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MPI-1

= MPIis a message-passing library interface standard.
= Specification, not implementation
= Library, not a language
= All explicit parallelism, no magic

= MPI-1 supports the classical message-passing programming model: basic point-to-point
communication, collectives, datatypes, etc

= MPI-1 was defined (1994) by a broadly based group of parallel computer vendors,
computer scientists, and applications developers.

= 2-year intensive process

= Implementations appeared quickly and now MPI is taken for granted as vendor-
supported software on any parallel machine.

= Free, portable implementations exist for clusters and other environments (MPICH, Open
MPI)
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Timeline of the MPI Standard

=  MPI-1 (1994), presented at SC’93
» Basic point-to-point communication, collectives, datatypes, etc
= MPI-2 (1997)

» Added parallel I/O, Remote Memory Access (one-sided operations), dynamic processes, thread support, C++
bindings, ...

= ---- Stable for 10 years ----

= MPI-2.1 (2008)
= Minor clarifications and bug fixes to MPI-2

= MPI-2.2 (2009)
» Small updates and additions to MPI 2.1

= MPI-3.0 (2012)
= Major new features and additions to MPI

=  MPI-3.1 (2015)
= Minor updates and fixes to MPI 3.0
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Overview of New Features in MPI-3

= Major new features

Nonblocking collectives

Neighborhood collectives

Improved one-sided communication interface
Tools interface

Fortran 2008 bindings

= QOther new features

Matching Probe and Recv for thread-safe probe and receive
Noncollective communicator creation function

“const” correct C bindings

Comm_split_type function

Nonblocking Comm_dup

Type_create_hindexed_block function

= C++ bindings removed

= Previously deprecated functions removed

= MPI 3.1 added nonblocking collective I/O functions
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Tutorial Books on MPI

= For basic MPI
= Using MPI, 3" edition, 2014, by William Gropp, Ewing Lusk, and Anthony Skjellum
= https://mitpress.mit.edu/books/using-MPI-third-edition
= For advanced MPI, including MPI-3
» Using Advanced MPI, 2014, by William Gropp, Torsten Hoefler, Rajeev Thakur, and Ewing Lusk
= https://mitpress.mit.edu/books/using-advanced-MPI

4

Using MPI Using Advanced MPI

Portable Parallel Programming Modern Features of the

with the Message-Passing Interface Message-Passing Interface

third edition

Anthony Skjellum
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Advanced Topics: One-sided Communication

D AR ICCETOC
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“The next time we have ane of our Talks,
4o you think | could talk?”
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One-sided Communication

The basic idea of one-sided communication models is to decouple data movement with
process synchronization

= Should be able to move data without requiring that the remote process synchronize

» Each process exposes a part of its memory to other processes

= Other processes can directly read from or write to this memory

Global
Address
Space
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Two-sided Communication Example

Memory
Segment
Memory
Segment
Segment

Processor

MPI implementation

Processor

oo

MPI implementation
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One-sided Communication Example

Memory
Segment
Memory
segment
MEmOry
Segment

Processor

MPI implementation

3

MPI implementation
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Comparing One-sided and Two-sided Programming

Process 0 Process 1
SEND(data) D
Even the E
sending L
process is A
delayed Y

RECV(data)

Process O Process 1
- PUT(data) M D
Delay in E
process1 [ ceT(gata) L
does not 4 A
affect v

process 0
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MP| RMA can be efficiently implemented

=  “Enabling Highly-Scalable Remote Memory Access Programming with MPI-3 One Sided” by Robert
Gerstenberger, Maciej Besta, Torsten Hoefler (SC13 Best Paper Award)

= They implemented complete MPI-3 RMA for Cray Gemini (XK5, XE6) and Aries (XC30) systems on top of
lowest-level Cray APIs

= Achieved better latency, bandwidth, message rate, and application performance than Cray’s MPI RMA, UPC,
and Coarray Fortran
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MPI| RMA is Carefully and Precisely Specified

To work on both cache-coherent and non-cache-coherent systems
= Even though there aren’t many non-cache-coherent systems, it is designed with the future in mind

There even exists a formal model for MPI-3 RMA that can be used by tools and
compilers for optimization, verification, etc.

= See “Remote Memory Access Programming in MPI-3” by Hoefler, Dinan, Thakur, Barrett, Balaji, Gropp,
Underwood. ACM TOPC, July 2015.

= http://htor.inf.ethz.ch/publications/index.php?pub=201
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What we need to know in MPI RMA

= How to create remote accessible memory?

= Reading, Writing, and Updating remote memory
= Data Synchronization

= Memory Model

3y @spcl_eth
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Creating Public Memory

Any memory used by a process is, by default, only locally accessible

= X = malloc(100);

Once the memory is allocated, the user has to make an explicit MPI call to declare a
memory region as remotely accessible

= MPI terminology for remotely accessible memory is a “window”

= A group of processes collectively create a “window”

Once a memory region is declared as remotely accessible, all processes in the window

can read/write data to this memory without explicitly synchronizing with the target
process

l window . window . window . window l




. . S G ; spcl.inf.ethz.ch
ETHzurich IRy Ry TS /&&2' 3 @spcl_eth

Z—

Window creation models

= Four models exist
= MPI_ WIN ALLOCATE
You want to create a buffer and directly make it remotely accessible
= MPI_WIN CREATE
You already have an allocated buffer that you would like to make remotely accessible
= MPI WIN CREATE DYNAMIC
You don’t have a buffer yet, but will have one in the future
You may want to dynamically add/remove buffers to/from the window
= MPI_ WIN ALLOCATE SHARED
You want multiple processes on the same node share a buffer
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MPI_WIN_ALLOCATE

MPI Win allocate (MPI Aint size, int disp unit,
MPI Info info, MPI Comm comm, void *baseptr,
MPI Win *win)

= Create aremotely accessible memory region in an RMA window
= Only data exposed in a window can be accessed with RMA ops.

= Arguments:

" size - size of local data in bytes (nonnegative integer)

= disp_unit - local unit size for displacements, in bytes (positive integer)
» info - info argument (handle)

= comm - communicator (handle)

= baseptr - pointer to exposed local data

= win - window (handle)
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Example with MPI_WIN_ALLOCATE

{

int main(int argc, char ** argv)

int *a; MPI Win win;
MPI Init(&argc, &argv);
/* collectively create remote accessible memory in a window */
MPI Win allocate(1000*sizeof(int), sizeof(int), MPI_INFO NULL,

MPI COMM WORLD, &a, &win);

/* Array ‘a’ is now accessible from all processes in
* MPI_COMM WORLD */

MPI_Win_free(&win);

MPI Finalize(); return O;
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MPI_WIN CREATE

MPI Win create(void *base, MPI Aint size,
int disp unit, MPI Info info,
MPI Comm comm, MPI Win *win)

= EXpose aregion of memory in an RMA window

Only data exposed in a window can be accessed with RMA ops.

= Arguments:

base - pointer to local data to expose

size - size of local data in bytes (nonnegative integer)

disp_unit - local unit size for displacements, in bytes (positive integer)
Info - iInfo argument (handle)

comm - communicator (handle)

win - window (handle)
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Example with MPI_ WIN CREATE

int main(int argc, char ** argv)

{

int *a; MPI Win win;
MPI Init(&argc, &argv);

/* create private memory */

MPI Alloc mem(1000*sizeof (int), MPI_INFO NULL, &a);
/* use private memory like you normally would */
a[0] =1; al[l] = 2;

/* collectively declare memory as remotely accessible */
MPI Win create(a, 1000*sizeof(int), sizeof(int),
MPI_INFO NULL, MPI_COMM WORLD, &win);

/* Array ‘a’ is now accessibly by all processes in
* MPI_COMM WORLD */

MPI Win free (&win) ;
MPI Free mem(a) ;
MPI_Finalize(); return 0;
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MPI_WIN CREATE _DYNAMIC

MPI Win create dynamic (MPI Info info, MPI_Comm comm,
MPI Win *win)

= Create an RMA window, to which data can later be attached
= Only data exposed in a window can be accessed with RMA ops
= |nitially “empty”

= Application can dynamically attach/detach memory to this window by calling
MPI Win attach/detach

= Application can access data on this window only after a memory region has been attached
= Window origin is MPI_BOTTOM

= Displacements are segment addresses relative to MPI_BOTTOM

= Must tell others the displacement after calling attach
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Example with MPI_WIN_CREATE_DYNAMIC

{

int main(int argc, char ** argv)

int *a; MPI Win win;

MPI Init(&argc, &argv);

MPI Win create dynamic (MPI_INFO NULL, MPI COMM WORLD, &win);
/* create private memory */

a = (int *) malloc (1000 * sizeof(int));

/* use private memory like you normally would */

a[0] =1; al[l] = 2;

/* locally declare memory as remotely accessible */
MPI Win attach(win, a, 1000*sizeof (int));

/* Array ‘a’ is now accessible from all processes */
/* undeclare remotely accessible memory */
MPI Win detach(win, a); free(a);

MPI Win free (&win) ;

MPI Finalize(); return O;
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Data movement

= MPI provides ability to read, write and atomically modify data in remotely accessible
memory regions
= MPI_PUT
= MPI_GET
. MPI_ACCUMULATE (atomic)
. MPI_GET_ACCUMULATE (atomic)
= MPI_COMPARE AND SWAP (atomic)
u MPI_FETCH_AND_OP (atomic)
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Data movement: Put

MPI Put(const void *origin_addr, int origin_count, \
MPI Datatype origin dtype, int target rank,
MPI Aint target disp, int target count,
MPI Datatype target dtype, MPI Win win)
\. - - - Y
= Move data from origin, to target
= Separate data description triples for origin and target
Remotely
Accessible
Memory
|
: Private
: Memory
|

Origin Target
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Data movement: Get

MPI Get(void *origin addr, int origin_ count, \
MPI Datatype origin dtype, int target rank,
MPI Aint target disp, int target count,
MPI Datatype target dtype, MPI Win win)
\. - - - Y
= Move data to origin, from target
= Separate data description triples for origin and target
Remotely
Accessible
Memory
: Private
: Memory
|

Origin Target
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Atomic Data Aggregation: Accumulate

~

MPI Accumulate (const void *origin addr, int origin count,
MPI Datatype origin dtype, int target rank,
MPI Aint target disp, int target count,

MPI Datatype target dtype, , MPI Win win)

. J

= Atomic update operation, similar to a put
» Reduces origin and target data into target buffer using op argument as combiner
= Op =MPI_SUM, MPI PROD, MPI OR, MPI REPLACE, MPI NO OP, ...

» Predefined ops only, no user-defined operations

= Different data layouts between Remotely
P Accessible
target/origin OK Memory
= Basic type elements must match

|

|

» Implements f(a,b)=b : Memory
= Atomic PUT Origin I Target
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Atomic Data Aggregation: Get Accumulate

~

/MPI_Get_accumulate (const void *origin addr,
int origin count, MPI Datatype origin dtype,
void *result addr,int result count,
MPI Datatype result dtype, int target rank,
MPI Aint target disp,int target count,

\ MPI Datatype target dype, , MPI Win win) /

= Atomic read-modify-write
= Op =MPI_SUM, MPI_PROD, MPI_OR, MPI_REPLACE, MPI_NO OP, ...
» Predefined ops only )

= Result stored in target buffer

. : Remotely
= QOriginal data stored in result buf Accessible
= Different data layouts between Memory

target/origin OK
= Basic type elements must match ‘ Private
= Atomic get with MPI_NO_OP ! Memory
|

= Atomic swap with MPI_REPLACE Origin Target
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Atomic Data Aggregation: CAS and FOP

MPI Fetch and op(const void *origin addr, void *result addr,
MPI Datatype dtype, int target rank,

MPI Aint target disp, , MPI Win win)
MPI Compare and swap (const void *origin addr,
const void *compare addr, void *result addr,
MPI Datatype dtype, int target rank,
L MPI Aint target disp, MPI Win win) )

= FOP: Simpler version of MPI_Get_accumulate
= All buffers share a single predefined datatype
= No count argument (it's always 1)
= Simpler interface allows hardware optimization

= CAS: Atomic swap if target value is equal to compare value
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Ordering of Operations in MPI RMA

= No guaranteed ordering for Put/Get operations
= Result of concurrent Puts to the same location undefined
= Result of Get concurrent Put/Accumulate undefined

= Can be garbage in both cases

= Result of concurrent accumulate operations to the same location are defined according
to the order in which the occurred
= Atomic put: Accumulate with op = MPI_REPLACE
= Atomic get: Get_accumulate with op = MPI_NO_OP
= Accumulate operations from a given process are ordered by default
= User can tell the MPI implementation that (s)he does not require ordering as optimization hint
» You can ask for only the needed orderings: RAW (read-after-write), WAR, RAR, or WAW
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Examples with operation ordering

Process O Process 1
PUT(x=1, P1) % =0 |
PUT(x=2, P1) ) 1. Concurrent Puts: undefined
X=2
=1
— )
PUT(x=2, PL «=1 2.Concurrent Get and
GET(y, x, P1) Put/Accumulates: undefined
y=1| X=2
GET_ACC (y, x+=2, P1 X =2
ACC (x+=1, P1] a0 3. Concurrent Accumulate
5 operations to the same location:
y:

x+=1 ordering is guaranteed
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RMA Synchronization Models

= RMA data access model
= When is a process allowed to read/write remotely accessible memory?
= When is data written by process X is available for process Y to read?
= RMA synchronization models define these semantics

= Three synchronization models provided by MPI:
= Fence (active target)
= Post-start-complete-wait (generalized active target)
= Lock/Unlock (passive target)

= Data accesses occur within “epochs”
= Access epochs: contain a set of operations issued by an origin process
» EXposure epochs: enable remote processes to update a target’s window
» Epochs define ordering and completion semantics
= Synchronization models provide mechanisms for establishing epochs

E.g., starting, ending, and synchronizing epochs
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Fence: Active Target Synchronization

[MPI_Win_fence(int assert, MPI Win win) ]

= Collective synchronization model

= Starts and ends access and exposure epochs on all PO P1 P
processes in the window

= All processes in group of “win” do an MPI_WIN FENCE feonce d-----=-=--bF-----—--- -

to open an epoch —

= Everyone can issue PUT/GET operations to read/write data
= Everyone does an MPI_WIN FENCE to close the epoch

= All operations complete at the second fence synchronization

Fence -
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Example: Stencil with RMA Fence (1/2)

PUT

PUT

RMA window

L

~ Target buffers

1Nnd

1Nnd

r Origin buffers

"y @spcl_eth
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Example: Stencil with RMA Fence (2/2)

= stencil_mpi_ddt _rma.c

= Use MPI_PUTs to move data, explicit receives are not needed
= Data location specified by MPI datatypes

= Manual packing of data no longer required
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[MPI_Win_post/start(MPI_Group grp, int assert, MPI Win win)]

MPI Win complete/wait (MPI_Win win)

= Like FENCE, but origin and target specify who they communicate with

= Target: Exposure epoch

= Opened with MPI_Win post Target

= Closed by MPI Win wait

= QOrigin: Access epoch Post =
= Opened by MPI Win_ start
= Closed by MPI Win complete

= All synchronization operations may block, to enforce
P-S/C-W ordering

= Processes can be both origins and targets Wait =

-‘-
-

= o

-

- o

- Complete
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Lock/Unlock: Passive Target Synchronization

= Passive mode: One-sided, asynchronous communication
» Target does not participate in communication operation

= Shared memory-like model

Active Target Mode Passive Target Mode

- Post

- =
—‘
-—
-—
-—
-—

Lock @

—

- Complete  Unlock @

Wait -

-
- e e
- o
-—
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Passive Target Synchronization

[MPI_Win_lock(int locktype, int rank, int assert, MPI Win win) ]

[MPI_Win_unlock(int rank, MPI Win win) ]

[MPI_Win_flush/flush_local (int rank, MPI Win win) }

= Lock/Unlock: Begin/end passive mode epoch
» Target process does not make a corresponding MPI call
= Can initiate multiple passive target epochs to different processes
= Concurrent epochs to same process not allowed (affects threads)

= Locktype
= SHARED: Other processes using shared can access concurrently
= EXCLUSIVE: No other processes can access concurrently

= Flush: Remotely complete RMA operations to the target process
= After completion, data can be read by target process or a different process

= Flush_local: Locally complete RMA operations to the target process
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Newer Passive Target Synchronization

[MPI_Win_lock_all(int assert, MPI Win win) ]

[MPI_Win_unlock_all (MPI Win win) )

[MPI_Win_flush_all/flush_local_all (MPI Win win) ]

* Lock all: Shared lock, passive target epoch to all other processes
= Expected usage is long-lived: lock_all, put/get, flush, .., unlock all

= Flush all —remotely complete RMA operations to all processes

* Flush local all - locally complete RMA operations to all
processes
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MPlI RMA Memory Model

= MPI-3 provides two memory models: separate and unified

= MPI-2: Separate Model

= Logical public and private copies Separate  Unified
= MPI provides software coherence between window copies

= Extremely portable, to systems that don't provide
hardware coherence

Public
= MPI-3: New Unified Model copy it
= Single copy of the window i Copy
= System must provide coherence - ,
= Superset of separate semantics Pé';’;‘;e

E.g. allows concurrent local/remote access
* Provides access to full performance potential of hardware
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MPlI RMA Memory Model (separate windows)

= Very portable, compatible with non-coherent memory systems
= Limits concurrent accesses to enable software coherence

Same source _
Same epoch Diff. Sources

A W AR A \
AT AT

Public
Copy

P P P P
' ' ' '
' ' ' '
\ 4 \ 4 \ 4 \ 4

€3>

Copy

f / /

load store store
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MPlI RMA Memory Model (unified windows)

= Allows concurrent local/remote accesses

= Concurrent, conflicting operations are allowed (not invalid)
= OQutcome is not defined by MPI (defined by the hardware)

= Can enable better performance by reducing synchronization

Same source _
Same epoch Diff. Sources

LA WA \ \
s ATy

v \ y

f / /

load store store

Copy
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MP| RMA Operation Compatibility (Separate)
| toad | sore | Get | Pu__ | _Acc____
- OVL+NOVL

Load NOVL NOVL
Get NOVL NOVL
Put NOVL NOVL NOVL NOVL
Acc NOVL NOVL NOVL  OVL+NOVL

This matrix shows the compatibility of MPI-RMA operations when two
Or more processes access a window at the same target concurrently.

OVL - Overlapping operations permitted
NOVL - Nonoverlapping operations permitted
X = Combining these operations is OK, but data might be garbage
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MP| RMA Operation Compatibility (Unified)
| toad | sore | Get | Pu__ | _Acc____

Load
Store
Get
Put
Acc

NOVL NOVL

NOVL NOVL NOVL

NOVL NOVL NOVL

NOVL NOVL NOVL NOVL NOVL

NOVL NOVL NOVL NOVL  OVL+NOVL

This matrix shows the compatibility of MPI-RMA operations when two
Or more processes access a window at the same target concurrently.

OVL - Overlapping operations permitted
NOVL - Nonoverlapping operations permitted
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Shared memory problems...

You rePlacecl my

child hood memories
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Hybrid Programming with Shared Memory

= MPI-3 allows different processes to allocate shared memory through MPI
= MPI_Win_allocate shared

= Uses many of the concepts of one-sided communication

= Applications can do hybrid programming using MPI or load/store accesses on the
shared memory window

= QOther MPI functions can be used to synchronize access to shared memory regions

= Can be simpler to program than threads
= Controlled sharing!
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Creating Shared Memory Regions in MPI

;iiﬁg’

|
MPI_COMM_WORLD

MPI_Cognm_split_type
(MPI_COM YPE_SHARED)

J\ J\ )
| Y Y
Shared Shared Shared
memory memory memory
communicator communicator communicator
v MPI_Win_aIIocate_sharedv v
J\ J\ )
Y Y Y
Shared Shared Shared
memory memory memory
window window window

3y @spcl_eth
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Regular RMA windows vs. Shared memory windows

= Shared memory windows allow application processes
to directly perform load/store accesses on all of the

PUT/GET
window memory Load/storei i Load/store
= E.g., x[100] =10 Local Local
memory memory
= All of the existing RMA functions can also be used Traditional RMA
on such memory for more advanced semantics such windows
as atomic operations
= Can be very useful when processes want to use Load/stor
threads only to get access to all of the memory on Load/Storei 1: Load/store
the node

Local memory
* You can create a shared memory window and put your shared data

Shared memory
windows
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MPI_COMM_SPLIT TYPE

MPI Comm split type (MPI_Comm comm, int split type,
int key, MPI Info info, MPI_ Comm *newcomm)

= Create a communicator where processes “share a property”
= Properties are defined by the “split_type”

= Arguments:

= comm - input communicator (handle)

= Split_type - property of the partitioning (integer)

= Key - Rank assignment ordering (nonnegative integer)
= info - info argument (handle)

" pnewcomm- output communicator (handle)
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MPI_WIN_ALLOCATE_SHARED

MPI Win allocate_ shared (MPI_Aint size, int disp unit,
MPI Info info, MPI Comm comm, void *baseptr,
MPI Win *win)

= Create aremotely accessible memory region in an RMA window
= Data exposed in a window can be accessed with RMA ops or load/store

= Arguments:

" size - size of local data in bytes (nonnegative integer)

= disp_unit - local unit size for displacements, in bytes (positive integer)
= info - info argument (handle)

= comm - communicator (handle)

= baseptr - pointer to exposed local data

" win - window (handle)
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Shared Arrays with Shared memory windows

int main(int argc, char ** argv)

{

int buf[100];

MPI Init(&argc, &argv);

MPI Comm split type(..., MPI_COMM TYPE SHARED,
MPI Win allocate_shared(comm, ..., &win);

MPI_Win_lockall(win);

/* copy data to local part of shared memory */
MPI Win_ sync(win);

/* use shared memory */
MPI Win unlock all (win) ;
MPI Win free (&win) ;

MPI Finalize();
return 0;

b 4

&comm) ;

LT
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Memory allocation and placement

= Shared memory allocation does not need to be uniform across processes
= Processes can allocate a different amount of memory (even zero)

= The MPI standard does not specify where the memory would be placed (e.g., which
physical memory it will be pinned to)

» Implementations can choose their own strategies, though it is expected that an implementation will try
to place shared memory allocated by a process “close to it”

= The total allocated shared memory on a communicator is contiguous by default

» Users can pass an info hint called “noncontig” that will allow the MPI implementation to align memory
allocations from each process to appropriate boundaries to assist with placement
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Example Computation: Stencil

Message passing
model requires ghost-
cells to be explicitly
T H communicated to
neighbor processes

In the shared-memory
model, there is no
communication.
Neighbors directly
access your data.
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Walkthrough of 2D Stencil Code with Shared Memory Windows

= stencil_mpi_shmem.c
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Advanced Topics: Nonblocking Collectives primer only

"A new system has to emerge, one
based on deeper human values”

COLLABORATIVEINTELLIGENCE
TOGETHIERNESS
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Nonblocking Collective Communication

= Nonblocking (send/recv) communication
= Deadlock avoidance
= Qverlapping communication/computation

= Collective communication
= Collection of pre-defined optimized routines

= => Nonblocking collective communication
= Combines both technigques (more than the sum of the parts ©)
= System noise/imbalance resiliency
= Semantic advantages
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Nonblocking Collective Communication

= Nonblocking variants of all collectives

MPI_Ibcast(<bcast args>, MPI1_Request *req);

= Semantics

Function returns no matter what

No guaranteed progress (quality of implementation)
Usual completion calls (wait, test) + mixing

Out-of order completion

= Restrictions

Hoefler et al.:

No tags, in-order matching

Send and vector buffers may not be updated during operation
MPI_Cancel not supported

No matching with blocking collectives

Implementation and Performance Analysis of Non-Blocking Collective Operations for MPI

3y @spcl_eth
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Nonblocking Collective Communication

= Semantic advantages

= Enable asynchronous progression (and manual)
Software pipelining

= Decouple data transfer and synchronization
Noise resiliency!

= Allow overlapping communicators
See also neighborhood collectives

= Multiple outstanding operations at any time
Enables pipelining window

Hoefler et al.: Implementation and Performance Analysis of Non-Blocking Collective Operations for MPI
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A Non-Blocking Barrier?

= What can that be good for? Well, quite a bit!

= Semantics:

= MPI_Ibarrier() — calling process entered the barrier, no synchronization happens
= Synchronization may happen asynchronously
= MPI_Test/Wait() — synchronization happens if necessary

= Uses:
= Qverlap barrier latency (small benefit)
= Use the split semantics! Processes notify non-collectively but synchronize collectively!
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A Semantics Example: DSDE

= Dynamic Sparse Data Exchange
= Dynamic: comm. pattern varies across iterations
= Sparse: number of neighbors is limited (O (log P))
= Data exchange: only senders know neighbors
Process Process Process Process Process Process

= Main Problem: metadata 0 1 2 3 4 5

= Determine who wants to send how much data to me
(I must post receive and reserve memory)

2 0 4
1] 0] 1] 2 4]
o X 054
= Use MPI semantics:
Unknown sender (MP1_ANY_SOURCE) 8
- 0] B El
Unknown message size (MPI_PROBE) o 0 B B 7
Reduces problem to counting the number of neighbors o & g g g d
Process Process Process Process Process Process
Allow faster implementation! 0 1 2 3 4 5

Hoefler et al.: Scalable Communication Protocols for Dynamic Sparse Data Exchange
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Using Alltoall (PEX)

= Based on Personalized Exchange (0(P))

= Processes exchange Process Process Process Process Process Process
. 0 1 2 3 - 5

metadata (sizes)
about neighborhoods 0 3] 0] 0] o | |[@
with all-to-all B a o] 1 o B |2

* Processes post o 8| (813 |5 0 ol B| |4
receives afterwards ol || (ol [ |lof E1) |lof 11 H) |

N 1 0 1 H E 4
» Most intuitive but —

as .

MPI_AL

least performance
and scalability!

LTOALL

C " 'MPI_SEND/MPI_RECV =
0 0 z o o | [@
3] 0| o] @ o] 0|
0 1 0 o] E]| ([ 0]
0 0 1 0 0 0
o M| |l o H| | B @ | |&
o] (1| |l K| |0 EA| |lo] EA| [ E3] |L2
0] 1 H B 4 5

Process Process Process Process Process Process
0 1 2 3 4 5

T. Hoefler et al.: Scalable Communication Protocols for Dynamic Sparse Data Exchange
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Reduce scatter (PCX)

= Bases on Personalized Census (0(P))

= Processes exchange Process Process Process Process Process Process
0 1 2 3 4 5
metadata (counts) about
' i 0] 1] 0] 0] 0]
neighborhoods with 0 ] 0 b3 (e
reduce scatter 1 0] 1] o] B/ |[o]
e - o Bl |[g @ o | (B B |5
" Receivers checks with o Al |k @ 0 1 Bl @
wildcard MPI_IPROBE 1 0 2] 3 4

and receives messages x

MPI_REDUCE_SCATTER

= Better than PEX but \
non-deterministic! . 4/// \\ i :
I MPI_SEND/MP|_PROBE(MPI_ANY_SOURCE)/MPI_RECV |

B] 2] E] [4] 2] [1]

Process Process Process Process Process Process
0 1 2 3 4 5

T. Hoefler et al.: Scalable Communication Protocols for Dynamic Sparse Data Exchange



.. , 44 e spcl.inf.ethz.ch
ETH:zurich x- : 7 9 @spcl_eth

MPI _Ibarrier (NBX)

= Complexity - census (barrier): (0(logP))
= Combines metadata with actual transmission Process  Process Process Process Process Process
= Point-to-point

synchronization g
= Continue receiving 2] 0 3
until barrier completes E g E 2 g 2
» Processes start coll. ™ ‘ MPL_ISSEND - “q
SynCh. (barrier) When | LOOP MP! IPROBE(MPI ANY SOURCE)/MP! RECV |
| rf MP]r SSENDs ftmshed start MP.' IBARRJER ]
p2p phase ended |_’ u;trf MP IB;;RRIER c;mp!eted d
: L ) A
barrier = distributed N4
marker!
= Better than Alltoall, - B E
reduce-scatter! 0 a 2] 3] 4]
0] 1 2] E 4 5]
Process Process Process Process Process Process
0 1 2 3 4 5

T. Hoefler et al.: Scalable Communication Protocols for Dynamic Sparse Data Exchange
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Parallel Breadth First Search

= On aclustered Erdés-Rényi graph, weak scaling
= 6.75 million edges per node (filled 1 GiB)

BlueGene/P — with HW batrrier! Myrinet 2000 with LibNBC
160 T T 11 T T
BFS+PEX —+— 1 O lBFs+PEX ——
140 [BFS+PCX ---r- / 100 [BFS+PCX ¢ 7
BFS+NBX i 90 [BFS+RSX ¥
@ 4120 ) BFS+NBX -3 /
° / X 2 80
Q Q
S 100 / g 70 4
n s %) o
£ 80 / '."‘ c 60 =
() () 50
£ / / £ |
< n

L g
L 40 w30

20 f,)( 20

M X" _ 10
0 L L T 0 - a
64 128 256 512 1024 2048 4096 8192 16384 16 32 64 128 256 512 1024 2048
Number of Processes Number of Processes

= HW barrier support is significant at large scale!

T. Hoefler et al.: Scalable Communication Protocols for Dynamic Sparse Data Exchange
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Nonblocking Collectives Summary

= Nonblocking communication does two things:
= Qverlap and relax synchronization
= Collective communication does one thing
= Specialized pre-optimized routines
= Performance portability
= Hopefully transparent performance

= They can be composed
= E.g., software pipelining



