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▪ MPI is a message-passing library interface standard.

▪ Specification, not implementation

▪ Library, not a language

▪ All explicit parallelism, no magic

▪ MPI-1 supports the classical message-passing programming model: basic point-to-point 
communication, collectives, datatypes, etc

▪ MPI-1 was defined (1994) by a broadly based group of parallel computer vendors, 
computer scientists, and applications developers.

▪ 2-year intensive process

▪ Implementations appeared quickly and now MPI is taken for granted as vendor-
supported software on any parallel machine.

▪ Free, portable implementations exist for clusters and other environments (MPICH, Open 
MPI)
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MPI-1
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▪ MPI-1 (1994), presented at SC’93

▪ Basic point-to-point communication, collectives, datatypes, etc

▪ MPI-2 (1997)

▪ Added parallel I/O, Remote Memory Access (one-sided operations), dynamic processes, thread support, C++ 

bindings, …

▪ ---- Stable for 10 years ----

▪ MPI-2.1 (2008)

▪ Minor clarifications and bug fixes to MPI-2

▪ MPI-2.2 (2009)

▪ Small updates and additions to MPI 2.1

▪ MPI-3.0 (2012)

▪ Major new features and additions to MPI

▪ MPI-3.1 (2015)

▪ Minor updates and fixes to MPI 3.0
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Timeline of the MPI Standard
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▪ Major new features

▪ Nonblocking collectives

▪ Neighborhood collectives

▪ Improved one-sided communication interface

▪ Tools interface

▪ Fortran 2008 bindings

▪ Other new features

▪ Matching Probe and Recv for thread-safe probe and receive 

▪ Noncollective communicator creation function

▪ “const” correct C bindings

▪ Comm_split_type function

▪ Nonblocking Comm_dup

▪ Type_create_hindexed_block function

▪ C++ bindings removed

▪ Previously deprecated functions removed

▪ MPI 3.1 added nonblocking collective I/O functions
4

Overview of New Features in MPI-3
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▪ For basic MPI

▪ Using MPI, 3rd edition, 2014, by William Gropp, Ewing Lusk, and Anthony Skjellum

▪ https://mitpress.mit.edu/books/using-MPI-third-edition

▪ For advanced MPI, including MPI-3

▪ Using Advanced MPI, 2014, by William Gropp, Torsten Hoefler, Rajeev Thakur, and Ewing Lusk

▪ https://mitpress.mit.edu/books/using-advanced-MPI
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Tutorial Books on MPI

https://mitpress.mit.edu/books/using-MPI-third-edition
https://mitpress.mit.edu/books/using-advanced-MPI
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Advanced Topics: One-sided Communication

6



spcl.inf.ethz.ch

@spcl_eth

▪ The basic idea of one-sided communication models is to decouple data movement with 

process synchronization

▪ Should be able to move data without requiring that the remote process synchronize

▪ Each process exposes a part of its memory to other processes

▪ Other processes can directly read from or write to this memory
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One-sided Communication

Process 1 Process 2 Process 3

Private

Memory

Private

Memory

Private

Memory

Process 0

Private

Memory

Remotely

Accessible

Memory

Remotely

Accessible

Memory

Remotely

Accessible 

Memory

Remotely

Accessible 

Memory

Global 

Address 

Space

Private

Memory

Private

Memory

Private

Memory

Private

Memory



spcl.inf.ethz.ch

@spcl_eth

8

Two-sided Communication Example
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One-sided Communication Example
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Comparing One-sided and Two-sided Programming
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▪ “Enabling Highly-Scalable Remote Memory Access Programming with MPI-3 One Sided” by Robert 

Gerstenberger, Maciej Besta, Torsten Hoefler (SC13 Best Paper Award)

▪ They implemented complete MPI-3 RMA for Cray Gemini (XK5, XE6) and Aries (XC30) systems on top of 

lowest-level Cray APIs

▪ Achieved better latency, bandwidth, message rate, and application performance than Cray’s MPI RMA, UPC, 

and Coarray Fortran
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MPI RMA can be efficiently implemented
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3D FFT MILC

Distributed Hash Table Dynamic Sparse Data Exchange
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▪ To work on both cache-coherent and non-cache-coherent systems

▪ Even though there aren’t many non-cache-coherent systems, it is designed with the future in mind

▪ There even exists a formal model for MPI-3 RMA that can be used by tools and 

compilers for optimization, verification, etc.

▪ See “Remote Memory Access Programming in MPI-3” by Hoefler, Dinan, Thakur, Barrett, Balaji, Gropp, 

Underwood. ACM TOPC, July 2015.

▪ http://htor.inf.ethz.ch/publications/index.php?pub=201
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MPI RMA is Carefully and Precisely Specified

http://htor.inf.ethz.ch/publications/index.php?pub=201
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▪ How to create remote accessible memory?

▪ Reading, Writing, and Updating remote memory

▪ Data Synchronization

▪ Memory Model

14

What we need to know in MPI RMA
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▪ Any memory used by a process is, by default, only locally accessible

▪ X = malloc(100);

▪ Once the memory is allocated, the user has to make an explicit MPI call to declare a 

memory region as remotely accessible

▪ MPI terminology for remotely accessible memory is a “window”

▪ A group of processes collectively create a “window”

▪ Once a memory region is declared as remotely accessible, all processes in the window 

can read/write data to this memory without explicitly synchronizing with the target 

process

15

Creating Public Memory
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▪ Four models exist

▪ MPI_WIN_ALLOCATE

You want to create a buffer and directly make it remotely accessible

▪ MPI_WIN_CREATE

You already have an allocated buffer that you would like to make remotely accessible

▪ MPI_WIN_CREATE_DYNAMIC

You don’t have a buffer yet, but will have one in the future

You may want to dynamically add/remove buffers to/from the window

▪ MPI_WIN_ALLOCATE_SHARED

You want multiple processes on the same node share a buffer

16

Window creation models
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▪ Create a remotely accessible memory region in an RMA window

▪ Only data exposed in a window can be accessed with RMA ops.

▪ Arguments:

▪ size - size of local data in bytes (nonnegative integer)

▪ disp_unit - local unit size for displacements, in bytes (positive integer)

▪ info - info argument (handle)

▪ comm - communicator (handle)

▪ baseptr - pointer to exposed local data

▪ win            - window (handle)

17

MPI_WIN_ALLOCATE

MPI_Win_allocate(MPI_Aint size, int disp_unit,

MPI_Info info, MPI_Comm comm, void *baseptr,

MPI_Win *win)
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Example with MPI_WIN_ALLOCATE

int main(int argc, char ** argv)

{

int *a;    MPI_Win win;

MPI_Init(&argc, &argv);

/* collectively create remote accessible memory in a window */

MPI_Win_allocate(1000*sizeof(int), sizeof(int), MPI_INFO_NULL,

MPI_COMM_WORLD, &a, &win);

/* Array ‘a’ is now accessible from all processes in

* MPI_COMM_WORLD */

MPI_Win_free(&win);

MPI_Finalize(); return 0;

}
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▪ Expose a region of memory in an RMA window

▪ Only data exposed in a window can be accessed with RMA ops.

▪ Arguments:

▪ base - pointer to local data to expose

▪ size - size of local data in bytes (nonnegative integer)

▪ disp_unit - local unit size for displacements, in bytes (positive integer)

▪ info - info argument (handle)

▪ comm - communicator (handle)

▪ win             - window (handle)

19

MPI_WIN_CREATE

MPI_Win_create(void *base, MPI_Aint size, 

int disp_unit, MPI_Info info,

MPI_Comm comm, MPI_Win *win)
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Example with MPI_WIN_CREATE
int main(int argc, char ** argv)

{

int *a;    MPI_Win win;

MPI_Init(&argc, &argv);

/* create private memory */

MPI_Alloc_mem(1000*sizeof(int), MPI_INFO_NULL, &a);

/* use private memory like you normally would */

a[0] = 1;  a[1] = 2;

/* collectively declare memory as remotely accessible */

MPI_Win_create(a, 1000*sizeof(int), sizeof(int), 

MPI_INFO_NULL, MPI_COMM_WORLD, &win);

/* Array ‘a’ is now accessibly by all processes in

* MPI_COMM_WORLD */

MPI_Win_free(&win);

MPI_Free_mem(a);

MPI_Finalize(); return 0;

}



spcl.inf.ethz.ch

@spcl_eth

▪ Create an RMA window, to which data can later be attached

▪ Only data exposed in a window can be accessed with RMA ops

▪ Initially “empty”

▪ Application can dynamically attach/detach memory to this window by calling 
MPI_Win_attach/detach

▪ Application can access data on this window only after a memory region has been attached

▪ Window origin is MPI_BOTTOM

▪ Displacements are segment addresses relative to MPI_BOTTOM

▪ Must tell others the displacement after calling attach

21

MPI_WIN_CREATE_DYNAMIC

MPI_Win_create_dynamic(MPI_Info info, MPI_Comm comm,

MPI_Win *win)
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Example with MPI_WIN_CREATE_DYNAMIC
int main(int argc, char ** argv)

{

int *a;    MPI_Win win;

MPI_Init(&argc, &argv);

MPI_Win_create_dynamic(MPI_INFO_NULL, MPI_COMM_WORLD, &win);

/* create private memory */

a = (int *) malloc(1000 * sizeof(int));

/* use private memory like you normally would */

a[0] = 1;  a[1] = 2;

/* locally declare memory as remotely accessible */

MPI_Win_attach(win, a, 1000*sizeof(int));

/* Array ‘a’ is now accessible from all processes */

/* undeclare remotely accessible memory */

MPI_Win_detach(win, a);  free(a);

MPI_Win_free(&win);

MPI_Finalize(); return 0;

}
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▪ MPI provides ability to read, write and atomically modify data in remotely accessible 

memory regions

▪ MPI_PUT

▪ MPI_GET

▪ MPI_ACCUMULATE (atomic)

▪ MPI_GET_ACCUMULATE (atomic)

▪ MPI_COMPARE_AND_SWAP (atomic)

▪ MPI_FETCH_AND_OP (atomic)

23

Data movement
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▪ Move data from origin, to target

▪ Separate data description triples for origin and target

24

Data movement: Put

Origin
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▪ Move data to origin, from target

▪ Separate data description triples for origin and target
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Data movement: Get

Origin
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▪ Atomic update operation, similar to a put

▪ Reduces origin and target data into target buffer using op argument as combiner

▪ Op = MPI_SUM, MPI_PROD, MPI_OR, MPI_REPLACE, MPI_NO_OP, …

▪ Predefined ops only, no user-defined operations

▪ Different data layouts between

target/origin OK

▪ Basic type elements must match

▪ Op = MPI_REPLACE

▪ Implements f(a,b)=b

▪ Atomic PUT

26

Atomic Data Aggregation: Accumulate

MPI_Accumulate(const void *origin_addr, int origin_count,

MPI_Datatype origin_dtype, int target_rank,

MPI_Aint target_disp, int target_count,

MPI_Datatype target_dtype, MPI_Op op, MPI_Win win)
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▪ Atomic read-modify-write
▪ Op = MPI_SUM, MPI_PROD, MPI_OR, MPI_REPLACE, MPI_NO_OP, …
▪ Predefined ops only

▪ Result stored in target buffer

▪ Original data stored in result buf

▪ Different data layouts between
target/origin OK
▪ Basic type elements must match

▪ Atomic get with MPI_NO_OP

▪ Atomic swap with MPI_REPLACE
27

Atomic Data Aggregation: Get Accumulate

MPI_Get_accumulate(const void *origin_addr,

int origin_count, MPI_Datatype origin_dtype, 

void *result_addr,int result_count,

MPI_Datatype result_dtype, int target_rank, 

MPI_Aint target_disp,int target_count, 

MPI_Datatype target_dype, MPI_Op op, MPI_Win win)
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▪ FOP: Simpler version of MPI_Get_accumulate

▪ All buffers share a single predefined datatype

▪ No count argument (it’s always 1)

▪ Simpler interface allows hardware optimization

▪ CAS: Atomic swap if target value is equal to compare value

28

Atomic Data Aggregation: CAS and FOP

MPI_Compare_and_swap(const void *origin_addr,

const void *compare_addr, void *result_addr,

MPI_Datatype dtype, int target_rank,

MPI_Aint target_disp, MPI_Win win)

MPI_Fetch_and_op(const void *origin_addr, void *result_addr,

MPI_Datatype dtype, int target_rank,

MPI_Aint target_disp, MPI_Op op, MPI_Win win)
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▪ No guaranteed ordering for Put/Get operations

▪ Result of concurrent Puts to the same location undefined

▪ Result of Get concurrent Put/Accumulate undefined

▪ Can be garbage in both cases

▪ Result of concurrent accumulate operations to the same location are defined according 

to the order in which the occurred

▪ Atomic put: Accumulate with op = MPI_REPLACE

▪ Atomic get: Get_accumulate with op = MPI_NO_OP

▪ Accumulate operations from a given process are ordered by default

▪ User can tell the MPI implementation that (s)he does not require ordering as optimization hint

▪ You can ask for only the needed orderings: RAW (read-after-write), WAR, RAR, or WAW

29

Ordering of Operations in MPI RMA
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Examples with operation ordering

Process 0 Process 1

GET_ACC (y, x+=2, P1)

ACC (x+=1, P1) x += 2

x += 1y=2 

x = 2

PUT(x=2, P1)

GET(y, x, P1)

x = 2y=1

x = 1

PUT(x=1, P1)

PUT(x=2, P1)

x = 1

x = 0

x = 2

1. Concurrent Puts: undefined

2. Concurrent Get and 

Put/Accumulates: undefined

3. Concurrent Accumulate 

operations to the same location:

ordering is guaranteed
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▪ RMA data access model

▪ When is a process allowed to read/write remotely accessible memory?

▪ When is data written by process X is available for process Y to read?

▪ RMA synchronization models define these semantics

▪ Three synchronization models provided by MPI:

▪ Fence (active target)

▪ Post-start-complete-wait (generalized active target)

▪ Lock/Unlock (passive target)

▪ Data accesses occur within “epochs”

▪ Access epochs: contain a set of operations issued by an origin process

▪ Exposure epochs: enable remote processes to update a target’s window

▪ Epochs define ordering and completion semantics

▪ Synchronization models provide mechanisms for establishing epochs

E.g., starting, ending, and synchronizing epochs

31

RMA Synchronization Models
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▪ Collective synchronization model

▪ Starts and ends access and exposure epochs on all 

processes in the window

▪ All processes in group of “win” do an MPI_WIN_FENCE 

to open an epoch

▪ Everyone can issue PUT/GET operations to read/write data

▪ Everyone does an MPI_WIN_FENCE to close the epoch

▪ All operations complete at the second fence synchronization

32

Fence: Active Target Synchronization

Fence

Fence

MPI_Win_fence(int assert, MPI_Win win)
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Example: Stencil with RMA Fence (1/2)
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▪ stencil_mpi_ddt_rma.c

▪ Use MPI_PUTs to move data, explicit receives are not needed

▪ Data location specified by MPI datatypes

▪ Manual packing of data no longer required

34

Example: Stencil with RMA Fence (2/2)
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▪ Like FENCE, but origin and target specify who they communicate with

▪ Target: Exposure epoch

▪ Opened with MPI_Win_post

▪ Closed by MPI_Win_wait

▪ Origin: Access epoch

▪ Opened by MPI_Win_start

▪ Closed by MPI_Win_complete

▪ All synchronization operations may block, to enforce 

P-S/C-W ordering

▪ Processes can be both origins and targets

35

PSCW: Generalized Active Target Synchronization
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MPI_Win_post/start(MPI_Group grp, int assert, MPI_Win win)

MPI_Win_complete/wait(MPI_Win win)
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▪ Passive mode: One-sided, asynchronous communication

▪ Target does not participate in communication operation

▪ Shared memory-like model

36

Lock/Unlock: Passive Target Synchronization
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▪ Lock/Unlock: Begin/end passive mode epoch

▪ Target process does not make a corresponding MPI call

▪ Can initiate multiple passive target epochs to different processes

▪ Concurrent epochs to same process not allowed (affects threads)

▪ Lock type

▪ SHARED: Other processes using shared can access concurrently

▪ EXCLUSIVE: No other processes can access concurrently

▪ Flush: Remotely complete RMA operations to the target process

▪ After completion, data can be read by target process or a different process

▪ Flush_local: Locally complete RMA operations to the target process

37

Passive Target Synchronization

MPI_Win_lock(int locktype, int rank, int assert, MPI_Win win)

MPI_Win_unlock(int rank, MPI_Win win)

MPI_Win_flush/flush_local(int rank, MPI_Win win)
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▪ Lock_all: Shared lock, passive target epoch to all other processes

▪ Expected usage is long-lived: lock_all, put/get, flush, …, unlock_all

▪ Flush_all – remotely complete RMA operations to all processes

▪ Flush_local_all – locally complete RMA operations to all 

processes

38

Newer Passive Target Synchronization

MPI_Win_lock_all(int assert, MPI_Win win)

MPI_Win_unlock_all(MPI_Win win)

MPI_Win_flush_all/flush_local_all(MPI_Win win)
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▪ MPI-3 provides two memory models: separate and unified

▪ MPI-2: Separate Model
▪ Logical public and private copies
▪ MPI provides software coherence between window copies
▪ Extremely portable, to systems that don’t provide 

hardware coherence

▪ MPI-3: New Unified Model
▪ Single copy of the window
▪ System must provide coherence
▪ Superset of separate semantics

E.g. allows concurrent local/remote access
▪ Provides access to full performance potential of hardware

39

MPI RMA Memory Model
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▪ Very portable, compatible with non-coherent memory systems

▪ Limits concurrent accesses to enable software coherence

40

MPI RMA Memory Model (separate windows)
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▪ Allows concurrent local/remote accesses

▪ Concurrent, conflicting operations are allowed (not invalid)

▪ Outcome is not defined by MPI (defined by the hardware)

▪ Can enable better performance by reducing synchronization

41

MPI RMA Memory Model (unified windows)
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Load Store Get Put Acc

Load OVL+NOVL OVL+NOVL OVL+NOVL NOVL NOVL

Store OVL+NOVL OVL+NOVL NOVL X X

Get OVL+NOVL NOVL OVL+NOVL NOVL NOVL

Put NOVL X NOVL NOVL NOVL

Acc NOVL X NOVL NOVL OVL+NOVL

42

MPI RMA Operation Compatibility (Separate)

This matrix shows the compatibility of MPI-RMA operations when two 

or more processes access a window at the same target concurrently.

OVL – Overlapping operations permitted

NOVL – Nonoverlapping operations permitted

X – Combining these operations is OK, but data might be garbage
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Load Store Get Put Acc

Load OVL+NOVL OVL+NOVL OVL+NOVL NOVL NOVL

Store OVL+NOVL OVL+NOVL NOVL NOVL NOVL

Get OVL+NOVL NOVL OVL+NOVL NOVL NOVL

Put NOVL NOVL NOVL NOVL NOVL

Acc NOVL NOVL NOVL NOVL OVL+NOVL

43

MPI RMA Operation Compatibility (Unified)

This matrix shows the compatibility of MPI-RMA operations when two 

or more processes access a window at the same target concurrently.

OVL – Overlapping operations permitted

NOVL – Nonoverlapping operations permitted
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MPI + Shared-Memory
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▪ MPI-3 allows different processes to allocate shared memory through MPI

▪ MPI_Win_allocate_shared

▪ Uses many of the concepts of one-sided communication

▪ Applications can do hybrid programming using MPI or load/store accesses on the 

shared memory window

▪ Other MPI functions can be used to synchronize access to shared memory regions

▪ Can be simpler to program than threads

▪ Controlled sharing!

45

Hybrid Programming with Shared Memory



spcl.inf.ethz.ch

@spcl_eth

46

Creating Shared Memory Regions in MPI

MPI_COMM_WORLD

MPI_Comm_split_type

(MPI_COMM_TYPE_SHARED)
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MPI_Win_allocate_shared

Shared 

memory 

window

Shared 

memory 

window

Shared 

memory 

window

Shared 

memory 

communicator

Shared 

memory 

communicator



spcl.inf.ethz.ch

@spcl_eth

▪ Shared memory windows allow application processes 

to directly perform load/store accesses on all of the 

window memory

▪ E.g., x[100] = 10

▪ All of the existing RMA functions can also be used 

on such memory for more advanced semantics such 

as atomic operations

▪ Can be very useful when processes want to use 

threads only to get access to all of the memory on 

the node

▪ You can create a shared memory window and put your shared data

Load/store

47

Regular RMA windows vs. Shared memory windows

Local 
memory

P0

Local 
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Load/store
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▪ Create a communicator where processes “share a property”

▪ Properties are defined by the “split_type”

▪ Arguments:

▪ comm - input communicator (handle)

▪ Split_type - property of the partitioning (integer)

▪ Key - Rank assignment ordering (nonnegative integer)

▪ info - info argument (handle)

▪ newcomm- output communicator (handle)

48

MPI_COMM_SPLIT_TYPE

MPI_Comm_split_type(MPI_Comm comm, int split_type,

int key, MPI_Info info, MPI_Comm *newcomm)
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▪ Create a remotely accessible memory region in an RMA window

▪ Data exposed in a window can be accessed with RMA ops or load/store

▪ Arguments:

▪ size - size of local data in bytes (nonnegative integer)

▪ disp_unit - local unit size for displacements, in bytes (positive integer)

▪ info - info argument (handle)

▪ comm - communicator (handle)

▪ baseptr - pointer to exposed local data

▪ win            - window (handle)

49

MPI_WIN_ALLOCATE_SHARED

MPI_Win_allocate_shared(MPI_Aint size, int disp_unit,

MPI_Info info, MPI_Comm comm, void *baseptr,

MPI_Win *win)
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Shared Arrays with Shared memory windows
int main(int argc, char ** argv)

{

int buf[100];

MPI_Init(&argc, &argv);

MPI_Comm_split_type(..., MPI_COMM_TYPE_SHARED, .., &comm);

MPI_Win_allocate_shared(comm, ..., &win);

MPI_Win_lockall(win);

/* copy data to local part of shared memory */

MPI_Win_sync(win);

/* use shared memory */

MPI_Win_unlock_all(win);

MPI_Win_free(&win);

MPI_Finalize();

return 0;

}
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▪ Shared memory allocation does not need to be uniform across processes

▪ Processes can allocate a different amount of memory (even zero)

▪ The MPI standard does not specify where the memory would be placed (e.g., which 

physical memory it will be pinned to)

▪ Implementations can choose their own strategies, though it is expected that an implementation will try 

to place shared memory allocated by a process “close to it”

▪ The total allocated shared memory on a communicator is contiguous by default

▪ Users can pass an info hint called “noncontig” that will allow the MPI implementation to align memory 

allocations from each process to appropriate boundaries to assist with placement
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Memory allocation and placement
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Example Computation: Stencil

Message passing 

model requires ghost-

cells to be explicitly 

communicated to 

neighbor processes

In the shared-memory 

model, there is no 

communication.  

Neighbors directly 

access your data.



spcl.inf.ethz.ch

@spcl_eth

▪ stencil_mpi_shmem.c
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Walkthrough of 2D Stencil Code with Shared Memory Windows
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Advanced Topics: Nonblocking Collectives primer only

54
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▪ Nonblocking (send/recv) communication

▪ Deadlock avoidance

▪ Overlapping communication/computation

▪ Collective communication

▪ Collection of pre-defined optimized routines

▪ → Nonblocking collective communication

▪ Combines both techniques (more than the sum of the parts ☺)

▪ System noise/imbalance resiliency

▪ Semantic advantages
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Nonblocking Collective Communication
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▪ Nonblocking variants of all collectives
▪ MPI_Ibcast(<bcast args>, MPI_Request *req);

▪ Semantics
▪ Function returns no matter what

▪ No guaranteed progress (quality of implementation)

▪ Usual completion calls (wait, test) + mixing

▪ Out-of order completion

▪ Restrictions
▪ No tags, in-order matching

▪ Send and vector buffers may not be updated during operation

▪ MPI_Cancel not supported

▪ No matching with blocking collectives
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Nonblocking Collective Communication

Hoefler et al.: Implementation and Performance Analysis of Non-Blocking Collective Operations for MPI
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▪ Semantic advantages

▪ Enable asynchronous progression (and manual)

Software pipelining

▪ Decouple data transfer and synchronization

Noise resiliency!

▪ Allow overlapping communicators

See also neighborhood collectives

▪ Multiple outstanding operations at any time

Enables pipelining window
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Nonblocking Collective Communication

Hoefler et al.: Implementation and Performance Analysis of Non-Blocking Collective Operations for MPI
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▪ What can that be good for? Well, quite a bit!

▪ Semantics:

▪ MPI_Ibarrier() – calling process entered the barrier, no synchronization happens

▪ Synchronization may happen asynchronously

▪ MPI_Test/Wait() – synchronization happens if necessary

▪ Uses: 

▪ Overlap barrier latency (small benefit)

▪ Use the split semantics! Processes notify non-collectively but synchronize collectively!
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A Non-Blocking Barrier?
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▪ Dynamic Sparse Data Exchange

▪ Dynamic: comm. pattern varies across iterations

▪ Sparse: number of neighbors is limited (𝑂(log𝑃))

▪ Data exchange: only senders know neighbors

▪ Main Problem: metadata

▪ Determine who wants to send how much data to me 

(I must post receive and reserve memory)

-- OR --

▪ Use MPI semantics:

Unknown sender (MPI_ANY_SOURCE)

Unknown message size (MPI_PROBE)

Reduces problem to counting the number of neighbors 

Allow faster implementation!
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A Semantics Example: DSDE

Hoefler et al.: Scalable Communication Protocols for Dynamic Sparse Data Exchange
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▪ Based on Personalized Exchange (𝚯(𝐏))

▪ Processes exchange

metadata (sizes) 

about neighborhoods 

with all-to-all

▪ Processes post 

receives afterwards

▪ Most intuitive but 

least performance 

and scalability!
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Using Alltoall (PEX) 

T. Hoefler et al.: Scalable Communication Protocols for Dynamic Sparse Data Exchange



spcl.inf.ethz.ch

@spcl_eth

▪ Bases on Personalized Census (𝚯(𝐏))

▪ Processes exchange

metadata (counts) about 

neighborhoods with

reduce_scatter

▪ Receivers checks with

wildcard MPI_IPROBE

and receives messages

▪ Better than PEX but

non-deterministic!
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Reduce_scatter (PCX)

T. Hoefler et al.: Scalable Communication Protocols for Dynamic Sparse Data Exchange
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▪ Complexity - census (barrier):   (𝚯(𝐥𝐨𝐠 𝐏))

▪ Combines metadata with actual transmission

▪ Point-to-point

synchronization

▪ Continue receiving

until barrier completes

▪ Processes start coll.

synch. (barrier) when

p2p phase ended

barrier = distributed 

marker!

▪ Better than Alltoall,

reduce-scatter!
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MPI_Ibarrier (NBX)

T. Hoefler et al.: Scalable Communication Protocols for Dynamic Sparse Data Exchange
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▪ On a clustered Erdős-Rényi graph, weak scaling

▪ 6.75 million edges per node (filled 1 GiB)

▪ HW barrier support is significant at large scale!
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Parallel Breadth First Search

BlueGene/P – with HW barrier! Myrinet 2000 with LibNBC

T. Hoefler et al.: Scalable Communication Protocols for Dynamic Sparse Data Exchange
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▪ Nonblocking communication does two things:

▪ Overlap and relax synchronization

▪ Collective communication does one thing

▪ Specialized pre-optimized routines 

▪ Performance portability

▪ Hopefully transparent performance

▪ They can be composed

▪ E.g., software pipelining
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Nonblocking Collectives Summary


