features not supported by the the Cray C compiler. Time
measurements are taken using the LibLSB timing library [13].
The number of repetions per experiment is selected such that
the 95% confidence interval is no larger than the 5% of the
reported median. When not differently stated, we map one
MPI rank - also referred to as processing element - per node.

A. Micro-Benchmarks

In this section we use a micro-benchmark consisting of
two processes mapped on different physical nodes, namely
initiator and target. The initiator creates a sequence of gets
towards the area of memory exposed by the target. This
sequence is created in the following way: 1) we create a set
of N = 1K gets targeting different data (i.e., no cache hits
are produced if this sequence is performed on an ideal cache
system). The size (in bytes) of each get in such sequence
is randomly chosen in the set {2i|i = 0..16} according to
an uniform distribution; 2) a sequence of Z ≥ N gets is
created by sampling from the set of step 1. The sampling is
done according to a normal distribution N (N2 ,

N
4 ). We use

a normal distribution to create a sequence in which a subset
of gets is more frequent than the others.
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Figure 7: CLaMPI caching costs for different access types and data sizes (D).
The horizontal line is the 25% of the foMPI latency. The 95% CIs are always
within the 5% of the reported medians.

1) Caching Costs Characterization: We define the latency
of a get operation as the time interval between the issuing
of the operation (i.e., MPI_Get) and the time in which the
requested data has been copied in the destination buffer (e.g.,
MPI_Win_Flush). Fig. 7 shows the overheads introduced
by the different access types and data sizes. In this benchmark
we set Z = 20K. As expected, the lookup cost is constant
for all the access types. The hitting access consists of only
the lookup phase and the data copy from the cache to the
user-provided buffer, being up to 9.3x and 3.7x faster than
foMPI for the 4KB and 16KB data sizes, respectively.

An eviction is required in the conflicting, capacity, and
failing accesses. The eviction cost, that accounts also for the
victim selection, is constant for conflicting accesses. In this
case, the victim is selected among the ones in the insertion
path of the new entry. In the other cases, this cost depends
on the sample size (see Sec. III-D1). The data copy phase
is not present in the failing access, since in this case no
resources are available to store the missing entry.
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Figure 8: Portion of the communication that can be overlapped with computa-
tion as function of the data size.

Fig. 8 shows the results of a communication/communi-
cation overlap study. Our reference curve is foMPI, that
is able to overlap up to the 85% of the communication to
computation in the 64KB case. It provides an upper-bound
for the overlap that can be reached by CLaMPI. The direct
and capacity accesses show a similar behaviour, because they
are both dominated by the data copy phase. The failing access,
instead, is able to provide a higher overlap for larger data
sizes, because it does not require any additional data copies.
CLaMPI was always able to directly cache get operations
targeting data of size smaller than 512B, explaining the
missing data points for the capacity and failing accesses.

2) Adaptive Parameter Selection Evaluation: In
Sec. III-E1 we discuss an adaptive strategy in order to



adjust the sizes of Iw and Sw at runtime. This adjustment is
made according to a set of indicators about the performance
provided by the caching layer. In Fig. 9, we show the
evaluation of the adaptive strategy reporting the completion
time of the micro-benchmark as function of different hash
table sizes. In the adaptive case, the value of the hash
table size is the starting value that could be dynamically
adjusted. The fixed strategy presents poor performance
when |Iw| is small w.r.t. the number of distinct gets N (i.e.,
200 ≤ |Iw| < N = 1K) due to high number of conflicting
accesses. This does not happen with the adaptive strategy,
which is able to adjust the hash table size at runtime,
minimizing the number of conflicting accesses.
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Figure 9: Completion time as function of hash table entries. The number of
hash table entries is the starting value for the adaptive strategy.

3) Victim Selection Algorithm Evaluation: In Sec. III-D1
we propose an LRU-based victim selection scheme that also
aims to reduce the external fragmentation in Sw, referred to
as Full. In this section we evaluate this scheme, comparing
it to the cases in which the entry score is composed only
from the Temporal (i.e., LRU-like), or the Positional score.

In this experiment, the total number of issued gets is set
to Z = 100K in order to observe the effects of external
fragmentation on a longer term. We choose to not include
the conflicting accesses in this analysis because it is a special
case of the capacity access. We verified that the number of
conflicting accesses becomes negligible (i.e., < 5%) when
the hash table size is set to values equal or greater than N .
In the following analysis we consider only values of |Iw|
satisfying this condition.
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Figure 10: Space occupation per Get Sequence ID and the victim selection
scheme. |Iw| = 1.5K entries. The y-axis is normalized with respect to |Sw|.

Fig. 10 reports the fraction of occupied space in the
memory buffer as function of the get identifier in Cw.G, that
is how the memory buffer occupation state changes with the
issuing of subsequent gets. We start reporting measurements
once the buffer is completely filled up for the first time
(i.e., the first capacity/failed access takes place). At this

point the buffer is saturated, so the space occupancy gives
us an estimation of the external fragmentation: the lower
the space occupation, the higher the external fragmentation.
The Temporal scheme does not take into account external
fragmentation, leading to make it increasing with the issuing
of subsequent gets. Instead, the Full and Positional estimate
how entries are contributing to the external fragmentation:
they keep the space occupation around 90% of Sw capacity.
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Figure 11: Top: average number of visited entries per eviction. Middle: number
of hits per different victim selection scheme. Bottom: free space per victim
selection scheme; average number of non-empty entries visited per eviction.
All the measures are reported as function of |Iw|.

Fig. 11 reports a study as function of the hash table size.
On the top we show the average number of visited entries
per capacity/failed accesses. Here we set M = 16, that is
the number of Iw entries that are visited to build the sample
among which the victim is selected. Increasing the hash table
size, we increase the sparsity of Iw, hence we need to visit
more than M entries in order to find at least one non-empty
entry in Iw. On the middle we show the hit ratio presented
by different victim selection strategies. The Full scheme
provides the best hit ratio for all the considered hash table
sizes: By reducing the external fragmentation, it can store
more cache entries than the Temporal scheme. Moreover, it
selects the victim also according with the estimated reuse
probability of the cached entries, keeping in cache the most
well-positioned and reused ones. On the bottom we show
the average free space per different victim selection scheme.
As expected, the Temporal scheme is the one presenting the
higher free space (hence higher external fragmentation). We
also show the portion of non-empty entries that are visited
during the victim selection. The higher the hash table size, the
higher the sparsity in Iw, the lower the number of non-empty
entries among which the victim is selected.

B. N-Body Simulation

The N-Body problem consists of simulating the evolution of
a system composed by N bodies. The system evolves as the
bodies apply their own force on the others. The algorithm
operates on discrete time intervals: at each time step the



forces applied from one body on all the others are computed,
updating the position and velocity of the bodies.

The Barnes-Hut algorithm [3] presents O(N · logN) time
complexity. The idea behind this approach is that if the
distance between a body and a different group of bodies is
greater than a certain threshold φ, then the forces applied by
such group can be approximated as if all the bodies in the
group are positioned in a point that coincides with the center
of mass of the group. The quality of the approximation is
controlled by the φ parameter. The bodies are organized into
an octree: each non-leaf node contains information about
the center of mass of the bodies laying in the descendant
subtree. The force computation phase consists in a top-down
visit of the tree: if a cell is “far enough” or is made by a
single body, then the force is computed using its center of
mass. Otherwise, the cell is accessed and all the contained
cells/leaves are recursively visited.

Different works on this problem point out the potential
advantage of exploiting the high locality presented by this
irregular application [16, 24]. In fact, during the force
computation phase the octree is not modified and a process
can access the same node of the tree multiple times. We
modified the UPC implementation by Larkins et al. [16]
introducing MPI One Sided operations for retrieving/storing
cells and leaves of the tree. We enable CLaMPI with the user-
defined mode (see Sec. III-A), that allows us to invalidate the
cache after the termination of the force computation phase.
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Figure 12: Barnes-Hut force computation time per body (N = 20K, P = 16).
The non-caching enabled body force computation needs 1.53ms to complete.

In Fig. 12, we compare the two CLaMPI strategies,
adaptive and fixed, with an ad-hoc caching system, referred
to as native, that was included in our reference UPC
implementation. The adaptive strategy is annotated with
the number of performed invalidations/adjustments. The
Force Computation time required by foMPI is 1.53ms.
The experiment fixes the number of processing elements
to P = 16 and the total number of bodies to n = 20K.
The CLaMPI parameters such as |Iw| and |Sw| are varied
in order to find the best setting. The memory size of the
native caching solution is set to the same value of |Sw|. The
adaptive strategy is the one presenting the best performance:
in all the cases it converges to 1MB as the value of |Sw|,
while it sets |Iw| = 20K (averaged on all the processes).
When |Iw| = 1K, the performance of the fixed strategy is
limited by the high number of conflicting accesses, as also
confirmed by Fig. 13 for the |Sw| = 1MB case. The native
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Figure 13: Barnes-Hut body force computation stats. |Sw| = 1MB,N = 20K
and P = 16. The y-axis is normalized w.r.t. the total number of gets

solution performance heavily depends on its memory size:
it ranges from ∼ 820 µs with 1MB to ∼ 400 µs with 4MB.
This behaviour can be explained by the fact that this system
is a block-based software cache with direct mapping, hence
the number of conflicts is strictly related to the available
memory size.
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Figure 14: Barnes-Hut weak scaling. Force computation time per body as
function of the number of processing elements (PEs). Bodies per process: 1.5K.

Fig. 14 shows the results of a weak scaling experiment. The
CLaMPI parameters are set to |Sw| = 2MB and |Iw| = 30K.
These are the initial parameters of the adaptive strategy. The
number of bodies is set to N = P · 8K and P , that is the
number of processing elements, varies between 16 and 128.
Both the CLaMPI strategies outperform the native and foMPI
solutions up to a factor of ∼ 3x and ∼ 5x, respectively. With
this settings, the adaptive strategy does not perform any
adjustment of the initial parameters.

C. Local Clustering Coefficient

Let G = (V,E) be an undirected graph. Given a vertex
v, we define deg(v) as the number of incident edges to v
and adj(v) (adjacency of v) as the subset of vertices u ∈ V
such that ∃(u, v) ∈ E. Without loss of generality, we assume
that G is partitioned among P processes by using a one-
dimensional scheme [4]: each partition Vi ⊆ V is assigned
to a process pi. The process pi owns all the vertices v ∈ Vi
and all the edges (v, u) such that v ∈ Vi, u ∈ V .

Given a vertex v, the number of possible edges among
the nodes adjacent to v is deg(v)× (deg(v)− 1). The Local
Clustering Coefficient (LCC) [22] of v is the fraction of
these edges that are actually defined in E. For undirected
graphs, it can be computed as:

LCC(v) =
2 · |{(u,w) : u,w ∈ adj(v), (u,w) ∈ E}|

deg(v) · (deg(v)− 1)

We introduce CLaMPI in an LCC algorithm leveraging
one-sided operations. To compute the LCC of a local vertex



vj ∈ Vi, the process pi has to retrieve the adjacency list of
every incident vertex u. If the owner of u is not pi, the retrieve
operation can be performed as a one-sided communication.
The number of gets issued by a single process depends on
the size of its own partition and on the degree of the vertices
in such partition. The size of the each issued get depends
on the degree of each neighbour of the vertex v.
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Figure 15: LCC communication time. Input graph: 220 vertices and 224 edges.
Number of processes: 32.

The LCC computation exposes data reuse since the adja-
cency list of the same vertex u can be accessed several times
by a single process: every time u appears in the adjacency list
of an owned node. In the following we evaluate the described
algorithm with and without the CLaMPI support. We use the
always-cache operational mode of CLaMPI because the graph
is never modified. Input instances are created with the R-MAT
random graph generation algorithm [6]. We generate scale-
free graphs which are used to model real-world networks.

1) Parameter Selection: As discussed in Sec. III-E,
ClaMPI exposes two performance critical parameters that
are |Iw| and |Sw|. In order to evaluate the effects of such
parameters on the LCC computation we use an R-MAT graph
with 220 vertices and 224 edges distributed over P = 32
processes. Fig. 15 compares the vertex processing time
(i.e., the time to compute LCC(v ∈ Vi)) of the CLaMPI
adaptive and fixed configurations with respect to foMPI. The
adaptive strategy is annotated with the number of performed
invalidations/adjustments. The CLaMPI fixed strategy with
|Sw| = 64MB is limited by the significant number of
capacity/failed accesses (i.e., ∼ 60% of the total gets).
Increasing the memory buffer size to 128MB the number of
capacity/failed accesses decreases to less the 5% of the total
total gets. In both cases the number of conflicting accesses
becomes lower than 1% when the |Iw| is set to 256K entries.
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Figure 16: LCC CLaMPI statistics for an R-MAT graph with 220 vertices and
224 edges, distributed on P = 32 processes, |Sw| = 64MB. The y-axis is
normalized with respect to the total number of issued gets.

●
●

●
●

5

10

16 32 64 128
Processing Elements

Ti
m

e 
pe

r V
er

te
x 

(u
s)

● foMPI CLaMPI (Fixed) CLaMPI (Adaptive)

0 0
1

6

Figure 17: LCC weak scaling experiment starting with R-MAT graph ranging
from S = 19 to S = 22 and EF = 16.

This explains the 5x speedup presented by the fixed strategy
with respect to foMPI when |Sw| = 128M and |Iw| = 256K.

The adaptive strategy achieves a speedup similar to the
one presented by the best fixed configuration, independently
from the starting parameters. Fig. 16 shows how the adaptive
strategy is able to keep the number of hitting accesses
always above the 60% of the issued gets already with
|Sw| = 64MB. The different completion times achieved
by this strategy starting from different values of Iw and Sw
is explained by the number of adjustments (with consequent
cache invalidation) needed to keep the capacity/failing and
conflicting accesses under the specified threshold. In all the
cases the adaptive strategy converges to the values of 144K
entries and 128MB for Iw and Sw, respectively.

2) Weak Scaling: In the weak scaling experiment, the
problem size per processing element stays constant. We set
|Iw| = 128K entries and |Sw| = 128MB. The input graph
is an R-MAT with |V | = P · 215 vertices, and |E| = 24 · |V |
edges. We vary P , that is the number of processing elements,
between 16 and 128. The experiment results are reported in
Fig. 17, where the adaptive strategy is annotated with the total
number of automatically performed invalidations/adjustments.
Increasing the graph scale with the number of processes
leads to a situation in which the number of gets per process
stays constant but the average get size increases. As a
consequence, the fixed strategy suffers of an higher number
of capacity/failed accesses when increasing the number of
processing elements, as showed in Fig. 18. This explains
the gap between the fixed and the adaptive strategy when
P > 32. The adaptive strategy is able to resize Sw in order to
accommodate the larger gets, converging to |Sw| = 256MB
with 1 adjustment and |Sw| = 512MB with 6 adjustments
for the P = 64 and P = 128 case, respectively. |Iw| is not
modified for any value of P .

Overall, the performance of the two CLaMPI strategies
starts converging to the foMPI one as the number of processes
increases. This is due to the nature of the weak scaling
experiment with respect to this particular application: the
problem size stays constants per process, but the graph is
distributed among an increasing the number of processes.
As a consequence, the data reuse decreases with P . This is
also confirmed by Fig. 18: in the adaptive strategy statistics,
the number of direct accesses increases with P , while other
access types stay below the 8% of the total gets.
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Figure 18: LCC weak scaling experiment statistics.

V. RELATED WORK

There are many studies on software caching schemes for
vertical local communications [18, 20] and their interaction
with hardware caches [15]. These systems, optimized for large
block requests, are designed for blocking interfaces where
the application waits for the completion of a request before
starting the next request. For horizontal communications,
two caching solutions exist for PGAS languages: a software
caching system for UPC [7] and Chapel [9]. Both follow
traditional approaches from vertical caching and implement
a standard block-based read/write caching scheme.

To the best of our knowledge, CLaMPI is the first caching
scheme aiming at the asynchronous epoch-based MPI-3
RMA system. Here, we innovate on multiple fronts: we
devise a variable-block-size scheme with minimal cache-
management overheads and propose a victim selection
strategy that also aims to reduce the external fragmentation
of the memory buffer. Furthermore, we focus on reads
because MPI’s semantics support write accesses well at
the user-level. CLaMPI integrates with the MPI-3 RMA
epoch consistency model and thus simplifies consistency
management significantly. Our performance analysis shows
that CLaMPI can provide better performances than hand-
crafted algorithm-specific implementations (see Sec. IV-B).

VI. SUMMARY

In this work we present a caching system of RMA get
operations. The idea is to exploit the data reuse that is
typical of irregular applications (e.g., graph processing, N-
body simulation), introducing a transparent caching layer
between the application and the network. CLaMPI can be
easily integrated into the MPI standard requiring minimal
modifications. In particular, the proposed design enables a
fully associative caching system where cache entries are
indexed with a hash table with Cuckoo hashing. To tackle
the external fragmentation induced by the variable-size cache
entries, the eviction procedure takes also into account the
positional score of cached entries during the victim selection.

To evaluate the performance of the proposed caching
system, we present a set of micro-benchmarks to show the
overheads introduced by the various access types. Moreover,
we show the effects of employing CLaMPI in two applica-
tions such as the N-Body simulation and the Local Clustering
Coefficient computation. In both cases we observe how the
introduction of the caching layer is able to provide a speedup

up to a factor of ∼ 5x in the N-Body simulation and ∼ 1.8x
in the Local Clustering Coefficient computation. In both
cases, no invasive interventions on the application code are
required to enable RMA caching.
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