
Fast Arbitrary Precision Floating Point on FPGA
Johannes de Fine Licht∗, Christopher A. Pattison†, Alexandros Nikolaos Ziogas∗,

David Simmons-Duffin‡, Torsten Hoefler∗

∗Department of Computer Science, ETH Zurich, Switzerland
†Institute for Quantum Information and Matter, Caltech, Pasadena, USA

‡Walter Burke Institute for Theoretical Physics, Caltech, USA

Abstract—Numerical codes that require arbitrary precision
floating point (APFP) numbers for their core computation are
dominated by elementary arithmetic operations due to the super-
linear complexity of multiplication in the number of mantissa
bits. APFP computations on conventional software-based archi-
tectures are made exceedingly expensive by the lack of native
hardware support, requiring elementary operations to be emu-
lated using instructions operating on machine-word-sized blocks.
In this work, we show how APFP multiplication on compile-
time fixed-precision operands can be implemented as deep FPGA
pipelines with a recursively defined Karatsuba decomposition
on top of native DSP multiplication. When comparing our
design implemented on an Alveo U250 accelerator to a dual-
socket 36-core Xeon node running the GNU Multiple Precision
Floating-Point Reliable (MPFR) library, we achieve a 9.8×
speedup at 4.8 GOp/s for 512-bit multiplication, and a 5.3×
speedup at 1.2 GOp/s for 1024-bit multiplication, corresponding
to the throughput of more than 351× and 191× CPU cores,
respectively. We apply this architecture to general matrix-matrix
multiplication, yielding a 10× speedup at 2.0 GMAC/s over the
Xeon node, equivalent to more than 375× CPU cores, effectively
allowing a single FPGA to replace a small CPU cluster. Due to the
significant dependence of some numerical codes on APFP, such as
semidefinite program solvers, we expect these gains to translate
into real-world speedups. Our configurable and flexible HLS-
based code provides as high-level software interface for plug-
and-play acceleration, published as an open source project.

I. INTRODUCTION

Arbitrary precision arithmetic, such as that implemented by the
GNU Multiple Precision (GMP) [1] and Multiple Precision
Floating-Point Reliable (MPFR) [2] libraries (where it is
referred to as “multi-precision” arithmetic), allows increasing
precision by extending the number of bits used to represent
numbers beyond the machine word size natively supported
by software processors. This can be necessary to accurately
investigate domains where information is found in small dif-
ferences between numbers (i.e., numbers that are very similar
and nearly cancel each other out), which cannot be effectively
captured by the dynamic precision of floating-point arithmetic.

As motivation for this work, we consider semidefinite
programs (SDPs). SDPs are ubiquitous and efficiently solvable
convex optimization problems involving a linear cost function
of a positive-semidefinite matrix subject to affine constraints
[3]. SDPs have myriad applications in fields such as control
theory, combinatorial optimization, algebraic geometry, and
operations research [4], [5], [6], [7]. A popular approach
to solving the resulting SDPs is primal-dual interior-point
methods, which rely on matrix decompositions and matrix-

matrix multiplication. However, such methods frequently en-
counter ill-conditioned matrices, and consequently, several
solvers have been implemented to solve SDPs using high-
precision arithmetic [8], [9], [10], [11]. A state-of-the-art SDP
library is SDPB [11], [12], an interior-point solver designed
to handle semidefinite programs that arise in the conformal
bootstrap. The conformal bootstrap is a powerful framework
for studying phase transitions in a wide variety of physical
systems [13], [14], [15]. Its central strategy is to solve a series
of SDPs to derive rigorous bounds on physical quantities [16],
[17]. In addition to phase transitions, SDPB has been applied
to problems in sphere packing [18], scattering amplitudes
[19], [20], and differential geometry [21], [22]. In all of these
cases, the relevant physical or mathematical system satisfies
an infinite set of consistency conditions, only a finite subset of
which are used in a given SDP. High-precision arithmetic en-
ables one to easily and robustly obtain stronger constraints by
systematically enlarging the number of consistency conditions
(and the size and complexity of the corresponding SDPs).

Unfortunately, moving from 64-bit machine word arithmetic
to arbitrary precision comes at an immense computational cost.
Fundamental operations, such as addition and multiplication,
can no longer be implemented with single instructions and
must instead be emulated using a (potentially long) sequence
of instructions operating on individual machine-word-sized
blocks of the number. As a result, the runtime of numerical
codes that require arbitrary precision arithmetic in their core
computation can quickly become dominated by elementary
arithmetic operations. This is exacerbated by the super-linear
complexity of multiplication (and consequently dependent
operations such as division) in the number of mantissa bits,
which, depending on the instruction mix, can result in arbitrary
precision multiplication alone dominating workloads such
as linear algebra. While specialized instructions have been
introduced to x86 to mitigate this, namely ADCX (add with
carry) and MULX (unsigned integer multiplication with double-
width output), the issue of emulation and complexity remains.

The reconfigurable hardware fabric in FPGA devices al-
lows deploying custom circuits in terms of the elementary
components available on the chip. Due to the importance
of machine learning workloads, recent work in both fixed
and reconfigurable hardware acceleration has focused on low
precision types [23], [24], [25]. However, FPGAs are also an
excellent platform for going in the other direction: While they
often cannot compete with GPUs on accelerating traditional

floating-point-dominated workloads, they have a significant
advantage on data types that are not natively supported by
the instruction sets of other architectures, such as arbitrary
precision arithmetic, as these operations can be unrolled and
deeply pipelined on the chip. By accelerating the basic arbi-
trary precision operators on FPGA, the speedup achieved can
then directly translate into real-world speedup in codes that
are dominated by arbitrary precision arithmetic.

In this work, we show how a Karatsuba-based arbitrary
precision floating point (APFP) multiplier implemented on
a single FPGA device can outperform 351× CPU cores
executing MPFR. We deploy this architecture in a general
matrix-matrix multiplication (GEMM) accelerator, which is a
crucial component of many numerical workloads, yielding a
design that outperforms 375× CPU cores. The accelerator is
exposed through a BLAS-like software interface and published
as open-source code on GitHub1, allowing plug-and-play
FPGA acceleration of existing APFP-dominated workloads by
modifying a few lines of code. The HLS-based code is highly
configurable to support different precisions, tile sizes, FPGA
architectures, DRAM layouts and more, and can target any
platform supported by Xilinx’ Vitis toolflow and the Xilinx
Runtime (XRT), including both current and future devices.
Following our approach, this acceleration can be extended to
other APFP routines in linear algebra and beyond, providing
significant speedup that can enable new science in practice.

II. ARBITRARY PRECISION FLOATING POINT OPERATORS

The most fundamental arithmetic building blocks of most com-
putations in high-performance computing (HPC) are addition
(including subtraction) and multiplication. The most common
performance metric used to evaluate and rank HPC systems is
their throughput in terms of these two operators. For arbitrary
precision-based codes, they are the most critical to accelerate.
In the following, we cover our FPGA implementation for
APFP addition and multiplication.

We base the functional behavior of our arithmetic on that
implemented in the GNU MPFR library, using the round-to-
zero mode (MPFR_RNDZ). In MPFR, an APFP number is
implemented as a struct containing four runtime fields: the
number of bits used for the mantissa; the sign, stored as a
machine word; the exponent, stored as a machine word; and a
pointer to a heap-allocated array of “limbs”, where each limb
is a machine word-sized chunk of the mantissa.

To adapt the MPFR representation to a hardware-suitable
format, we apply the following changes to the representation,
without affecting the functional semantics of the operators:
• The number of bits used for the mantissa is kept configurable

but fixed at compile-time, allowing us to omit this field from
the data type at runtime.

• The sign is packed into a single bit of the exponent, reducing
the exponent to a (blimb − 1)-bit signed integer (e.g., 63
bits), where blimb is the machine word size that MPFR is
configured with (typically 64 bits).

1https://github.com/spcl/apfp

S
ta

c
k

H
e

a
p

Precision Exponent
Mantissa

Pointer
Sign

…

64 bits 32 bits 64 bits 64 bits

64 bits 64 bits 64 bits

Hardware

S
ig

n

Exponent

63 bits1 bit

n ⋅ 512 bits

64 bits 64 bits 64 bits

…

Fig. 1: The MPFR software representation on a 64-bit system
(top) transformed into a hardware-friendly format (bottom) for
integer n, where n · 512 bit− 64 bit represent the mantissa.

• The mantissa is packed tightly with the sign and exponent
rather than being allocated separately, which is possible due
to the precision being configured at compile-time.

• The combined sign, exponent, and mantissa are packed into
a multiple of 512 bits to enable efficient memory accesses.

The format transformation is illustrated in Fig. 1 for a system
with 64-bit machine words. The provided ap_uint arbitrary
precision integer type in Vitis HLS is used to pack the sign,
exponent, and mantissa tightly and ensure that wide buses
are generated on the FPGA. Our operators will maintain
full bit-compatibility in the mantissa with MPFR, and their
output will be compared to the equivalent MPFR software
computation to verify correctness of the implementation.

A. Floating-Point Multiplier

The majority of work involved in floating-point multipli-
cation lies in the underlying unsigned integer multiplication
of the two mantissas. Consequently, multiplying the mantissas
will account for the majority of hardware utilization in the
floating-point multiplication kernel, and the majority of hard-
ware utilization in all the kernels benchmarked in this work.

Naive multiplication of integers (commonly referred to
as the “textbook” algorithm) requires O(b2) work in the
number of bits b used to represent the integers. However, by
recursively decomposing and reorganizing the multiplication
into subcomponents, some redundant subcomputations can be
eliminated to reduce the asymptotic complexity at the cost of
higher constants, first described by Karatsuba [26] achieving
O(blog23), and later generalized by Toom [27] and described
by Cook [28] (the scheme is now commonly referred to as
Toom–Cook multiplication). For very high b (not considered
in this work), FFT-based methods become practical [29], [30].

In this work, we consider bit widths that are “large” from
a hardware perspective (i.e., an order of magnitude wider
than the 64-bit words natively supported in CPU and GPU
architectures), but “small” relative to the overhead imposed
by higher-order Toom–Cook and FFT-based methods. To this
end, we employ the Karatsuba algorithm for our hardware

https://github.com/spcl/apfp

64(32a1|32a0)

64c2 64c0

64(32b1|32b0)

X X

+

-

128(64c2|640)

-

128(axb)

128(300|66c1|320)
128(640|64c0)

+

X
32(a1|a0) 32(b1|b0)

X X-

+

-

+

X

64(axb)

32(axb)
DSP

s

Fig. 2: Recursive Karatsuba decomposition of 64×64-bit in-
teger multiplication. The explicitly tracked sign bit s in the
intermediate computation of c1 is indicated as an arrow. Sums
with three terms are represented with a single “+” box.
Note that the 16×16-bit multiplication at the lowest level is
computed in hardened DSP48E2 units.

implementation (also known as Toom–2), which offers a
hardware-friendly power-of-two decomposition and is efficient
in this middle-ground domain.

The Karatsuba multiplication algorithm and its generaliza-
tion utilize techniques for fast multiplication of polynomials
by viewing the result and operands as a polynomial in a base
B = 2n i.e. a = a0 + Ba1. Here, we describe a single
recursive step with bitwidths annoted as superscripts. Each
step splits the input operands of c = ab into two halves, the
high and low bits (2n)a = (n)a0+B (n)a1, and requires three
multiplications at half-bit width per recursive step. Writing c
as c = c0+Bc1+B2c2 and b as (2n)b = (n)b0+B (n)b1, the
coefficients are computed as follows:

(2n)c0 = (n)a0
(n)b0

(2n)c2 = (n)a1
(n)b1

(2n)t = (n)|a1 − a0|(n)|b1 − b0|

s = sign [(a1 − a0)(b1 − b0)]

(2n+2)c1 = (2n)c0 +
(2n)c2 − (1)s (2n)t

Explicitly tracking the sign bit in the computation of c1 allows
all multiplications to be carried out at n bits. Note that only
one multiplication per coefficient is required (c0, c2, and t). We
recombine the outputs using multiplication by B implemented
as shifts. Since a product cannot have more than double the
number of digits of the operands, one can see that this addition
will not overflow. Combining the contributions yields:

(4n)c = (2n)c0 +B (2n+2)c1 +B2 (2n)c2

The decomposition may then be repeated iteratively for the
three half-bit width multiplications until reaching a small
enough bit width to perform the multiplication as a primitive
operation. Our recursive implementation of the decomposition
is sketched for 64×64-bit example inputs in Fig. 2.

DSPs in modern FPGAs can natively (and thus efficiently)
perform integer multiplication up to a given bit width, and
will be used when “bottoming out” our decomposition. The
DSP48E2 units on the Xilinx UltraScale+ architecture support
18×18-bit integer multiplication. On this architecture, we
thus recursively split the domain until the subcomponents are
at most ≤18 bits in size, after which they can be directly
dispatched to DSP units rather than being decomposed further.
However, the bottom out bit width is left as a configuration
parameter, as falling back on O(n2) multiplication at a higher
bit width can be beneficial (see Sec. V-A).

To implement the Karatsuba decomposition in a general
manner to support any input bit width, we exploit C++ tem-
plate metaprogramming to define a static template recursion
that bottoms out on bit widths under the defined bottom out
width using an SFINAE [31] pattern. This is illustrated in
Lst. 1, where the ap_uint type is used to represent arbitrary
bit widths, and MULT_BASE_BITS is the chosen threshold
where Karatsuba falls back on naive multiplication using DSPs
(we will optimize the choice of this threshold in Sec. V-A).

When combining contributions to the final mantissa, we
perform integer additions on bit widths up to 2× the number
of input bits (e.g., 1024-bit operands for 512-bit numbers). Vi-
tis HLS 2021.2 allows splitting the adder into multiple stages
using the BIND_OP pragma, but only allows a maximum
of 4 additional pipeline stages. To avoid deep combinatorial
logic and aid routing, we implement an additional pipelined
addition/subtraction function that partitions the wide additions
into chunks of a configurable base width. We use this to make
sure that no more than a fixed number of bits are added in a
single cycle, and will show how this impacts resource usage
and frequency in Sec. V-A.

B. Floating-Point Adder

Addition of mantissas can be accomplished in a time complex-
ity linear in the number of bits. In the same way as for adding
up contributions in Karatsuba multiplication, we partition the
integer addition into a configurable number of stages. To
perform a floating-point addition, we shift the operands by
the difference of the exponents before passing them into

1 template <int bits>
2 auto Karatsuba(ap_uint<bits> const &a,
3 ap_uint<bits> const &b) ->
4 typename std::enable_if<(bits > MULT_BASE_BITS),
5 ap_uint<2*bits>>::type {
6 using Full = ap_uint<bits>;
7 using Half = ap_uint<bits / 2>;
8 Half a0 = a(bits/2-1, 0); Half a1 = a(bits-1, bits/2);
9 Half b0 = b(bits/2-1, 0); Half b1 = b(bits-1, bits/2);

10 Full c0 = Karatsuba<bits / 2>(a0, b0); // Recurse
11 Full c2 = Karatsuba<bits / 2>(a1, b1); // Recurse
12 // ...compute |a1-a0| and |b1-b0|...
13 Full c1 = Karatsuba<bits / 2>(a1_a0, b1_b0); // Recurse
14 // ...combine all contributions and return...
15 }
16

17 template <int bits>
18 auto Karatsuba(ap_uint<bits> const &a,
19 ap_uint<bits> const &b) ->
20 typename std::enable_if<(bits <= MULT_BASE_BITS),
21 ap_uint<2*bits>>::type {
22 return a * b; // Bottom out using naive mult
23 }

Listing 1: Static recursion pattern implemented in C++ bot-
toming out at MULT_BASE_BITS with SFINAE used to
implement Karatsuba decomposition for arbitrary bit widths.

the integer adder. Due to the sign-magnitude format of the
floating-point format, we must explicitly subtract the operands
when the signs differ. When subtracting, the output may
become denormalized, requiring us to left-shift the resulting
mantissa such that the most significant bit of the mantissa is
set, requiring us to count the number of introduced leading
zeros and dynamically shift by this number.

We combine the floating-point adder with the multiplier to
form a combined multiply-addition pipeline, which can serve
as a building block for dense linear algebra kernels.

III. ARBITRARY PRECISION MATRIX MULTIPLICATION

With a fully pipelined multiply-addition unit that performs
one operation per cycle, DRAM bandwidth is no longer
sufficient to saturate the compute in a linear streaming compu-
tation. We thus need to increase the granularity of acceleration
to routines that enable sufficient reuse to keep the compute
saturated from buffers in on-chip memory. For use in the SDP
solvers that motivate this work, general matrix multiplication
(GEMM) and derived routines such as the symmetric rank-k
update (SYRK) BLAS routine are major workhorses that can
provide the necessary reuse.

We design a GEMM architecture that implements the opera-
tion C = αAB+βC, where A is an N×K matrix, and B is a
K×M matrix. For the purpose of this work, we fix α = β = 1,
but other values can be introduced at the cost of requiring
additional multiplication pipelines, which would correspond
to a nearly full replication of the circuit. Reuse is achieved
through a 2D tiling scheme, where columns of size TN from A
and rows of size TM from B are loaded and used to compute
a TN×TM outer product, which is accumulated into an output
tile of size TN · TM of matrix C stored in on-chip memory.
This is repeated for the full common matrix dimension K
until the output tile is complete and is written back to off-chip
memory. By setting TN = TM and maximizing this quantity,

we can achieve optimal fast memory usage in terms of the
on-chip memory used [32], with an arithmetic intensity of
TNTM

TN+TM
(TNTM computations for each TN + TM operands

loaded from memory).
With the outer product scheme selected, one of the input

matrices will be read column-wise, while the other will be
read row-wise. For the matrix that is not read contiguously
from memory, the accesses to DDR memory are less efficient
as a result. Fortunately, because each entry occupies a much
larger space in memory than traditional data types, even this
suboptimal access pattern results in burst reads at least as wide
as the floating point number. This is chosen as a multiple of
512 bits to match the 4× clock multiplier of DDR4 memory,
the 2× data rate, and the 64-bit DDR4 interface.

When permitted by available resources and routing con-
straints, we can instantiate multiple GEMM compute units to
improve overall throughput. Each compute unit will operate
on a distinct partition of the output matrix, such that multiple
GEMM accelerators collaborate on a single virtual GEMM
call. For P compute units, N/P rows of the input matrix
A and the output matrix C are allocated per accelerator and
copied to the respective DRAM bank, while the full B-matrix
is used by every compute unit to compute a complete set of
N/P rows of the output matrix.

IV. ARTIFACTS AND WORKFLOW

We publish our HLS-based accelerator and the software
integration code as open source software, to facilitate it
being exploited in APFP-based numerical codes. The hardware
accelerator is highly configurable, and once the appropriate
bitstream has been built and installed, can be accessed through
a high-level BLAS interface, or through CUDA-like device
interaction for more fine-grained control.

A. Hardware Accelerator Configuration

Both software and hardware of our project is configured
via CMake. Dependencies required to build the code are auto-
matically detected, including the Xilinx toolchain as enabled
by FindVitis.cmake provided by the hlslib [33] project,
which also provides build targets for hardware and hardware
emulation for our kernels.

As of writing, the matrix multiplication accelerator can be
configured with the following parameters that customize its
resource utilization and performance characteristics:

• APFP_BITS configures the number of bits used to represent
floating point numbers, which includes the bits spent on
exponent and sign (packed according to Fig. 1).

• APFP_COMPUTE_UNITS sets the replication factor of
the multiply-addition pipeline, allowing performance to be
scaled up with available resources on the target device.

• APFP_TILE_SIZE_N and APFP_TILE_SIZE_M config-
ure the rows and columns of the output tile per instantiated
compute unit, respectively, increasing memory reuse/reduc-
ing memory bandwidth at the cost of on-chip memory
resources, as described in Sec. III.

1 El::DistMatrix<El::BigFloat> distr_a = ...;
2 El::DistMatrix<El::BigFloat> distr_b = ...;
3 El::DistMatrix<El::BigFloat> distr_c = ...;
4

5 // Elemental GEMM
6 El::Gemm(El::NORMAL, El::NORMAL, El::BigFloat(1),
7 distr_a, distr_b, El::BigFloat(1), distr_c);
8

9 // Obtain local copies
10 using LocalMatrix =
11 El::DistMatrix<El::BigFloat, El::CIRC, El::CIRC>;
12 LocalMatrix local_a = distr_a;
13 LocalMatrix local_b = distr_b;
14 LocalMatrix local_c = distr_c;
15

16 // Indexing functions into the matrices
17 using CIdxF = std::function<mpfr_srcptr(unsigned long)>;
18 using IdxF = std::function<mpfr_ptr(unsigned long)>;
19

20 CIdxF index_A = [&](unsigned long i) {
21 return local_a.Matrix().Buffer()[i].LockedPointer();
22 };
23

24 // ...define index_B and index_C...
25

26 // APFP Interface GEMM Call
27 apfp::Gemm(apfp::BlasTrans::normal,
28 apfp::BlasTrans::normal, m, n, k,
29 index_A, local_a.Matrix().LDim(),
30 index_B, local_b.Matrix().LDim(),
31 index_C, local_c.Matrix().LDim()));

Listing 2: Example GEMM call for Elemental and for the BLAS
compatibility interface. CPU codes relying on Elemental can
be converted piece-by-piece by retaining the Elemental data
structures.

• APFP_MULT_BASE_BITS and APFP_ADD_BASE_BITS
configure the bit width at which the Karatsuba decomposi-
tion falls back on naive multiplication of operands, and the
number of bits added in combinatorial logic per pipeline
stage when performing wide additions, respectively.

By adapting these configuration options to the specific ar-
chitecture being targeted, the accelerator can be tailored to
fully exploit available resources, including logic resources
and DRAM banks, and best utilize the characteristics of the
underlying hardware components.

B. System Integration

To make it easy for numerical codes to exploit FPGA ac-
celeration, we expose our accelerator as a high-level software
library with BLAS-like API calls. The BLAS interface permits
the FPGA acceleration to be a drop-in replacement for libraries
such as MLAPACK [34] or Elemental [35] when the transfer
overhead is small relative to the computation size.

Elemental is a distributed memory dense linear algebra
library, which supports arbitrary precision data types relying
on MPFR data types, and uses MPI for parallelization and
multi-node support. Using our BLAS interface, we are able to
non-invasively accelerate a GEMM call in an Elemental program
with minimal additional code (Lst. 2). The BLAS interface
accepts a pointer to a buffer or an std::function/lambda
function, accepting an integer and returning an MPFR pointer.
This flexibility permits us to avoid copying MPFR data out of
the Elemental datatypes while simultaneously avoiding a leaky

abstraction with respect to our internal packed floating-point
format. The MPFR datatype stores limbs on the heap, so the
extra indirection imposed by the indexing function is not a
significant drawback.

In Lst. 2, we show a standard GEMM call in Elemental
(line 6) operating on distributed matrices in addition to a
call to the FPGA BLAS interface (line 27). In this example,
the operands are distributed matrices, so they are copied
to a single node using the El::CIRC distributed matrix
distribution argument (line 10). The only additional code is
to define indexing functions that abstract away the layout of
the underlying MPFR numbers inside of Elemental (line 17).

While this example copies a distributed matrix to a single
MPI process, the Elemental library could be used to facilitate
a distributed, multi-FPGA computation.

When data movement to/from the accelerate must be explic-
itly managed, we provide a fine-grained interface exposing a
CUDA-like API to launch kernels and move data between host
and device. Workloads with many small matrices will need to
keep operands on the FPGA for multiple kernel invocations to
amortize the transfer time.

V. EVALUATION

We evaluate our architecture on a Xilinx Alveo U250 accel-
erator, where we utilize 1–4 DDR4 DRAM banks with a peak
bandwidth of 19.2GByte/s per bank. The C++-based kernels
are implemented in Vitis HLS with hlslib [33] extensions,
and compiled for hardware with Vitis/Vivado 2021.2, targeting
the xilinx_u250_gen3x16_xdma_3_1_202020 shell
through the OpenCL-based interface relying on the Xilinx
Runtime (XRT) version 2.9.317 for host/device interaction.
The U250 consists of 4× chiplets called “Super Logical
Regions” (SLRs) that have limited connectivity between them.
We thus force kernel instantiations to stay within the bounds
of a chiplet to avoid frequency degradation.

To compare against software, we run APFP computations
in software using MPFR 4.1.0 and GMP 6.2.1. For dense
linear algebra, we run commit 6eb15a0 of Elemental2 [35]
with MPFR/GMP and MPI support. Benchmarks are run on
Cray XC40 compute nodes on the Piz Daint supercomputer
at the Swiss National Supercomputing Center (CSCS), where
each node is equipped with 2× Intel Xeon E5-2695 v4 18-
core CPUs in a dual-socket configuration (36 cores per node).
The Broadwell-based CPU supports the specialized ADCX add-
with-carry instruction from the Intel ADX x86 instruction
set extension targeting arbitrary-precision arithmetic, as well
as MULX instruction from the BMI2 extension for 64×64-
bit multiplication with 128-bit output. GMP, MPFR, and
Elemental are compiled directly on the compute nodes with
(Cray) GCC 10.3.0 to exploit these and other architecture-
specific optimizations. Elemental is built with Cray-MPICH
7.7.16. MPI processes are fixed to CPU cores through Slurm
to avoid rescheduling of threads across the NUMA boundary.

2https://github.com/elemental/Elemental

https://github.com/elemental/Elemental

32 64 128 256 512
Addition Width per Stage [bits]

18

36

72

144

K
ar

at
su

ba
T

hr
es

ho
ld

[b
it

s]

372 340 437 432 411

451 435 434 415 412

380 447 453 448 386

230 237 250 227 246
14

15

16

17

18

19

20

C
L

B
U

sage
[%

]

Fig. 3: Resource utilization (on the color scale, where brighter
colors use more resources) and frequency (annotated on each
rectangle, in MHz) for different number of bits added per
pipeline stage, and different thresholds for falling back from
Karatsuba onto DSP-based naive multiplication. Pareto effi-
cient configurations are marked in underlined bold font.

A. Tuning the Multiplier for Resources and Frequency

When configuring the APFP multiplier, there are two tunable
parameters that represent a trade-off between frequency and
resource usage: the threshold at which the Karatsuba de-
composition bottoms out and calls naive multiplication using
DSPs (APFP_MULT_BASE_BITS); and the number of bits
added/subtracted in a single pipeline stage when adding up
contributions (APFP_ADD_BASE_BITS). To find the best
configurations, we perform a full sweep of this design space
for a single 512-bit APFP multiplier, and use this to guide
our other experiments. We choose the number of configurable
logic blocks (CLBs) as the metric for resource usage, as this
is the most utilized resource in our designs, and captures both
LUT and register usage. This results in a 2D design space
(multiplication and addition configuration) with two evaluation
metrics (frequency and CLBs used).

Fig. 3 shows resource utilization (on the color scale) and
frequency (annotated) for different combinations of addition
and multiplication configurations for the Karatsuba-based mul-
tiplier. For multiplication, the best results are obtained when
falling back on DSP-based naive multiplication after 72 bits
(lowest resource usage with high frequencies), or 36 bits
(consistently high frequencies, but higher resource usage). At
144 bits, the naive multiplication significantly hampers the
achievable frequency, while 288 bits fails synthesis altogether.
For addition, the best results are obtained when bottoming
out at more than 64 bits per pipeline stage. We will target
permutations of these configurations of widths for obtaining
the best results in the experiments below.

B. Benchmarking Floating-Point Multiplication

To evaluate and compare the performance of the APFP mul-
tiplication in isolation, we construct a microbenchmark for

Shell

CU[0] CU[4]CU[1] CU[5] CU[2] CU[6] CU[3] CU[7]

DDR[0] DDR[1] DDR[2] DDR[3]

SLR[0] SLR[1] SLR[2] SLR[3]

Fig. 4: Example mapping of compute units to SLRs/DDR
banks on the U250. Only CU[0] is functionally required
(solid outline). Round robin continues after the first 8 CUs.

both FPGA and CPU that streams from two arrays of operands
through the multiplier and writes to an output array in a purely
linear fashion. In this setting, a fully pipelined FPGA multi-
plier will quickly become memory bound, as it requires 2 reads
and 1 write per cycle, which corresponds to 57.6GByte/s
for a single 512-bit pipeline at 300MHz, or 115.2GByte/s
for a single 1024-bit pipeline. Two compute units would
thus already grossly exceed the 76.8GByte/s peak memory
bandwidth of the U250. To evaluate the performance when the
compute can be fully saturated through memory reuse and/or
higher memory bandwidth, we artificially removed the mem-
ory bottleneck for the sake of this comparison, by repeatedly
feeding the same single data element to the computational
kernel. Similarly, although we expect the CPU to primarily be
compute bound when running MPFR, we negate any impact
from cache misses by constructing the benchmark such that
it loops over a dataset that fits in the L1 cache of each Xeon
core to ensure the highest possible multiplication throughput
for our comparison, representing its true peak running MPFR.

For the FPGA accelerator, we replicate the multiplication
pipeline to increase the utilization of the FPGA and partition
the input problem across the replications. Each compute unit
is assigned to a DDR bank in a round-robin fashion, resulting
in each unit being assigned to a distinct SLR (chiplet) on the
device. We start at DDR bank 1 where the logic interacting
with the host is located, then cycle through 0, 2, and 3.
Once a compute unit has been assigned to each bank/SLR,
the assignment repeats from the first bank. The SLR/bank
assignment is illustrated in Fig. 4 for up to 8 compute units.

We compare an increasing number of compute units instan-
tiated on the FPGA against the full 36-core node running
MPFR in Tab. I and Tab. II for 512 bits (448-bit mantissa)
and 1024 bits (960-bit mantissa) of precision, respectively. The

Configuration Freq. CLBs DSPs Throughput Speedup #Cores
36-core CPU 2100MHz - - 490MOp/s 1.0× 36×

FPGA 1 CU 456MHz 16% 4% 451MOp/s 0.9× 33.1×
FPGA 4 CUs 376MHz 37% 14% 1502MOp/s 3.1× 110.3×
FPGA 8 CUs 300MHz 48% 28% 2401MOp/s 4.9× 176.3×
FPGA 12 CUs 300MHz 62% 42% 3595MOp/s 7.3× 264.0×
FPGA 16 CUs 300MHz 75% 56% 4784MOp/s 9.8× 351.3×

TABLE I: Our 512-bit (448-bit mantissa) floating-point multi-
plier executed in hardware, compared to MPFR executed fully
in L1 cache on a 36-core CPU node. #Cores denotes speedup
over a single core (i.e., equivalent number of CPU cores).

Configuration Freq. CLBs DSPs Throughput Speedup #Cores
36-core CPU - - - 227MOp/s 1× 36×

FPGA 1 CU 361MHz 27% 8% 361MOp/s 1.6× 57.3×
FPGA 4 CUs 293MHz 58% 42% 1202MOp/s 5.3× 190.9×

TABLE II: Our 1024-bit (960-bit mantissa) floating-point
multiplier executed in hardware, compared to MPFR executed
fully in L1 cache on a 36-core CPU node.

512-bit multiplier fits up 4 times on each SLR for a total of 16
compute units, yielding 4.8GOp/s for a speedup over the full
36-core Xeon node of 9.8×, corresponding to a throughput of
more than 351× CPU cores at 75% CLB usage and 56% DSP
usage. The 1024-bit multiplier can be instantiated once per
SLR, yielding 1.2GOp/s for a 5.3× speedup over the Xeon
node (corresponding to 191× CPU cores).

In the following, we will extend our accelerator to perform
matrix multiplication, where we can saturate the computational
pipeline without artificially removing the memory bound.

C. Benchmarking Matrix Multiplication

We evaluate the accelerator described in Sec. III, where we
maximize the number of compute units that can be instantiated
within the resource constraints and allowed by routing accord-
ing to the SLR/DDR bank assignment scheme in Fig. 4. For
the CPU comparison, we run the El::Gemm implementation
from Elemental, which is parallelized using MPI. We use a tile
size of 32×32 for the FPGA compute units, which balances
the trade-off between avoiding useless work on sizes that are
not a multiple of the tile size with the reduction in required
memory bandwidth at larger tile sizes.

Fig. 5 plots the performance of our accelerator for 512-
bit APFP numbers with 448-bit mantissas against the matrix
dimension for n×n matrices for different numbers of repli-
cations of the compute unit instantiated on the chip, com-
pared to 1–8 Xeon compute nodes running Elemental/MPFR
(dashed lines), in multiply-additions per second (we annotate
the more commonly used “multiply-accumulate” throughput
(MMAC/s), but note that our addition is not restricted to
accumulation). Resource usage is dominated by multiplication,
making it the primary constraint on how far we can scale
the design (in contrast to machine word-sized floating-point,
where additions and multiplications are typically weighted the
same when reporting performance). For the MPFR/Elemental
performance, we run both 448-bit and 512-bit mantissas and
take the maximum performance between each pair, to account
for performance effects that can occur when the mantissa size
is not a power of two.

A single replication of the 512-bit accelerator exhibits
performance corresponding to ∼1−2 Xeon nodes (∼60 cores),
while the 8-way replicated accelerator corresponds to the
throughput of >10× Xeon nodes (375× CPU cores). The
FPGA GEMM can thus outperform a small cluster of dual-
socket CPUs, and offers considerable speedup even at small
matrix sizes. Introducing more compute units to a fixed
size problem (strong scaling along a vertical line in Fig. 5)
reduces the amount of work per compute unit, resulting in

128 256 384 512 640 768 896 1024

Matrix Dimension

0

500

1000

1500

2000

M
M

A
C

/s

1 CU

2 CUs

4 CUs

8 CUs

36 Cores

72 Cores

144 Cores

288 Cores

Fig. 5: Multiply-addition performance multiplying two matri-
ces of size n× n with 448-bit mantissas (512 bits total).

Precision CUs Frequency CLBs DSPs Max. Performance
512 (448) 1 327MHz 18.9% 4.5% 322MMAC/s
512 (448) 2 278MHz 31.7% 9.0% 540MMAC/s
512 (448) 4 278MHz 46.6% 14.4% 1049MMAC/s
512 (448) 8 293MHz 65.8% 35.8% 2002MMAC/s

TABLE III: Overview of 512-bit GEMM designs.

more replications requiring larger matrix inputs to reach peak
performance. An overview of all designs evaluated is shown
in Tab. III, including their logic utilization and the highest
performance achieved across different matrix sizes. Although
there is still some resource headroom, further replication
is prevented by the number of DDR4 memory interfaces
available on the shell used.

D. Extending Matrix Multiplication to 1024 bits

Extending the matrix multiplier to 1024 bit APFP numbers
introduces additional challenges on the target FPGA platform,
as a single 1024-bit matrix multiplication compute unit occu-
pies nearly a full SLR on the U250 chip. Based on the results
for 512-bit multiplication, two or three 1024-bit multipliers
should fit on the device, as this roughly corresponds to six
or nine 512-bit multipliers (since each level of Karatsuba

128 256 384 512 640 768 896 1024

Matrix Dimension

75

100

125

150

175

200

M
M

A
C

/s

1 CU 36 Cores 72 Cores

Fig. 6: Multiply-addition performance multiplying two matri-
ces of size n× n with 960-bit mantissas (1024 bits total)

decomposition requires 3 half-width multipliers), respectively.
However, since these subcomponents are no longer indepen-
dent and are scheduled as a single pipeline, they are scheduled
in a monolithic manner.

We include a preliminary result for 1024-bit (960-bit man-
tissa) matrix multiplication in Fig. 6 for a single compute unit.
Due to excessive congestion within the multiplication pipeline,
the design is downclocked to 212MHz. The throughput at this
frequency exceeds the performance of Elemental executed on a
36-core Xeon node, with a peak throughput of 158MMAC/s.
At 29.8% CLB utilization, we expect that a more appropriately
floorplanned design would allow instantiating 4 compute units.

VI. RELATED WORK

Various previous work has proposed accelerators for APFP
arithmetics. CAMPARY [36] accelerates up to 424 bits of
mantissa using CUDA. The authors show up to 19× speedup
on a Fermi-based Tesla C2075 GPU over a consumer-grade
quad-core Sandy Bridge CPU running MPFR, dropping to
∼1× for 424-bit mantissas. MPRES-BLAS [37] presents
GPU acceleration of APFP dense linear algebra, showing
∼2× speedup over CAMPARY for GEMM, reporting ∼100-
120MOp/s for 424-bit precision on a GTX 1080 GPU.
Lei et al. [38] implement an APFP accelerator on a Virtex 6
FPGA and report 11.6× speedup for 1024-bit multiplication
over MPFR running on a dual-core Core i3 530 Clarkdale-
based CPU. Lu et al. [39] accelerate 500-2000 digits of preci-
sion on a GTX 280 GPU on the Tesla architecture and compare
it to a quad-core Kentfield CPU running ARPREC [40],
reporting 8−9× speedup on multiplication. As of writing, the
source code published by the authors has not been updated to
support modern GPUs. Common for the above work is that
comparisons are made to consumer-grade CPUs, which lack
the core count of the server-grade CPUs that are typically
employed for larger-scale numerical workloads. Furthermore,
Broadwell-based CPUs and onwards received support for the
Intel ADX instruction set in addition to BMI2 introduced with
Haswell, which significantly increases CPU performance on
arbitrary precision workloads. Chow et al. [41] implement a
Montgomery multiplier for modular arithmetic based on Karat-
suba decomposition. The authors estimate that 400MOp/s
of Montgomery multiplication throughput is achievable on a
Virtex-6 FPGA based on synthesis results, but do not build
their design for execution in hardware.

Based on the results presented in this work, our FPGA-
based accelerator outperforms all the above accelerators in
terms of absolute throughput in hardware, and in terms of
speedup when executed in hardware relative to server-grade
CPUs of each corresponding generation of hardware at the
time of their publication. Furthermore, our work is published
as a configurable HLS-based implementation, which can dy-
namically scale performance by replicating compute units, and
compiles for any Vitis/XRT-based Xilinx platform.

VII. CONCLUSION

In this work, we showed how FPGAs provide an excellent
platform for accelerating fundamental operators for arbitrary
precision floating point (APFP) arithmetic. We present a
deeply pipelined design implementing APFP multiplication
using a Karatsuba decomposition bottoming out at naive mul-
tiplication in DSPs, yielding a multiplication throughput of up
to 4.8GOp/s for 512-bit and 1.2GOp/s for 1024-bit numbers
on an Alveo U250 accelerator, corresponding to the throughput
of more than 351× and 191× CPU cores running MPFR,
respectively. We combine the multiplier with our APFP adder
to perform general matrix-matrix multiplication in hardware,
showing 2.0GMAC/s on 512-bit numbers, which corresponds
to the throughput of more than 375× CPU cores, matching
the performance of a 10-node Xeon cluster. For numerical
codes that are dominated by arbitrary precision arithmetic,
such as semidefinite program (SDP) solvers, we expect these
gains to translate into real-world speedups on applications
such as the conformal bootstrap studying phase transitions
in quantum field theory. To facilitate this, we publish the
accelerator code as an open-source HLS-based project, config-
urable for any Vitis/XRT-supported Xilinx FPGA. We provide
a plug-and-play software interface that can be dropped into
existing numerical codes, allowing scientists to tap into FPGA
acceleration of APFP with minimal code changes.

ACKNOWLEDGMENTS

This project has received funding from the European
Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme

grant agreeement no. 101002047 and from the European High-
Performance Computing Joint Undertaking (JU) under grant
agreement no. 101034126. Christopher A. Pattison is sup-
ported by Air Force Office of Scientific Research (AFOSR),
FA9550-19-1-0360, and thanks Dustin Kenefake for inspiring
discussions. David Simmons-Duffin is supported by Simons
Foundation grant 488657 (Simons Collaboration on the Non-
perturbative Bootstrap) and a DOE Early Career Award under
grant no. DE-SC0019085.

REFERENCES

[1] T. Granlund, “GNU MP,” The GNU Multiple Precision Arithmetic
Library, 1996.

[2] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann,
“MPFR: A multiple-precision binary floating-point library with cor-
rect rounding,” ACM Transactions on Mathematical Software (TOMS),
vol. 33, no. 2, pp. 13–es, 2007.

[3] L. Vandenberghe and S. Boyd, “Semidefinite programming,” SIAM
Review, vol. 38, no. 1, pp. 49–95, 1996.

[4] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix
Inequalities in System and Control Theory. Society for Industrial and
Applied Mathematics, 1994.

[5] F. Alizadeh, “Interior point methods in semidefinite programming with
applications to combinatorial optimization,” SIAM Journal on Optimiza-
tion, vol. 5, no. 1, pp. 13–51, 1995.

[6] J. D. Hauenstein, A. C. Liddell, S. McPherson, and Y. Zhang, “Nu-
merical algebraic geometry and semidefinite programming,” Results in
Applied Mathematics, vol. 11, p. 100166, 2021.

[7] H. Wolkowicz, R. Saigal, and L. Vandenberghe, Handbook of Semidefi-
nite Programming: Theory, Algorithms, and Applications. Boston, MA:
Springer US, 2000.

[8] M. Nakata, “A numerical evaluation of highly accurate multiple-
precision arithmetic version of semidefinite programming solver: SDPA-
GMP, -QD and -DD.” in 2010 IEEE International Symposium on
Computer-Aided Control System Design, 2010, pp. 29–34.

[9] M. Joldes, J.-M. Muller, and V. Popescu, “Implementation and per-
formance evaluation of an extended precision floating-point arithmetic
library for high-accuracy semidefinite programming,” in 2017 IEEE 24th
Symposium on Computer Arithmetic (ARITH), 2017, pp. 27–34.

[10] M. Garstka, M. Cannon, and P. Goulart, “COSMO: A conic operator
splitting method for convex conic problems,” Journal of Optimization
Theory and Applications, vol. 190, no. 3, pp. 779–810, 2021.

[11] D. Simmons-Duffin, “A semidefinite program solver for the conformal
bootstrap,” Journal of High Energy Physics, vol. 2015, no. 6, 2015.

[12] W. Landry and D. Simmons-Duffin, “Scaling the semidefinite program
solver SDPB,” 9 2019.

[13] D. Simmons-Duffin, “The Conformal Bootstrap,” in Theoretical Ad-
vanced Study Institute in Elementary Particle Physics: New Frontiers
in Fields and Strings, 2017, pp. 1–74.

[14] S. M. Chester, “Weizmann Lectures on the Numerical Conformal
Bootstrap,” 7 2019.

[15] D. Poland, S. Rychkov, and A. Vichi, “The conformal bootstrap: Theory,
numerical techniques, and applications,” Rev. Mod. Phys., vol. 91, p.
015002, Jan 2019.

[16] R. Rattazzi, V. S. Rychkov, E. Tonni, and A. Vichi, “Bounding scalar
operator dimensions in 4D CFT,” JHEP, vol. 12, p. 031, 2008.

[17] D. Poland, D. Simmons-Duffin, and A. Vichi, “Carving Out the Space
of 4D CFTs,” JHEP, vol. 05, p. 110, 2012.

[18] N. Afkhami-Jeddi, H. Cohn, T. Hartman, and A. Tajdini, “Free partition
functions and an averaged holographic duality,” JHEP, vol. 01, p. 130,
2021.

[19] M. F. Paulos, J. Penedones, J. Toledo, B. C. van Rees, and P. Vieira,
“The S-matrix bootstrap II: two dimensional amplitudes,” JHEP, vol. 11,
p. 143, 2017.

[20] S. Caron-Huot and V. Van Duong, “Extremal Effective Field Theories,”
JHEP, vol. 05, p. 280, 2021.

[21] J. Bonifacio and K. Hinterbichler, “Bootstrap Bounds on Closed Einstein
Manifolds,” JHEP, vol. 10, p. 069, 2020.

[22] P. Kravchuk, D. Mazac, and S. Pal, “Automorphic Spectra and the
Conformal Bootstrap,” 11 2021.

[23] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre,
and K. Vissers, “FINN: A framework for fast, scalable binarized neural
network inference,” in Proceedings of the 2017 ACM/SIGDA Inter-
national Symposium on Field-Programmable Gate Arrays (FPGA’17),
2017, pp. 65–74.

[24] S. Wang and P. Kanwar, “BFloat16: The secret to high performance on
cloud TPUs,” Google, 2019, accessed on January 16, 2022. [Online].
Available: https://cloud.google.com/blog/products/ai-machine-learning/
bfloat16-the-secret-to-high-performance-on-cloud-tpus

[25] B. Rouhani, D. Burger, E. Chung, R. Majumder, S. Shekar,
S. Tiwary, S. Lanka, and S. Reinhardt, “A Microsoft custom
data type for efficient inference,” 2020, accessed on January 16,
2022. [Online]. Available: https://www.microsoft.com/en-us/research/
blog/a-microsoft-custom-data-type-for-efficient-inference/

[26] A. A. Karatsuba and Y. P. Ofman, “Multiplication of many-digital
numbers by automatic computers,” in Doklady Akademii Nauk, vol. 145,
no. 2. USSR Academy of Sciences, 1962, pp. 293–294.

[27] A. Toom, “The complexity of a scheme of functional elements realizing
the multiplication of integers,” in Doklady Akademii Nauk, vol. 3, no. 4.
USSR Academy of Sciences, 1963, pp. 714–716.

[28] S. A. Cook, “On the minimum computation time of functions,” Ph.D.
dissertation, Harvard University, 1966.

[29] A. Schönhage and V. Strassen, “Schnelle Multiplikation grosser Zahlen,”
Computing, vol. 7, no. 3, pp. 281–292, 1971.

[30] D. Harvey and J. Van Der Hoeven, “Integer multiplication in time
O(nlogn),” Annals of Mathematics, vol. 193, no. 2, pp. 563–617, 2021.

[31] D. Vandevoorde and N. M. Josuttis, C++ Templates: The Complete
Guide. Addison-Wesley Professional, 2002.

[32] J. de Fine Licht, G. Kwasniewski, and T. Hoefler, “Flexible communica-
tion avoiding matrix multiplication on FPGA with high-level synthesis,”
in Proceedings of the 2020 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays (FPGA’20), 2020, pp. 244–254.

[33] J. de Fine Licht and T. Hoefler, “hlslib: Software engineering for
hardware design,” arXiv:1910.04436, 2019.

[34] M. Nakata, “MPLAPACK version 1.0.0 user manual,” 2021.

[35] J. Poulson, B. Marker, R. A. Van de Geijn, J. R. Hammond, and N. A.
Romero, “Elemental: A new framework for distributed memory dense
matrix computations,” ACM Transactions on Mathematical Software
(TOMS), vol. 39, no. 2, pp. 1–24, 2013.

[36] M. Joldes, J.-M. Muller, V. Popescu, and W. Tucker, “CAMPARY:
CUDA multiple precision arithmetic library and applications,” in Inter-
national Congress on Mathematical Software (ICMS). Springer, 2016,
pp. 232–240.

[37] K. Isupov and V. Knyazkov, “Multiple-precision blas library for graphics
processing units,” in Supercomputing, V. Voevodin and S. Sobolev, Eds.
Cham: Springer International Publishing, 2020, pp. 37–49.

[38] Y. Lei, Y. Dou, and J. Zhou, “FPGA-specific custom VLIW architecture
for arbitrary precision floating-point arithmetic,” IEICE TRANSAC-
TIONS on Information and Systems, vol. 94, no. 11, pp. 2173–2183,
2011.

[39] M. Lu, B. He, and Q. Luo, “Supporting extended precision on graphics
processors,” in Proceedings of the Sixth International Workshop on Data
Management on New Hardware (DaMoN’10), 2010, pp. 19–26.

[40] D. H. Bailey, H. Yozo, X. S. Li, and B. Thompson, “ARPREC: An
arbitrary precision computation package,” 2002.

[41] G. C. Chow, K. Eguro, W. Luk, and P. Leong, “A Karatsuba-based
Montgomery multiplier,” in IEEE 20th International Conference on
Field Programmable Logic and Applications (FPL’10). IEEE, 2010,
pp. 434–437.

https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://www.microsoft.com/en-us/research/blog/a-microsoft-custom-data-type-for-efficient-inference/
https://www.microsoft.com/en-us/research/blog/a-microsoft-custom-data-type-for-efficient-inference/

	Introduction
	Arbitrary Precision Floating Point Operators
	Floating-Point Multiplier
	Floating-Point Adder

	Arbitrary Precision Matrix Multiplication
	Artifacts and Workflow
	Hardware Accelerator Configuration
	System Integration

	Evaluation
	Tuning the Multiplier for Resources and Frequency
	Benchmarking Floating-Point Multiplication
	Benchmarking Matrix Multiplication
	Extending Matrix Multiplication to 1024 bits

	Related Work
	Conclusion
	References

