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ABSTRACT
We propose Atomic Active Messages (AAM), a mechanism
that accelerates irregular graph computations on both shared-
and distributed-memory machines. The key idea behind
AAM is that hardware transactional memory (HTM) can
be used for simple and efficient processing of irregular struc-
tures in highly parallel environments. We illustrate tech-
niques such as coarsening and coalescing that enable hard-
ware transactions to considerably accelerate graph process-
ing. We conduct a detailed performance analysis of AAM on
Intel Haswell and IBM Blue Gene/Q and we illustrate var-
ious performance tradeoffs between different HTM param-
eters that impact the efficiency of graph processing. AAM
can be used to implement abstractions offered by existing
programming models and to improve the performance of ir-
regular graph processing codes such as Graph500 or Galois.

Categories and Subject Descriptors
D.1.3 [Concurrent Programming]: Parallel Programming

General Terms
Performance, Design

1. INTRODUCTION
Big graphs stand behind many computational problems

in social network analysis, machine-learning, computational
science, and others [26]. Yet, designing efficient parallel
graph algorithms is challenging due to intricate properties
of graph computations. First, they are often data-driven
and unstructured, making parallelism based on partition-
ing of data difficult to express. Second, they are usually
fine-grained and have poor locality. Finally, implementing
synchronization based on locks or atomics is tedious, error
prone, and typically requires concurrency specialists [26].

Recent implementations of hardware transactional mem-
ory (HTM) [14] promise a faster and simpler programming
for parallel algorithms. The key functionality is that com-
plex instructions or instruction sequences execute in isola-
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tion and become visible to other threads atomically. Avail-
able HTM implementations show promising performance in
scientific codes and industrial benchmarks [40, 36]. In this
work, we show that the ease of programming and perfor-
mance benefits are even more promising for fine-grained, ir-
regular, and data-driven graph computations.

Another challenge of graph analytics is the size of the
input that often requires distributed memory machines [27].
Such machines generally contain manycore compute nodes
that may support HTM (cf. IBM Blue Gene/Q [36]). Still,
it is unclear how to handle transactions accessing vertices
on both local and remote nodes.

In this paper we propose a mechanism called Atomic Ac-
tive Messages (AAM) that accelerates graph analytics by
combining the active messaging (AM) model [35] with HTM.
In AAM, fine units of graph computation (e.g., marking
a vertex in BFS) are coarsened and executed as hardware
transactions. While software-based coarsening was proposed
in the past [18], in this paper we focus on developing high
performance hardware-supported techniques to implement
this mechanism on both shared- and distributed-memory
machines, on establishing principles and practice of the use
of HTM for the processing of graphs, and on illustrating
various performance tradeoffs between different HTM pa-
rameters in the context of graph analytics. Figure 1 moti-
vates AAM by showing the time to perform each phase in
a synchronized BFS traversal using traditional fine-grained
atomics and AAM based on coarser hardware transactions.

0.0

0.1

0.2

0.3

0.4

0 2 4 6

BFS phase

T
o

ta
l 
ti
m

e
 [

s
] Atomics

Most vertices
are processed
in the rst few

iterations in
most power-law

graphs

Traversing a graph
with 223 vertices

and 224 edges

AAM-HTM

Figure 1: Comparison of the duration of an intra-node BFS traversal imple-
mented with Blue Gene/Q fine-grained atomics and coarse hardware transac-
tions (AAM-HTM). One transaction modifies 27 vertices. We use 64 threads
and a Kronecker graph [23] with a power-law vertex degree distribution.

Another key insight of our work is that AAM consti-
tutes a hierarchy of atomic actives messages that can be
used to accelerate graph computations on both shared- and
distributed-memory machines. We analyze this hierarchy in
detail and conclude that AAM can be used to improve the



performance of generic graph analytics tools such as Galois
or Graph500. The key contributions of our work are:

• We design the generic AAM mechanism that uses state-of-
the-art HTM implementations to accelerate both shared-
and distributed-memory graph computations.

• We establish the principles and practice of the use of HTM
for graph computations. Specifically, we develop protocols
for spawning remote/distributed hardware transactions.

• We introduce a performance model and we conduct a de-
tailed performance analysis of AAM based on Intel Haswell
HTM [40] and IBM Blue Gene/Q HTM [36] to illustrate
various performance tradeoffs between different HTM pa-
rameters in the context of graph analytics. Specifically, we
find optimum transaction sizes for x86 and PowerPC ma-
chines that accelerate Graph500 [30] BFS code by >100%.

• We show that AAM accelerates the processing of various
synthetic and real-world graphs.

2. BACKGROUND
We now describe active messages, atomics, transactional

memory, and how they are used in graph computations.

2.1 Active Messages
In the active messaging (AM) model [35] processes ex-

change messages that carry: the address of a user-level han-
dler function, handler parameters, and optional payload.
When a message arrives, the parameters and the payload
are extracted from the network and the related handler runs
at the receiver [38]. Thus, AMs are conceptually similar to
lightweight Remote Procedure Calls (RPCs).

Active messages are often used to implement low-level
performance-centric libraries that serve as a basis for devel-
oping higher-level libraries and runtime systems. Example
libraries are Myrinet Express (MX), IBM’s Deep Comput-
ing Messaging Framework (DCMF) for BlueGene/P, IBM’s
Parallel Active Message Interface (PAMI) for BlueGene/Q,
GASNet [2], and AM++ [38].

2.2 Active Messages in Graph Computations
A challenging part of designing a distributed graph al-

gorithm is managing its data flow. One way is to use a
distributed data structure (e.g., a distributed queue) that
spans all of its intra-node instances. Such structures are of-
ten hard to construct and debug [8]. A BFS algorithm that
uses a distributed queue is presented in Listing 1.

if (source is local) Q.push(source);
while (!Q.empty()) {

for (Vertex v : Q)
if (v.visited == false) {

v.visited = true;
for (Vertex w : v.neighbors ()) {Q.add(w); } } }

Listing 1: Distributed BFS using a distributed queue [11] (§ 2.2)

Another approach uses active messages to express the data
flow of the program dynamically. When a process schedules
computation for a vertex, it first checks whether it is the
owner of this vertex. If yes, it performs the computation.
Otherwise, the computation is sent in an active message to a
different node for processing in a remote handler [39]. Thus,
no distributed data structures have to be used. We illustrate
BFS using this approach in Listing 2.

struct bfs_AM_handler {
bool operator ()(const pair <Vertex , int >& x) {

if (x.second < x.first.distance) {
x.first.distance = x.second;
send_active_message(x.first , x.second + 1); } } };

Listing 2: Distributed BFS using active messages [39] (§ 2.2)

2.3 Atomic Operations
Atomic operations appear to the rest of the system as

if they occur instantaneously. Atomics are used in lock-free
graph computations to perform fine-grained updates [11, 30].
Yet, they are limited to a single word and thus require com-
plex protocols for protecting operations involving multiple
words. We now present relevant atomics:

Accumulate(*target, arg, op) (ACC): it applies an operation
op (e.g., sum) to *target using an argument arg.

Fetch-and-Op(*target, arg, op) (FAO): similar to Accumulate
but it also returns the previous value of *target.

Compare-and-Swap(*target, compare, value, *result) (CAS): if
*target == compare then value is written into *target
and the function sets *result to true, otherwise it does
not change *target and sets *result to false.

2.4 Transactional Memory
Transactional Memory (TM) [14] is a technique in which

portions of code (transactions) are executed in isolation and
their memory effects become visible atomically. Thus, such
code portions are linearizable and easy to reason about. The
underlying TM mechanism records all modifications to spe-
cific memory locations and commits them atomically. It
also detects dependencies between transactions accessing the
same memory locations and solves potential conflicts be-
tween such accesses by rolling back any changes to the data.
TM can be based on software emulation [34] (software TM;
STM) or native hardware support [14] (HTM).

Several vendors introduced HTM implementations: IBM,
Sun, and Azul added HTM to Blue Gene/Q (BG/Q) ma-
chines [36], the Rock processor [6], and the Vega CPUs [5],
respectively. Intel implemented two HTM instruction sets
in the Haswell processor: Hardware Lock Elision (HLE)
and Restricted Transactional Memory (RTM) that to-
gether constitute Transactional Synchronization Extensions
(TSX) [40]. HLE allows for fast and simple porting of legacy
lock-based code into code that uses TM. RTM enables pro-
grammers to define transactional regions in a more flexible
manner than that possible with HLE [40].

There are few existing studies on STM in graph computa-
tions [16]. Using HTM in graph processing has been largely
unaddressed and only a few initial works exist [7, 37].

3. ATOMIC ACTIVE MESSAGES
Atomic Active Messages (AAM) is a mechanism moti-

vated by recent advances in deploying transactional memory
in hardware. An atomic active message is a message that,
upon its arrival, executes a user-specified handler called an
operator. A spawner is a process (or a thread within this
process, depending on the context) that issues atomic active
messages. An activity is the computation that takes place
as a result of executing an operator. Activities run specu-
latively, isolated from one another, and they either commit
atomically or do not commit at all. We distinguish between
operators and the activities to keep our discussion generic.



To use AAM, the developer specifies the operator code
that modifies elements (vertices or edges) of the graph. We
use single-element operators for easy and intuitive program-
ming of graph algorithms. Still, multiple-element coarse op-
erators can be specified by experienced users. The developer
also determines the structure of a vertex or an edge and de-
fines the failure handler, an additional piece of code executed
in certain types of algorithms (explained in § 3.2).

Our runtime system executes algorithms by exchanging
messages, spawning activities to run the operator code, run-
ning failure handlers, and optimizing the execution. An ac-
tivity can be coarse: it may execute several operators atom-
ically. Note that operators are (optionally) coarsened by the
developer while activities are coarsened by the runtime.

The implementation determines how activities are isolated
from one another. An activity can execute as a critical sec-
tion guarded by locks, or (if it modifies one element) as an
atomic operation (e.g., CAS in BFS). However, we argue
that in many cases running activities as hardware transac-
tions provides the highest speedup; we support this claim
with a detailed performance study in Sections 5 and 6.

3.1 Definitions and Notation
Assume there are N processes p1, ..., pN in the system. A

process pi runs on a compute node ni, 1 ≥ i ≥ N and it may
contain up to T threads. Then, we model the analyzed graph
G as a tuple (V,E); V is a set of vertices and E ⊆ V ×V is a
set of edges between vertices. Without loss of generality we
assume that G is partitioned and distributed using a one-
dimensional scheme [4]: V is divided into N subsets Vi and
every Vi ⊆ V is stored on node ni. We call process pi the
owner of every vertex v ∈ Vi and every edge (v, w) such that
v ∈ Vi, w ∈ V . We denote the average degree in G as d̄.

3.2 Types of Atomic Active Messages
AAM accelerates graph computations that run on a sin-

gle (N = 1) or multiple (N > 1) nodes. If N = 1 then
messages only spawn intra-node activities. If N > 1 then
a message may also be sent over the network to execute a
remote activity. Now, we identify two further key criteria
of categorizing messages: direction of data flow and activ-
ity commits. They enable four types of messages; each type
improves the performance of different graph algorithms.

3.2.1 Direction of Data Flow
This criteria determines if an activity has to communicate

some data back to its spawner. In some graph algorithms
the data flow is unidirectional and messages are Fire-and-
Forget (FF): they start activities that do not return any
data. Other algorithms require the activity to return some
data to the spawner to run a failure handler. We name a
message that executes such an activity a Fire-and-Return
(FR) message (the flow of data is bidirectional).

3.2.2 Activity Commits
In some graph algorithms messages belong to the type

Always-Succeed (AS): they spawn activities that have to
successfully commit, even if it requires multiple rollbacks or
serialized execution. An example such algorithm is PageR-
ank [3] where each vertex v has a parameter rank that is aug-
mented with the normalized ranks of v’s neighbors. Now, if
we implement activities with transactions, then such trans-
actions may conflict while concurrently updating the rank
of the same vertex v, but finally each of them has to succeed

to add its normalized rank. The other type are May-Fail
(MF) messages that spawn activities that may also fail ul-
timately and not re-execute after a rollback. An example is
BFS in which two activities, which concurrently change the
distance of the same vertex, conflict and only one of them
succeeds. Note that we distinguish between rollbacks of ac-
tivities at the algorithm level, and aborts of transactions
due to cache eviction, context switches, and other reasons
caused by hardware/OS. In the latter case the transaction
is reexecuted by the runtime to ensure correctness.

Our criteria entail four message types: FF&AS, FF&MF,
FR&AS, FR&MF. We now show examples on how each of
these types can be used to program graph algorithms.

3.3 Example Case Studies
In AAM, a single graph algorithm uses only one type of

atomic active messages. This type determines the form of
the related operator and the existence of the failure han-
dler. Here, we focus on the operator as the most complex
part of graph algorithms. We show C-like code to imple-
ment the operator in isolation. Our implementation utilizes
system annotations to mark atomic regions in C. We present
the code of four single-element operators (one per message
type); more examples can be found in the technical report1.
When necessary, we discuss the failure handlers. We de-
scribe multiple-element operators at the end of this section.

3.3.1 PageRank (FF & AS)
PageRank (PR) [3] is an iterative algorithm that calcu-

lates the rank of each vertex v ∈ V : rank(v) = 1−d
|V | +∑

w∈n(v)(d ·
rank(w)

out deg(w)
). n(v) is the set of v’s neighbors, d is

the dump factor [3] and out deg(w) is the number of links
leaving w. Depending on the operator design, PR may be
either vertex-centric and edge-centric.

The pseudocode of the vertex-centric variant is presented
in Listing 3. The operator increases the ranks of v’s neigh-

bors with a factor d · rank(v)
out deg(v)

. It also adds 1−d
|V | to rank(v).

The copies of stale ranks from a previous iteration are kept
and used for calculating new ranks. Assuming that each
vertex v is processed by one activity, this PR variant uses
AS messages: each activity has to successfully add the fac-
tors to the ranks of respective vertices (which may require
serialization). Data flow is unidirectional (messages are FF)
because activities do not have to communicate any results
back to their spawners. Thus, the operator returns void.

void Operator(Vertex v) {
v.rank += (1 - d) / vertices_nr;
for(int i = 0; i < v.neighbors.length; i++) {

v.neighbors[i].rank += d * v.old_rank/v.out_deg; } }

Listing 3: The operator in the vertex-centric PageRank variant (§ 3.3.1)

There exist other PR variants. Specifically, one can an-
alyze incoming edges to dispose of conflicts. We will later
(Section 6) show that a careful AAM design outperforms
such approaches used in various codes such as PBGL.

3.3.2 Breadth First Search (FF & MF)
Breadth First Search (BFS) uses FF & MF messages.

Spawners do not have to wait for any results, but some ac-
tivities may fail when concurrently updating vertices using
different distance values. Such a conflict is solved at the

1
http://spcl.inf.ethz.ch/Research/Parallel Programming/AAM/



node owning the vertex and no information has to be sent
back to any of the spawners, thus the operator returns void.
We present the operator pseudocode in Listing 4.

void Operator(Vertex v, int new_distance) {
if(v.distance > new_dist) {v.distance = new_dist ;} }

Listing 4: BFS operator (§ 3.3.2)

3.3.3 ST Connectivity (FR & AS)
ST connectivity [31] determines if two given vertices (s

and t) are connected. First, the algorithm marks each vertex
as “white”. Then, it starts two concurrent BFS traversals
from s and t. Both traversals use different colors (“grey” and
“green”) to mark vertices as visited. Each activity returns
the information on the colors of visited vertices. In case of
“white” no action is taken and the operator returns false.
If the found color is used by the other BFS, then s and t
are connected, the operator returns true, and the runtime
executes a failure handler at the spawner that terminates
the algorithm. The operator is presented in Listing 5.

bool Operator(Vertex v, Color new_col) {
if(v.color != WHITE && v.color != new_col) return true;
v.color = new_col; return false; }

Listing 5: ST Connectivity operator (§ 3.3.3)

3.3.4 Boman Graph Coloring (FR & MF)
Graph coloring proposed by Boman et al. [1] is a heuristic

algorithm that minimizes the number of colors assigned to
graph vertices. In this algorithm as expressed using AAM
(see Listing 6), an activity changes the color or vertex v to
X. Then, if any of v’s neighbors has color X, either v or
the neighbor has to change its color; the choice is random.
Activities are spawned by MF & FR messages because mul-
tiple processes trying to update v’s color may conflict and
the spawners have to be notified if they need to assign new
colors to v’s neighbors in failure handlers.

int Operator(Vertex v, Color X) {
v.Color = X;
if(v.hasNeighborWithColor(X)) {

// return the ID of a vertex to be recolored
if(rand ([0;1]) < 0.5) return v.neighborWithCol(X).ID;
else return v.ID;

} else { // NO_VERTEX_ID means no vertex is recolored
return NO_VERTEX_ID; }

Listing 6: Boman graph coloring operator (§ 3.3.4)

3.4 Discussion
The introduced AAM operators modify single vertices.

Thus, they enable intuitive developing and reasoning about
graph computations that are also fine-grained by nature.
Still, some users may want to specify coarser operators to
use additional knowledge that they have about the graph
structure for higher performance. Here, the user determines
the number of elements to be modified in the operator and
the policy of their selection (e.g., the operator may choose
each vertex randomly, or try to modify elements stored in a
contiguous block of memory to avoid HTM aborts).

Manual coarsening of operators may be challenging. Our
runtime system automatically coarsens activities for easier
AAM programming. We now discuss the implementation
details of coarsening and other optimizations. While single-
element operators can be implemented with atomics or fine-

grained locks, we argue that a more performant approach is
based on coarse transactions.

4. IMPLEMENTING ACTIVITIES
We now discuss the details of implementing activities; we

skip most of the issues related to the runtime as they were
properly addressed in other studies [38, 8, 39].

4.1 Implementing Activities with HTM
In this paper we advocate for using HTM to implement

activities. However, locks and atomics would also match
the activity semantics (atomics can implement fine activi-
ties that modify single words). We thus compared the per-
formance of all the three mechanisms to illustrate HTM’s
advantages. Locks consistently entailed generally lower per-
formance and we thus skip them due to space constraints; a
brief discussion can be found in the technical report.

Transactions can implement an activity of any size. We
use Intel Haswell HLE and RTM ISAs2 and IBM BG/Q
HTM. RTM provides two key functions: XBEGIN that starts
a transaction and XEND that performs a commit. Yet, it does
not guarantee progress. Thus, we repeat aborted transac-
tions and we use exponential backoff to avoid livelock. The
HTM in BG/Q automatically retries aborted transactions
and it serializes the execution when the number of retries is
equal to a certain value; we use the default value (10). HLE
performs serialization after the first abort.

4.2 Optimizing the Execution of Activities
Two most significant optimizations applied by the run-

time are coarsening and coalescing of activities. First, in the
intra-node computations, the runtime coarsens activities by
atomically executing more than one operator; an example
is presented in Listing 7. We denote activities that are not
coarse as fine. Coarsening amortizes the overhead of start-
ing and committing an activity; it also reduces the amount
of fine-grained synchronization. Second, activities targeted
at the same remote node are sent in a single message, i.e.,
coalesced. This reduces the overhead of sending and receiv-
ing an atomic active message and saves bandwidth. Finally,
we also use various optimizations that attempt to reduce the
amount of synchronization even further. For example, the
runtime avoids executing the BFS operator for each vertex
by verifying if the vertex has already been visited.

void Activity(Vertex vertices[], int new_distance) {
forall(Vertex v: vertices) {

//call the BFS operator from Listing 5
Operator(v, new_distance); } }

Listing 7: A BFS coarse activity (§ 4.2)

4.3 A Protocol for Distributed Activities
The ownership protocol enables activities implemented as

hardware transactions that access or modify data from re-
mote nodes. The basic idea behind the protocol is that a
handler running such an activity has to first physically relo-
cate all required vertices/edges to the memory of the node
where the activity executes. This approach is dictated by
the fact that a hardware transaction cannot simply send a
message because it would not be able to rollback remote
changes that this message caused. In addition, most HTM

2
We verify the correctness of all the results to ensure that the limitations of

TSX [15] do not affect our evaluation and the conclusions drawn.



implementations prevent many types of operations (e.g., sys-
tem calls) from being executed inside a transaction [36].

Our protocol assumes that each graph element has an
ownership marker that can be modified atomically by any
process. Each marker is initially set to a value ⊥ different
from any process id. When a transaction from a node ni

accesses a remote graph element, it aborts and the runtime
uses CAS or a different mechanism (e.g., an active message)
to set the marker of this element to the id of process pi. If
the CAS succeeds, the marked element is transferred to node
ni and the transaction restarts. If the CAS fails, the handler
sets all previously marked elements to ⊥ and backs off for a
random amount of time. If a local transaction attempts to
access a marked element, it aborts. This mechanism is re-
peated until all remote elements are cached locally. Finally,
after the transaction succeeds, the elements are sent back to
their original nodes and their markers are set to ⊥.

5. PERFORMANCE MODEL & ANALYSIS
We now introduce a simple performance model that shows

the tradeoffs between atomics and HTM. Then, we analyze
the performance of AAM and answer the following research
questions: (1) what are HTM’s advantages over atomics
for implementing AAM activities, (2) what are performance
tradeoffs related to various HTM parameters, and (3) what
are the optimum transaction sizes for analyzed architectures
that enable highest speedups in selected graph algorithms.

5.1 Experimental Setup
We compile the code with gcc-4.8 (on Haswell) and with

IBM XLC v12.1 (on BG/Q). We use the following machines:

ALCF BG/Q Vesta (BGQ) is a supercomputing machine
where each compute node contains 16 1.6 GHz PowerPC A2
4-way multi-threaded cores, giving the total of 64 hardware
threads per node. Each core has 16 kB of L1 cache. Every
node has 32 MB of shared L2 cache and 16 GB of RAM.
Nodes are connected with a 5D proprietary torus network.
This machine represents massively parallel supercomputers
with HTM implemented in the shared last-level cache.

Trivium V70.05 (Has-C) is a commodity off-the-shelf server
where the processor (Intel Core i7-4770) contains 4 3.4 GHz
Haswell 2-way multi-threaded cores, giving the total of 8
hardware threads. Each core has 32 KB of L1 and 256 KB
of L2 cache. The CPU has 8 MB of shared L3 cache and 8
GB of RAM. This option speaks for commodity computers
with HTM operating in private caches.

Greina (Has-P) is a high-performance cluster that contains
two nodes connected with InfiniBand FDR fabric. Each
node hosts an Intel Xeon CPU E5-2680 CPU with 12 2-
way 2.50GHz multi-threaded cores; the total of 24 hardware
threads. Each core contains 64 KB of L1 and 256 KB of L2
cache. The CPU has 30 MB of shared L3 cache and 66 GB
of RAM. This machine represents high-performance clusters
deploying HTM in private caches.

5.2 Considered Hardware Mechanisms
For Haswell we compare the following mech-

anisms: RTM (Has-RTM), HLE (Has-HLE), GCC
sync bool compare and swap (Has-CAS), and GCC
sync add and fetch (Has-ACC). We select CAS and ACC

because they can be used in miscellaneous graph codes such
as BFS (a FF&MF algorithm), PR (a FF&AS algorithm),

and ST Connectivity (a FR&AS algorithm) [30]. For BG/Q
we analyze: IBM XLC compare and swap (BGQ-CAS) and
GCC sync add and fetch (BGQ-ACC). We compare two modes
of HTM in BG/Q: the short running mode [36] (BGQ-HTM-S)
that bypasses L1 cache and performs better for shorter
transactions, and the long running mode [36] (BGQ-HTM-L)
that keeps speculative states in L1 and is better suited for
longer transactions [36].

5.3 Performance Model
Our performance model targets graph processing and we

argue in terms of activities and accessed vertices. We predict
that an activity implemented as a transaction that modi-
fies one vertex is more computationally expensive than an
equivalent single atomic. Yet, the transactional overheads
(starting and committing) may be amortized with coarser
transactions and respective activities would outperform a
series of atomics for a certain number of accessed vertices.

We now model the performance to determine the existence
of crossing points; out model includes both the execution of
the operations and fetching the operands from the memory.
The total time to execute an activity that modifies N ver-
tices (using either atomics or HTM) can be modeled with
a simple linear function with N as the argument. We de-
note the slope and the intercept parameters of a function
that targets atomics as AAT and BAT ; the respective pa-
rameters for HTM are AHTM and BHTM . We predict that
BHTM > BAT due to high transactional overheads. On the
contrary, we conjecture that AHTM < AAT because HTM
overheads will grow at a significantly lower rate (determined
by accesses to the memory subsystem) than that of atomics.

We illustrate the model validation for CAS in Figure 2; we
plot only the results for RTM on Has-C and the long mode
HTM on BGQ because all the other results differ marginally
and follow similar performance patterns. We use linear re-
gression to calculate AAT , BAT , AHTM , and BHTM . The
analysis indicates that the model matches the data. While a
more extended model is beyond the scope of this paper, our
analysis illustrates that it is possible to amortize the trans-
actional overhead with coarser activities. We now proceed
to a performance analysis that illustrates various tradeoffs
between respective HTM parameters.

0.05

0.10

0.15

0.20

3 6 9 12
Accessed vertices

T
o

ta
l 
ti
m

e
 [

u
s
]

Mechanism:

RTM−CAS
CAS

model

m
od
el

(a) Has-C, RTM.

0

1

2

3

4

5 10 15 20
Accessed vertices

T
o

ta
l 
ti
m

e
 [

u
s
]

Mechanism:

HTM−L−CAS
CAS

model

m
odel

The long mode
results in higher

latency than
the short mode

(b) BGQ, the long mode.

Figure 2: (§ 5.3) The validation of the performance model.

5.4 Single-vertex Activities
First, we analyze the performance of single-vertex activ-

ities. The results are illustrated in Figure 3. Has-C and
Has-P follow similar performance trends and we show only
the former (denoted as Has); we thus illustrate the results
for both a multicore off-the-shelf system and a manycore
high performance machine (BGQ).
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(b) Marking a vertex as visited 100 times (§ 5.4.1).
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(f) Incrementing a vertex’ rank: details of the aborts in
the HTM implementations (§ 5.4.2).

Figure 3: The analysis of the performance of intra-node activities implemented with atomics and HTMs (§ 5.4). Figures 3a and 3b illustrate the time it takes to
mark a vertex as visited. Numbers in figures are sums of HTM aborts for a given datapoint (we report values for T = 4 for Has/BGQ; we also plot numbers for
T = 8 (Has) and T = 64 (BGQ) to illustrate the numbers of aborts generated by all the supported hardware threads). s indicates the point where the latency of
Haswell atomics stops to grow. Table 3c shows the distribution of the reasons of aborts for T = 64 (BGQ) and T = 8 (Haswell). We skip Has-HLE as it does not
provide functions to gather such statistics. A similar performance analysis for incrementing the rank of a vertex is presented in Figures 3d-3e and Table 3f.

5.4.1 Activity 1: Marking a Vertex as Visited
Here, each thread uses a CAS or an equivalent HTM code

to atomically mark a single vertex; see Fig. 3a-3b, Table 3c.
This activity may be used in BFS or any other related algo-
rithm such as Single Source Shortest Path (SSSP). We an-
alyze a negligibly contended scenario that addresses sparse
graphs (Fig. 3a; a vertex is marked 10 times to simulate low
contention) and a more contended case for dense graphs with
high d̄ (Fig. 3b; a vertex is marked 100 times). We repeat
the benchmark 1000 times and derive the average total time
to finish the operations.

Figure 3a shows that Has-CAS finishes fastest and is
slightly impacted by the increasing T (≈50% of difference
between the results for T = 4 and T = 8). This is because
Has-CAS locks the respective cache line, causing contention
in the memory system. Both Has-RTM and Has-HLE have 1.5-
3x higher latency than Has-CAS, with Has-RTM being 5-15%
faster than Has-HLE. Their performance is not influenced by
the increasing T as they rarely abort. Then, BGQ-HTM-S and
BGQ-HTM-L are more sensitive to the growing T and their per-
formance drops 11x when switching from T = 1 to T = 64
due to expensive aborts. As expected, BGQ-HTM-S is faster
than BGQ-HTM-L, but as T increases it also aborts more fre-
quently, and becomes ≈2x less efficient (T = 64) with 37.5%
more aborts. BGQ-CAS is least affected by the increasing T .

Figure 3b shows that Has-RTM, BGQ-CAS, BGQ-HTM-S, and
BGQ-HTM-L follow similar performance patterns when threads
access the vertex 100 times. The performance of Has-HLE
drops rapidly as it always performs the costly serialization
after the first abort and thus forces all other transactions to
abort. The latency of Has-CAS grows proportionally to the
contention in the memory system. It stabilizes at T = 8 as
for T > 8 no more operations can be issued in parallel.

5.4.2 Activity 2: Incrementing Vertex Rank
This activity can be used to implement PR. Here, each

thread increments the rank of a single vertex 10 times (Fig-
ure 3d) and 100 times (Figure 3e) with an ACC or an equiva-
lent HTM code; see Table 3c for details. The most significant
difference between the previous and the current benchmark
is that the total time and the number of aborts of Has-RTM
and Has-HLE grow very rapidly in both scenarios as T scales.
This is because in the HTM implementation of ACC, the
rank of the vertex is modified by each transaction, generat-
ing a considerable number of conflicts and thus aborts. On
the contrary, the HTM implementation of CAS generates
few memory conflicts: once the vertex id is swapped, other
threads only read it and do not modify it. BGQ-HTM-S and
BGQ-HTM-L follow a similar trend, with ≈3x more aborts than
in the previous CAS benchmark.

Discussion We present the details of the above analysis
in Tables 3c and 3f. We show that the considered single-
vertex activities are in most cases best implemented with
atomics. HTM is faster only in processing dense graphs
with algorithms that use CAS (e.g., BFS) on Haswell. We
also conclude that while atomic CAS is more expensive than
ACC, HTM implementation of single ACC is slower (≈100x
for RTM and ≈10x for BG/Q HTM) than that of CAS as it
generates more memory conflicts and thus costly aborts.

5.5 Multi-vertex Activities
The performance analysis of single-vertex intra-node ac-

tivities illustrates that in most cases a transaction modify-
ing a single vertex is slower than an atomic operation. We
now analyze if it is possible to amortize the cost of starting
and aborting transactions by enlarging their size, i.e., coars-
ening. This section extends the model analysis (§ 5.3) by
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Figure 4: (§ 5.5) The analysis of the performance of Graph500 OpenMP BFS implemented with hardware transactions on BGQ (Figures 4a-4d), Has-C (Figures 4e-
4h), and Has-P (Figures 4i-4l). In each figure we vary the size of the transactions M (i.e., the number of vertices visited). We also present the results for BFS
implemented with atomics (horizontal lines). For BGQ, the percentages indicate the ratios of the numbers of serializations caused by reaching the maximum possible
number of rollbacks to the numbers of all the aborts. For Haswell, the percentages are the ratios of the aborts due to HTM buffer overflows to all the aborts.
Bolded numbers indicate the points with the minimum runtime per figure. We do not include the numbers for Haswell HLE because it does not enable gathering
more detailed statistics [40]. Figures 4d, 4h, and 4l present the total number of HTM events (transactions, aborts, buffer overflows) for every analyzed M .

introducing effects such as memory conflicts or HTM buffer
overflows. We perform the analysis for the highly-optimized
OpenMP BFS Graph500 code [30]. We modify the code so
that a single transaction atomically visits M vertices and we
evaluate the modified code for M between 1 and 320 with
the interval of 16. We present the results for three scenar-
ios: a single-threaded execution (T = 1 for BGQ, Has-C,
and Has-P), a single thread per core (T = 16 for BG/Q,
T = 4 for Has-C, and T = 12 for Has-P), and a single thread
per SMT hardware resource (T = 64 for BG/Q, T = 8 for
Has-C, and T = 24 for Has-P). Other sets of parameters
are illustrated in the technical report. We use Kronecker
graphs [23] with the power-law vertex degree distribution
and |V | = 220, |E| = 224. The results are shown in Figure 4.

5.5.1 BG/Q (Supercomputer)
Figures 4a-4d present the analysis for BG/Q. For T = 1

the runtime of both HTM-Long-Mode and HTM-Short-Mode is al-
ways higher than that of Atomic-CAS and it decreases ini-

tially with the increasing M because higher M reduces the
number of transactions required to process the whole graph
and thus amortizes the overhead of starting and committing
transactions. The runtime of HTM-Short-Mode becomes higher
with the increasing M > 32 because this mode is better
suited for short transactions. The runtime of HTM-Long-Mode

decreases as expected and it stabilizes at M ≈ 240. For
T = 16, initially the runtime drops rapidly for both HTM
modes to reach the minimum (obtained for Mmin = 80 in
HTM-Short-Mode). Again, this effect is caused by amortizing
the overheads of commits/aborts with coarser transactions.
Beyond Mmin the runtime slowly increases with M due to
more frequent serializations caused by reaching the maxi-
mum number of allowed rollbacks (BGQ does not enable
gathering more detailed statistics but we predict that these
serializations are due to the higher number of HTM buffer
overflows and memory conflicts). HTM-Long-Mode is never more
efficient than Atomic-CAS. HTM-Short-Mode becomes more effi-
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Figure 5: (§ 5.5 & § 5.6) The comparison of the percentage of the reasons of aborts on Has-C and Has-P (Figures 5a and 5b) and the analysis of the performance
of inter-node activities on BG/Q and Has-P. The results for BG/Q are following: marking a remote vertex as visited (Figures 5c and 5d), incrementing a vertex’
rank (Figures 5e and 5f), and executing distributed transactions (Figure 5i). The results for Haswell are following: marking a remote vertex as visited (Figure 5g)
and incrementing a vertex’ rank (Figure 5h).

cient than Atomic-CAS for M = 32 and achieves the speedup
of 1.11 at Mmin = 80. A similar performance pattern can be
observed for T = 64; this time Mmin = 144 in HTM-Short-Mode

with the speedup of 1.49 over Atomic-CAS. The runtime be-
comes dominated by aborts for M > 144; cf. Figure 4d with
more detailed numbers of aborts.

5.5.2 Has-C (Commodity Machine)
The results of the analysis for Has-C are presented in Fig-

ures 4e-4h. In each scenario (T = 1, 4, 8) the performance of
both HTM-RTM and HTM-HLE decreases with increasing M . Sev-
eral outliers are caused by disadvantageous graph data lay-
outs that entail more aborts due to the limited associativity
of L1 cache (8-way associative cache) that stores speculative
states in Haswell [40]. We perform a more detailed analysis
for M ∈ {1, ..., 16} to find out that Mmin = 2. HTM-RTM be-
comes less efficient than HTM-HLE at M≈200 because the cost
of serializations due to the HTM buffer overflows dominates
the runtime of HTM-RTM beyond this point (serializations in
HTM-HLE are implemented in hardware [40], while in HTM-RTM

they have to be implemented in software).

5.5.3 Has-P (High-Performance Server)
The analysis of Has-P is presented in Figures 4i-4l. The

performance trends are partially similar to the observations
for Has-C; especially for lower thread counts (T ≤ 4). A
distinctive feature is a significantly lower number of HTM
buffer overflows than in Has-C. To gain more insight we per-
formed an additional analysis to compare the number of
memory conflicts and HTM buffer overflows with varying
T for fixed M = 2. We present the results in Figures 5a-5b.
Surprisingly, we observe Has-C has significantly more buffer
overflows than memory conflicts for the increasing T ; a re-
verse trend is observed on Has-P. This interesting insight
may help improve the design of future HTM architectures.
Discussion Our analysis shows that RTM is more vulner-
able to aborts than BG/Q HTM. The difference between
the number of transactions and aborts never drops below

25% for HTM in BG/Q for any analyzed M (cf. Figure 4d),
while for RTM this threshold is achieved for M = 144 (Has-
C). Another discovery is that Has-P is only marginally im-
pacted by buffer overflows (<1% of all the aborts for T = 24
and M = 320). On the contrary, aborts in Has-C are dom-
inated by HTM buffer overflows that constitute more than
90% of all the aborts for M > 64. The only exception are
the data points where the number of overflows drops rapidly
as aborts become dominated by the limited L1 cache asso-
ciativity (a similar effect is visible for Has-P). This effect is
not visible in BG/Q because it stores its speculative states
in its L2 16-way associative cache [36], while both Has-P and
Has-C have 8-way associative L1s.

We conclude that the coarsening of transactions provides
significant speedups (up to 1.51) over the Atomic-CAS baseline
on BGQ and Has-C; Has-P does not offer any speedups due to
the overheads generated by memory conflicts. We find the
following optimum transaction sizes for PowerPC in BG/Q:
Mmin = 80 (T = 16), Mmin = 144 (T = 64). For x86
(Has-C) Mmin = 2 for T ∈ {4, 8}. We present Mmin for
the remaining values of T in the technical report. We will
use these values in Section 6 to accelerate Graph500 [30] for
different types of graphs.

5.6 Activities Spawned on a Remote Node
We now analyze the performance of activities spawned on

a remote node. We implement such activities as hardware
transactions triggered upon receiving an atomic active mes-
sage. We again test both the long and the short running
mode (on BG/Q) and RTM/HLE (on Haswell). To reduce
the overhead of sending and receiving an atomic active mes-
sage and save bandwidth, we use activity coalescing : activi-
ties flowing to the same target are sent in a single message.

We run the benchmarks on BG/Q and Greina (Has-P); we
skip Has-C because the Trivium server is not a distributed
memory machine. On BG/Q, we compare inter-node activ-
ities to optimized remote one-sided CAS and ACC atomics
provided by the generic function PAMI_Rmw in the IBM PAMI
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Figure 6: (§ 6.1) The overview of the performance of intra-node Graph500 BFS implemented with atomics (Graph500-BGQ, Graph500-Haswell), AAM RTM
(AAM-Haswell), and the short mode BG/Q HTM (AAM-BGQ). We vary |V | and d̄; T = 64 (on BG/Q) and T = 8 (on Has-C).

communication library [19]. On Has-P we compare activities
to remote atomic operations provided by MPI-3 RMA [29]
implemented over the InfiniBand fabric. We evaluate the
performance of marking a remote vertex as visited (address-
ing distributed BFS computations) and incrementing the
rank of a remote vertex (addressing distributed PageRank).

5.6.1 BG/Q (Supercomputer)
We first measure the time it takes a process pi to mark

213 vertices stored on a node nj as visited (targeting dis-
tributed BFS). The results are presented in Figure 5c. With-
out coalescing, HTM activities (Inter-node-HTM-L for the long
and Inter-node-HTM-S for the short mode) are ≈5x slower
than PAMI atomics (Inter-node-CAS). Still, for Ccross = 16
Inter-node-HTM-S becomes more efficient. Second, we scale
the number of nodes N . Figure 5d shows the time to mark
a vertex stored in process pN ’s memory by N − 1 other pro-
cesses. We use the short HTM mode. Coalesced AAMs
(Inter-node-HTM-C) outperform Inter-node-CAS ≈5-7 times.

We also evaluate an inter-node activity that increments
the rank of a vertex (targeting distributed PR). We perform
analogous benchmarks as for the remote CAS; we present
the results in Figures 5e-5f. Implementing ACC using HTM
again generates costly aborts that dominate the runtime;
however coalescing enables a speedup of ≈20% (for the short
HTM running mode) over highly optimized PAMI atomics.

5.6.2 Has-P (High-Performance Server)
Here, we test the performance of inter-node activities im-

plemented on Has-P. Our testbed has two nodes, thus we
only vary C. We present the results in Figures 5g (CAS)
and 5h (ACC). Setting C = 2 enables AAM to outperform
remote atomics provided by MPI-3 RMA.

5.7 Distributed Activities
Finally, we test the ownership protocol for executing ac-

tivities that span multiple nodes (see Figure 5i for BGQ re-
sults). Each process issues x transactions; each transaction
marks a local and b remote randomly selected vertices. We
compare four scenarios: O-1 (x = 103, a = 5, b = 1), O-2

(x = 104, a = 5, b = 1), O-3 (x = 103, a = 7, b = 3), and O-4

(x = 104, a = 7, b = 3). We measure the total time to exe-
cute transactions. O-1 finishes fastest, O-3 is slower as more
remote vertices have to be acquired. O-2 and O-4 follow the
same performance patterns; additional overheads are due to
the backoff scheme. If no time is spent on backoff, then the
protocol may livelock and may make no progress.

We conclude that AAM can be used in various environ-
ments (e.g., IBM networks or InfiniBand) to enable remote
transactions and to accelerate distributed processing.

6. EVALUATION
We now use AAM to accelerate the processing of large

Kronecker [23] and Erdős-Renyi [10] (ER) graphs with dif-
ferent vertex distributions (power-law, binomial, Poisson).
We also evaluate real-world SNAP graphs3. We evaluate
BFS and PR because they are the basis of various data an-
alytics benchmarks such as Graph500 and because they are
proxies of many algorithms such as Ford-Fulkerson.

6.1 BFS: Massively-Parallel Manycores
We first evaluate the speedup that AAM delivers in

highly-parallel multi- and manycore environments.
Comparison Baseline: Here, we use the OpenMP

Graph500 highly optimized reference code [30] (Graph500-BGQ,
Graph500-Haswell) based on atomics as the comparison base-
line. The baseline applies several optimizations; among oth-
ers it reduces the amount of fine-grained synchronization by
checking if the vertex was visited before executing an atomic.

We compare the Graph500 baseline with the coarsened
variants that use the short mode HTM in BG/Q (AAM-BGQ)
and RTM in Haswell (AAM-Haswell). We only use Has-C (de-
noted as Haswell) because it provides higher speedups over
atomics than Has-P as we show in Figure 4. The long mode
and HLE are omitted as they follow similar performance
patterns and vary by up to 10%. We set T = 64 (for BG/Q)
and T = 8 (for Haswell) for full parallelism.

6.1.1 Processing Kronecker Power-Law Graphs
Here, we use the results of the analysis in Section 5 and

set Mmin ∈ {2, 80, 144} for the most advantageous size of
transactions on BG/Q and Haswell. We present the re-
sults in Figure 6. We scale |V | from 220 to 228, and we use
d̄ ∈ {1, 2, ..., 256}; highest values generate graphs that fill
the whole available memory. For BG/Q, AAM-BGQ outperforms
Graph500-BGQ by up to 102% for a graph with ≈2 millions ver-
tices and d̄ = 4. For higher d̄ AAM-BGQ becomes comparable to
Graph500-BGQ. This is because adding more edges for fixed |V |
generates more transactions that conflict and abort more of-
ten. For Haswell, AAM consistently outperforms Graph500
by up to 27%. The speedup does not change significantly
when increasing d̄. This is because we use smaller transac-

3
Available at https://snap.stanford.edu/data/index.html.



Input graph properties BG/Q analysis Haswell analysis

Type ID Name |V | |E| S over g500
(M = 24)

M
S over
g500

S over g500
(M = 2)

S over Galois
(M = 2)

M
S over
g500

S over
Galois

S over
HAMA

Comm.
networks (CNs)

cWT wiki-Talk 2.4M 5M 2.82 48 3.35 0.91 1.22 6 0.96 1.28 344
cEU email-EuAll 265k 420k 3.67 32 4.36 0.76 0.88 4 0.97 1.12 1448

Social
networks

(SNs)

sLV soc-LiveJ. 4.8M 69M 1.44 12 1.56 1.05 1.1 3 1.07 1.12 > 104

sOR com-orkut 3M 117M 1.22 20 1.27 1.06 0.69 4 1.13 0.74 > 104

sLJ com-lj 4M 34M 1.44 12 1.54 1.03 1.03 4 1.04 1.04 603
sYT com-youtube 1.1M 2.9M 1.67 8 1.84 0.96 1.1 5 0.98 1.11 670
sDB com-dblp 317k 1M 1.33 8 1.80 ≈1 2.5 2 ≈1 2.53 2160
sAM com-amazon 334k 925k 1.14 8 1.62 1.04 1.64 2 1.04 1.64 1426

Purchase
network (PNs)

pAM amazon0601 403k 3.3M 1.45 8 1.91 ≈1 1.25 3 1.03 1.30 618

Road
networks

(RNs)

rCA roadNet-CA 1.9M 5.5M ≈1 2 1.59 1.33 1.74 8 1.38 1.80 > 104

rTX roadNet-TX 1.3M 3.8M ≈1 2 1.53 1.29 1.89 6 1.42 2.08 > 104

rPA roadNet-PA 1M 3M ≈1 2 1.52 ≈1 2.00 9 1.07 2.16 > 104

Citation
graphs (CGs) ciP cit-Patents 3.7M 16.5M 1.16 8 1.57 1.01 1.26 2 1.01 1.26 1875

Web graphs
(WGs)

wGL web-Google 875k 5.1M 1.78 12 2.08 0.98 1.26 6 1.06 1.35 365
wBS web-BerkStan 685k 7.6M 1.91 24 1.91 0.93 1.31 5 1.07 1.40 755
wSF web-Stanford 281k 2.3M 1.89 24 1.89 0.98 1.54 5 1.07 1.58 1077

Table 1: (§ 6.1.2) The performance of AAM for real-world graphs. S and g500 denote speedup and Graph500. ≈1 indicates that the given S ∈ (0.99; 1.01).

tions in AAM-Haswell (M = 2) than in AAM-BGQ (M = 144) and
thus they do not incur considerably more memory conflicts
when d̄ is increased.

6.1.2 Processing Real-World Graphs
Next, we evaluate AAM for real-world graphs (see Ta-

ble 1). For this, we extend Graph500 so that it can read
graphs from a file. We selected directed/undirected graphs
with |V | > 250k that could fit in memory and we excluded
graphs that could not easily be loaded into Graph500 frame-
work (e.g., amazon0505).

BlueGene/Q: The tested graphs are generally sparser
than the analyzed Kronecker graphs. We discovered that
the optimum M is smaller than 144 (we set it to 24). This is
because in dense graphs more data is contiguous in memory
and thus can be processed more efficiently by larger trans-
actions. The results show that graphs with similar structure
entail similar performance gains. The highest S (speedup) is
achieved for CNs (up to 3.67) and WGs (up to 1.91). SNs, PNs,
and CGs offer moderate S (1.14-1.67). RNs entail no signifi-
cant change in performance. We also searched for optimum
values of M for specific graphs; this improves S across all
the groups. The results indicate that respective groups have
similar optimum values of M . The differences are due to the
structures of the graphs that may either facilitate coarsen-
ing and reduce the number of costly aborts (CNs and WGs) or
entail more significant overheads (RNs).

Haswell: We compare AAM to several state-of-the-
art graph processing engines: Galois [18] (represents run-
time systems that exploit amorphous data-parallelism),
SNAP [22] (represents network analysis and data mining
libraries), and HAMA [33]4 (an engine similar to Pregel [27]
that represents Hadoop-based BSP processing engines). We
do not evaluate these engines on BG/Q due to various com-
patibility problems (e.g., BG/Q does not support Java re-
quired by HAMA). BFS in Galois only returns the diameter.
We modified it (with fine locks) so that it constructs a full
BFS tree, analogously to AAM and Graph500.

First, we set M = 2. While AAM is in general faster
than Graph500 (up to 33% for rCA), several inputs entail
longer AAM BFS traversals. AAM is up to a factor of two

4Update (31.07.15): we use HAMA 0.6.4

faster than Galois but is slower for two inputs (cEU and
sOR). There is some diversity in the results because AAM
on Haswell is significantly more sensitive to small changes
of M than on BG/Q. Thus, we again searched for the opti-
mum M for each input separately which resulted in higher
AAM’s speedups. The performance of HAMA and SNAP is
generally much lower than AAM (results for SNAP are con-
sistently worse than for HAMA and we exclude them due to
space constraints). HAMA suffers from overheads caused by
the underlying MapReduce architecture and expensive syn-
chronization. The analyzed real-world graphs have usually
high diameters (e.g., 33 for sAM) and thus require many BSP
steps that are expensive in HAMA. This is especially visible
for RNs that have particularly big diameters (554 for rCA)
and accordingly long runtimes. As we will show in the next
section, processing Kronecker graphs with lower diameters
reduces these overheads. We also investigated SNAP and
we found out that it is particularly inefficient for undirected
graphs and it does not efficiently use threading. Our final
discovery is that, similarly to BG/Q, respective groups of
graphs have similar optimum values of M .

6.1.3 Evaluating the Scalability of AAM
Finally, we evaluate the scalability of AAM by varying

T . The results are presented in Figure 7a (BG/Q) and 7b
(Haswell). We use a Kronecker graph with 221 vertices
and 224 edges. We vary T between 1 and the number
of available hardware threads. The BG/Q results indicate
that AAM utilizes onnode parallelism more efficiently than
Graph500. For Haswell, the performance patterns for AAM
and Graph500 are similar; both frameworks deliver positive
speedups for any T and outperform other schemes by ≈20-
50% (Galois) and ≈2 orders of magnitude (HAMA). We skip
SNAP for clarity; it is consistently 2-3x slower than HAMA.

6.2 PR: Distributed Memory Machines
As the last step, we provide an initial large-scale evalua-

tion of AAM in a distributed environment. We select PR to
illustrate that expensive and numerous aborts generated by
the HTM implementation of ACC (cf. § 5.4.2) can be amor-
tized with the coalescing of activities. We compare AAM
to a version of Parallel Boost Graph Library (PBGL) [11]
based on active messages. The utilized variant of PBGL
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Figure 7: The analysis of the performance of: BFS (when varying T ; § 6.1.3 and Figures 7a-7b) and distributed PR (§ 6.2, Figures 7c-7e).

applies various optimizations; for example it processes in-
coming edges to reduce the amount of synchronization and
to limit the performance overheads caused by atomics. We
run the benchmarks on BG/Q to enable large-scale evalu-
ation. We use ER graphs with the probability parameter
ER ∈ {0.005, 0.0005} and the number of vertices up to 223.
PBGL does not support threading, we thus spawn multiple
processes per node and an equal number of threads in AAM;
we scale T until PBGL fills in the whole memory.

The results of the analysis are presented in Figure 7. We
scale N (Figure 7c), T (Figure 7d), and |Vi| (Figure 7e). In
each scenario AAM outperforms PBGL ≈3-10 times thanks
to the coalescing of activities and more efficient utilization
of intra-node parallelism.

7. RELATED WORK AND DISCUSSION
The challenges connected with the processing of graphs

are presented by Lumsdaine et al. [26]. Example frameworks
for parallel graph computations are Pregel [27], PBGL [11],
HAMA [33], GraphLab [24], and Spark [41]. There exist
several comparisons of various engines [32, 12, 25, 9]. AAM
differs from these designs as it is a mechanism that can be
used to implement abstractions and to accelerate processing
engines. It uses HTM to reduce the amount of synchroniza-
tion and thus to accelerate graph analytics.

GraphBLAS [28] is an emerging standard for expressing
graph computations in terms of linear algebra operations.
AAM can be used to implement the GraphBLAS abstraction
and to accelerate the performance of graph analytics based
on sparse linear algebra computations.

The Galois runtime [17] optimizes graph processing by
coarsening fine graph updates. AAM can be integrated with
Galois. In AAM, we focus on scalable techniques for imple-
menting coarsening with HTM. First, we provide a detailed
performance analysis of HTM for graph computations, a core
paper contribution. Instead, Galois mostly addresses lock-
ing [18]. Second, contrary to Galois, AAM targets both
shared- and distributed-memory systems. Third, our work
performs a holistic extensive performance analysis of coars-
ening. Instead, coarsening in Galois is not evaluated on its
own. We conclude that AAM’s techniques and analysis can
be used to accelerate the Galois runtime.

Active Messages (AM) were introduced by Eicken et
al. [35]. Various AM implementations were proposed [8, 38,
39, 19, 2]. Our work enhances these designs by combining
AM with HTM. We illustrate how to program AAM and we
conduct an extensive analysis to show how to tune AAM’s
performance on state-of-the-art manycore architectures.

Transactional memory was introduced by Herlihy et
al. [14]. Several implementations of HTM were intro-
duced, but their performance was not extensively ana-
lyzed [40, 36, 7, 6]. Yoo et al. [40] present performance

gains from using Haswell HTM in scientific workloads such
as simulated annealing. Our analysis generalizes these find-
ings, proposes a simple performance model, and provides a
deep insight into the performance of both BG/Q and Haswell
HTM for a broad range of transaction sizes and other pa-
rameters in the context of data analytics.

We envision that the potential of AAM could be further
expanded by combining it with some ideas related to code
analysis. For example, one could envision a simple com-
piler pass that pattern-matches each single-vertex transac-
tion against the set of atomic operations to transform it if
possible to accelerate graph processing. However, such an
analysis is outside the scope of this paper.

Finally, AAM can be extended with algorithms for the
online selection of M . Here, as our study exhaustively il-
lustrates performance tradeoffs in the available HTM imple-
mentations, it would facilitate the runtime decisions on how
to select M . For example, the runtime can prune the space
of all the applicable values of HTM parameters depending
on which HTM is utilized. In addition, our performance
model can be further extended and combined with data min-
ing techniques to enable effective online decisions based on
graph sampling. We leave this study for future research.

8. CONCLUSION
Designing efficient algorithms for massively parallel and

distributed graph computations is becoming one of the key
challenges for the parallel programming community [18].
Graph processing is fine-grained by nature and its tradi-
tional implementations based on atomics or fine locks are
error-prone and may entail significant overheads [18].

We propose Atomic Active Messages (AAM), a mecha-
nism that reduces the amount of fine-grained synchroniza-
tion in irregular graph computations. AAM is motivated by
recent advances towards implementing transactional mem-
ory in hardware. AAM provides several high performance
techniques for executing fine-grained graph modifications as
coarse transactions, it facilitates the utilization of state-of-
the-art hardware mechanisms and resources, and it can be
used to accelerate highly optimized codes such as Graph500
by more than 100%.

AAM targets highly-parallel multi- and manycore archi-
tectures and distributed-memory machines. It provides a
novel classification of atomic active messages that can be
used to design and program both shared- and distributed-
memory graph computations. AAM enables different op-
timizations from both of these worlds such as coarsening
intra-node transactions and coalescing inter-node activities.
We illustrate how to implement AAM with HTM; how-
ever, other mechanisms such as distributed STM [21], flat-
combining [13], or optimistic locking [20] could also be used.



Finally, to the best of our knowledge, our work is the
first detailed performance analysis of hardware transactional
memory in the context of graph computations and the first
to compare HTMs implemented in Intel Haswell and IBM
Blue Gene/Q. Among others, we conjecture that implement-
ing HTM in the bigger L2 cache (BG/Q) enables higher per-
formance than in the smaller L1 cache (Haswell). We believe
our analysis and data can be used by architects and engi-
neers to develop a more efficient HTM that would offer even
higher speedups for irregular data analytics.
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