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‡Center for Project Based Learning, ETH Zürich, Zürich, Switzerland

§DEI, University of Bologna, Bologna, Italy

Abstract—Digital ultrasound (US) probes integrate the analog-
to-digital conversion directly on the probe and can be conveniently
connected to commodity devices. Existing digital probes are
however limited to a relatively small number of channels, do
not guarantee access to the raw US data, or cannot operate
at very high frame rates (e.g., due to exhaustion of computing
and storage units on the receiving device). In this work, we
present an open, compact, power-efficient, 192-channels digital US
data acquisition system capable of streaming US data at transfer
rates greater than 80 Gbps towards a host PC for ultra-high
frame rate imaging (in the multi-kHz range). Our US probe
is equipped with two power-efficient Field Programmable Gate
Arrays (FPGAs) and is interfaced to the host PC with two optical-
link 100G Ethernet connections. The high-speed performance
is enabled by implementing a Remote Direct Memory Access
(RDMA) communication protocol between the probe and the
controlling PC, that utilizes a high-performance Non-Volatile
Memory Express (NVMe) interface to store the streamed data.
To the best of our knowledge, thanks to the achieved datarates,
this is the first high-channel-count compact digital US platform
capable of raw data streaming at frame rates of 20 kHz (for
imaging at 3.5 cm depths), without the need for sparse sampling,
consuming less than 40 W.

Index Terms—ultrafast, ultrasound, FPGA, RDMA, NVMe

I. INTRODUCTION

US is one of the most used medical imaging modalities
(it is low cost, portable, without ionizing radiation, and with
high temporal resolution and real-time capabilities). Digital US
systems include analog-to-digital converters (ADCs) directly on
the probe (instead of sending the received signals to a backend
system using heavy and expensive analog cables), enabling
to directly interface it to commodity devices performing the
complete processing in software (software-defined systems) [1].
Digital probes operating at frame rates of several kHz (Ultrafast
US, UFUS) [2] challenge the data interfaces. For example, a
32-channel probe, sampling at 40 MSPS with 12 bits resolution,
generates data with a throughput of 15.4 Gbps, which is beyond
the capabilities of standard links (e.g., 5 Gbps for USB 3.0).
Consequently, most of the existing digital probes are limited
to a very small number of channels, do not operate at high
frame rates, or perform on-board data reduction to transmit only
selected information [3]. However, providing access to raw data
(open US platforms) is critical for the development of efficient
learning algorithms. Besides, good temporal resolutions are
necessary to monitor fast biological processes, and a large
channel count is needed to improve image quality [4].

Recently, optical-link-based connectivity appeared as a vi-
able solution to empower digital probes with high data through-
put capabilities; however, first attempts to translate UFUS
into compact, low-power, open digital probes are still severely
limited in the number of channels [5] or the achieved frame
rates [6]. This paper presents a digital, open, FPGA-based, 192-
channels UFUS platform capable of overcoming all the afore-
mentioned limitations by implementing a RDMA interface to a
host PC over two optical links. We employ RDMA-capable net-
work controllers (RNICs), which allow applications to receive
messages without intermediate buffering or operating system
involvement, reducing the Central Processing Unit (CPU) load
of applications and guaranteeing low-latency communication.
To store the collected data, we propose to utilize novel NVMe-
capable storage devices that empower developers to access
the storage device directly, bypassing the POSIX abstraction.
Besides, data access to NVMe-capable devices is offloaded to
Direct Memory Access (DMA) engines, requiring zero CPU
cycles to access the data.

The main contributions of this paper are the following: (1)
first-time implementation of a RDMA communication system
in an FPGA-based digital UFUS probe; (2) achieved data rates
of 90.4 Gbps per optical link with synthetic data, demonstrat-
ing the capability of the network system to exploit the full
bandwidth of the link; (3) achieved data rates of 42 Gbps per
optical link (84 Gbps total) with US data, demonstrating the
capability of the 192-channels system to sustain the streaming
of ADCs operated in continuous mode; (4) reached frame rates
> 20 kHz for a 192-channels, compact, fully-digital, open,
power-efficient, optical-link-based UFUS probe, surpassing by
almost 40× the performance of systems with similar channel
count, power budget, and form factor [6]; (5) demonstrated
NVMe-based storage of UFUS streamed data at 12 Gbps. These
achievements are enabled by using commodity components,
whose performance progresses yearly [7], as driven by the
server and high-performance computing industry. Our unique
approach can continue to leverage such improvements, thereby
defining a roadmap for open, digital, UFUS systems.

II. BACKGROUND

A. Optical-link based US platform
Fig. 1 shows the US probe used in this work [6].

The probe is based on twelve 16-channels high-speed US



pulsers (STHV1600, STMicroelectronics), six 32-channels ana-
log front-end (AFE) modules (AFE58JD32, Texas Instruments),
and two Xilinx Kintex Ultrascale+ FPGAs (XCKU5P). Each
FPGA is interfaced to an optical link (FireFly, Samtec) for
100G Ethernet data transmission. A host PC is equipped with
a dual-slot RNIC (ConnectX-5, Mellanox), interfaced to the
motherboard (X99-E WS, Asus) via Peripheral Component
Interconnect Express (PCIe) 3.0. If the ADCs of the AFEs are
operated continuously, such 192-channels system can generate
a throughput of 92.16 Gbps (15.36 Gbps per AFE).

Fig. 2 shows the high-level signal flow implemented in the
FPGA of the probe [6]. The communication between the dif-
ferent modules is organized as AXI-Stream (AXIS) interfaces
[8] with bit widths between 128 bit and 512 bit. Due to
the increasing data volume throughout the signal chain (e.g.,
due to the addition of Ethernet/IP headers and physical layer
coding), three different clock domains are used to allow for
increasing data throughput while minimizing timing require-
ments and power consumption. Configuration and high-level
system control (acquisition trigger, IP-address handling, AFE
configuration, etc.) is achieved with a Xilinx microblaze soft-
processor running within the signal processing clock domain.

B. RDMA and NVMe interfaces
RDMA is a mechanism allowing the network controller to

access the main memory of the host PC. Memory accesses are
performed using a dedicated DMA hardware without any CPU
intervention. This is essential to achieve the targeted sustained
data throughput, as the CPU would be completely swamped
if it had to be involved. Applications make use of offloaded
RDMA communication by directly sending asynchronous work
requests to an RNIC, bypassing the operating system. As UFUS
generates too much data to be buffered for re-transmission, we
focus on unreliable connections, considering a lightweight un-
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Fig. 1. Photo (top) and block diagram (bottom) of the main system components
of the UFUS probe. A 192-channels linear array transducer is connected to
twelve 16-channels high-speed US pulsers (STHV1600, STMicroelectronics)
integrating transmit/receive (TX/RX) switches. Six 32-channels analog front-
end (AFE) modules (AFE58JD32, Texas Instruments) amplify and sample
the received signals (12-bit, 40 MSPS), sending digitized data via sixteen
JESD204B serial outputs to two Xilinx Kintex Ultrascale+ FPGAs (XCKU5P)
(three AFEs are connected to each FPGA, i.e., 96 US channels per FPGA)
which aggregate the data for transmission to a host PC. Each FPGA is inter-
faced to an optical link (FireFly, Samtec) for 100G Ethernet data transmission.

reliable protocol called UD, which is similar to an UDP socket,
but supports zero-copy packet delivery. Among the possible
architectures, RDMA over Converged Ethernet (RoCE) v2 [9]
performs better than other protocols [10] and is implemented
by encapsulating the InfiniBand [9] transport protocol into the
conventional UDP protocol. The integrity of RDMA packets is
protected by an Invariant Cyclic Redundancy Check (ICRC)
checksum, encapsulated into the UDP payload, and by the
Frame Check Sequence (FCS) checksum of the Ethernet link.

NVMe protocol allows applications to access storage di-
rectly via PCIe. NVMe protocol is similar to RDMA, with
the communicating endpoints being the host CPU and the
storage device. Like RDMA, applications make use of NVMe
by directly posting asynchronous work requests to a storage
device that uses specialized DMA hardware to directly access
memory. As a result, NVMe delivers high-bandwidth, low-
latency storage access with near-to-zero CPU cost.

III. SYSTEM DESIGN

A. FPGA: RDMA implementation
The RoCEv2 protocol requires to calculate an ICRC check-

sum. ICRC is a 32 bit Cyclic Redundancy Check (CRC)
checksum of the invariant fields of the packet, based on the
Ethernet polynomial [9]. To reduce clock speed and keep high
throughput, our communication protocol utilizes a word length
of 64 byte, which is processed in parallel during one clock
cycle. Thus, the CRC checksum should also be calculated
in a parallel fashion, and we do it following the approach
of [11]. Fig. 3 shows the proposed FPGA RDMA module,
which is structured in three main parts: (1) the input FIFO,
containing one complete payload (max. 4096 byte); (2) the
frame generator, which adds the required headers to the payload
and a placeholder ICRC; (3) the ICRC of the transmitted
RoCEv2 packet. A Xilinx CMAC Ethernet IP acts as a sink
to the data stream. The data path between these main parts
is structured as AXI-Stream (AXIS) bus with words of 64-
byte length. The parallel processing of 64 bytes reduces the
required clock speed to 160 MHz while allowing >100 Gbps
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Fig. 2. Signal flow in the FPGA utilizing AXI-Stream links between the
individual modules. AFEs data are recorded with a standard JESD204B
interface (16 output channels, each containing data of two US transducers),
de-interleaved, combined and stored in a First-In-First-Out (FIFO) memory
(AFE-FIFO). The AFE-FIFO also decouples the clock domains of the AFE
interfaces (120 MHz) and the signal processing (160 MHz) domain. Data from
the AFE FIFO are then assembled into complete recording sequences (shots)
and offered to the next processing block by the packetizer. Data of the shots
are then split into multiple Ethernet packets by the User Datagram Protocol
(UDP) packetizer. Transfer to a Xilinx CMAC IP-Core is managed via another
FIFO memory (CMAC-FIFO), which is used as a bridge between the signal
processing clock domain and the transmission clock domain (322.27 MHz).
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Fig. 3. Architecture of the RoCEv2 packet formation and ICRC calculation.
Arbitrary packet lengths can be calculated correctly by either skipping or
multiplying different H-matrices. The implemented pipeline works with a total
of 16 stages, and it allows a maximum packet size of 213 − 1 = 8191 bytes.

throughput. The frame generator is triggered when the payload
of an Ethernet packet gets in the packet FIFO. Then, it inserts
the Ethernet, IP, UDP, and RoCEv2 headers into the 64-byte
AXIS bus. Next, the payload from the FIFO is added to the
data stream. Finally, a dummy ICRC is inserted as placeholder
in the data stream once the FIFO is empty. This data stream is
then processed in a pipelined fashion by the ICRC calculator
(Fig. 3), which calculates the ICRC of each packet on all 64
byte of the AXIS bus in parallel, and finally inserts the ICRC at
the correct position in the packet, replacing the dummy ICRC
placeholder. In parallel to the ICRC calculation, the data stream
is delayed by the same amount as the pipeline stages of the
ICRC calculation. This enables the replacement of the dummy
ICRC in the continuous data stream.

B. Host: RDMA stack and NVMe
Our system is equipped with a Samsung SSD 980 PRO 2TB,

an NVMe-capable SSD that is attached to the M.2 PCIe slot.
We implement direct access to the storage device with Storage
Performance Development Kit [12]. Our RDMA receiver ap-
plication is implemented with the RDMA core user library [13]
and we use UD connections of RoCEv2 protocol. UD messages
can consist of only one packet (maximum message size of
4096 bytes), and 40 bytes of each receive region are used to
store information about the sender. Our approach consists in
submitting multiple receive work requests of 4096 bytes for
each packet of one shot and using null memory regions (as
described in Fig. 4) to ensure that each shot is received in a
contiguous buffer as it would be sent as one large message.

After receiving all parts of a shot, we submit one NVMe
write request to write the shot to the storage device. NVMe

NVMe
padding

Receive
buffer

null

Request 1

null

Request 2

null

Request 3

null

Request 4

Shot size

4096B 4096B 980B4096B

Fig. 4. The memory of a receive buffer is split into receive requests. As 40 bytes
are used to store the information about the sender, we use null memory regions
to discard the receiver information at the RNIC, and scatter-gather elements to
use two memory regions in one receive request: each receive request consists
of 40 bytes of the null region and 4096 bytes of the desired contiguous buffer.
Thus, each shot is received in a contiguous buffer as if it were sent as one
large message. The receive buffer is padded for aligned NVMe writes.

devices are addressed in blocks of 512 bytes, so we make each
receive buffer to be the multiple of 512 bytes (see Fig. 4).
After we receive a completion of the write request, we can
reuse the buffer for receiving shots: we split the buffer in 4096
byte requests (with the null memory trick) and submit them to
the RNIC. Note that we do not need to wait for a completion
of the NVMe write request to submit the next request. NVMe
supports submitting multiple write requests at the same time.
To ensure steady writes of shots to the disk, we keep track
of the load of the NVMe device by monitoring the number of
pending requests. If the device is overloaded, we discard the
received shot and immediately reuse the buffer for the network.

IV. EVALUATION

We performed latency experiments to estimate the time
required by the FPGA to react to a trigger event generated
by the host and to send the data. To trigger the measurement,
the host PC sends a special 64-byte UDP packet. The probe, in
response, emits the acoustic wave according to the TX strategy,
receives and samples the back-scattered acoustic echoes, and
then sends the data to the PC. In this experiment, we measured
the round trip time (RTT) between the emission of a trigger
command from the PC and the reception (on the host) of the
data, for a varying number of samples (Ns). The measured RTT
of the single trigger command is approx. 5 µs. In contrast, the
RTT for very small packet sizes is much higher (at least 560
µs), and it is determined by the time required by the FPGA
to process the received command. Both protocols show an
increased latency for increased Ns due to the increased number
of packets to be transmitted. For UDP, this latency increase is
3× larger compared to RDMA: for progressively larger packet
sizes, the bottleneck of the UDP becomes more evident.

To assess the actual bandwidth and data transfer rate during
real experiments, we operated the system in an external trigger
mode, employing an external benchtop waveform generator to
generate a periodic trigger at programmable frequencies fext,
triggering measurements at any given shot frequency. Fig. 5
shows the achieved frame rate (FR) and bandwidth (BW) as
a function of fext when the UDP protocol is used for the
data transmission, for varying Ns. UDP faces a bandwidth
bottleneck around 22-25 Gbps, which in turn results in a
saturation of the maximum achieved frame rate. A smaller
Ns yields a larger FR due to the shorter data transmission
time for each measurement. Furthermore, for increasing fext,
the number of missed packets presents a large variability.
These results further demonstrate that UDP is not capable of
sustaining the required bandwidth for the application.

Fig. 6 shows the corresponding results for the RDMA case.
A bandwidth >40 Gbps was achieved for the Ns = 4000 case
(progressively reduced for smaller Ns due to the overheads
of smaller sets of data). Remembering that the maximum
achievable throughput of 96 AFE channels (connected to one
FPGA) is ≈46 Gbps, the RDMA implementation nearly reaches
this limit. The corresponding frame rate is nearly 10 kHz at
Ns = 4000 and approaches 20 kHz for Ns = 2000. When fext
is further increased, the bandwidth and frame rate get halved
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Fig. 5. UDP measured frame rate (FR, left) and bandwidth (BW, right) on each
optical link as a function of fext. Results are reported for different choices of
the number of samples (Ns) per shot. Thick colored lines represent the mean
values, shaded areas represent the standard deviation, cross symbols represent
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Fig. 6. Same as Fig. 5, for the RDMA case. Deviations from the mean are
smaller than 0.1%, proving the more stable performance of the RDMA solution.

(with a too-high fext, one trigger event every two is missed,
as the FPGA is still in the previous transmission phase).

Table I summarizes the maximum achieved frame rate and
datarate. The performance of similar solutions with comparable
channel-count [6] is surpassed by 39×. The maximum achieved
cumulative bandwidth (two optical links) is 84.26 Gbps.

To test what is the actual maximum bandwidth of the
FPGA-PC interconnect (overcoming the bandwidth limit set
by the AFEs), we also implemented a synthetic data generation
directly on the FPGA, achieving a bandwidth of 90.4 Gbps (not
shown). This result demonstrates that even higher datarates are
within reach if faster AFEs or more channels are used.

Fig. 7 shows the measured bandwidth and dropped shots for
writing US data on the NVMe device at different fext. The
NVMe supported 12 Gbps writing speed; however, fluctuations
in the performance of NVMe yields drops of shots even at lower
write bandwidths (e.g., fext=5 kHz). As expected, transmitting
more data by means of increased fext results in a progressively
larger number of dropped shots. We drop shots to maintain the
overall progress of the application and to prevent overflow of
NVMe work queues. The NVMe represents the current system
bandwidth bottleneck, and its reduced write speed compared
to the declared value (5,100 MB/s) is due to the motherboard,
which does not support PCIe 4.0 for the NVMe.

Without any power management active, the system consumes
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Fig. 7. NVMe measured bandwidth (blue) and number of dropped shots (red)
during an acquisition with Ns=2000 number of samples per shot.

TABLE I
MAXIMUM DATARATE AND FRAME RATE ACHIEVED FOR DIFFERENT SHOT

SIZES (2 OPTICAL LINKS, 192 US CHANNELS)
Max Shot size

imaging speed 500 1000 2000 4000
Frame rate [kHz] 69.68 37.24 19.28 9.82
Datarate [Gbps] 74.76 79.90 82.74 84.26

in total approx. 40 W (50% for the AFEs and FPGAs). Future
designs could improve the power performance by relying on
improved power management strategies and novel off-the-shelf
components with enhanced energy efficiencies.

V. CONCLUSION AND FUTURE WORK
We presented the implementation of a RDMA interface on

a 192-channels, compact, open, high-speed, optical-link based
UFUS probe. The RDMA-capable UFUS probe streams raw US
data over two 100G Ethernet optical links with a maximum
bandwidth of 84 Gbps, effectively enabling UFUS imaging
at very high frame rates (> 10 kHz). On the host side, data
are stored by means of a 12 Gbps bandwidth NVMe storage
unit. The NVMe appears as the current bandwidth bottleneck
of the whole system, and as future work we will move to a
different motherboard for increased communication speed with
the NVMe, and we will implement compression algorithms to
reduce the amount of data to be stored. As the proposed solution
relies on commodity components that improve at very fast rates
every generation [7], the performance of our platform can scale
accordingly, and our approach effectively defines a roadmap for
next-generation open, digital, UFUS systems.
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