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ABSTRACT
Traditional database operators such as joins are relevant not
only in the context of database engines but also as a build-
ing block in many computational and machine learning algo-
rithms. With the advent of big data, there is an increasing
demand for efficient join algorithms that can scale with the
input data size and the available hardware resources.

In this paper, we explore the implementation of distributed
join algorithms in systems with several thousand cores con-
nected by a low-latency network as used in high performance
computing systems or data centers. We compare radix hash
join to sort-merge join algorithms and discuss their imple-
mentation at this scale. In the paper, we explain how to use
MPI to implement joins, show the impact and advantages of
RDMA, discuss the importance of network scheduling, and
study the relative performance of sorting vs. hashing. The
experimental results show that the algorithms we present
scale well with the number of cores, reaching a throughput
of 48.7 billion input tuples per second on 4,096 cores.

1. INTRODUCTION
The ability to efficiently query large sets of data is cru-

cial for a variety of applications, including traditional data
warehouse workloads and modern machine learning applica-
tions [28]. Most of these workloads involve complex large-
to-large join operations and, thus, modern data processing
systems would benefit from having efficient distributed join
algorithms that can operate at massive scale.

Recent work on hash and sort-merge join algorithms for
multi-core machines [1, 3, 5, 9, 27] and rack-scale data
processing systems [6, 33] has shown that carefully tuned
distributed join implementations exhibit good performance.
These algorithms have been designed for and evaluated on
rack-scale systems with hundreds of CPU cores and limited
inter-node network bandwidth.
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This paper addresses the challenges of running state-of-
the-art, distributed radix hash and sort-merge join algo-
rithms at scales usually reserved to massively parallel sci-
entific applications or large map-reduce batch jobs. In the
experimental evaluation, we provide a performance analy-
sis of the distributed joins running on 4,096 processor cores
with up to 4.8 terabytes of input data. We explore how
join algorithms behave when high-bandwidth, low-latency
networks are used and specialized communication libraries
replace hand-tuned code. These two points are crucial to un-
derstand the evolution of distributed joins and to facilitate
the portability of the implementation to future systems.

Operating at large scale requires careful process orchestra-
tion and efficient communication. This poses several chal-
lenges when scaling out join algorithms. For example, a join
operator needs to keep track of data movement between the
compute nodes in order to ensure that every tuple is trans-
mitted to the correct destination node for processing. At
large scale, the performance of the algorithm is dependent
on having a good communication infrastructure that auto-
matically selects the most appropriate method of communi-
cation between two processes.

We implemented both algorithms on top of MPI [31], a
standard library interface used in high-performance com-
puting applications and evaluated the join implementations
on two large-scale systems with a high number of cores con-
nected through a state-of-the-art low-latency network fabric.
The algorithms are hardware-conscious, make use of vector
instructions to speed up the processing, access remote data
through fast one-sided memory operations, and use remote
direct memory access (RDMA) to speed up the data trans-
fer. For both algorithms, we provide a performance model
and a detailed discussion of the implementation.

Important insights from the paper include: (i) Achiev-
ing maximum performance requires having the right bal-
ance of computing and communication capacity. Adding
more cores to a compute node does not always improve, but
can also worsen performance. (ii) Although both join al-
gorithms scale well to thousands of cores, communication
inefficiencies have a significant impact on performance, in-
dicating that more work is needed to efficiently use the full
capacity of large systems. (iii) Hash and sort-merge join
algorithms have different communication patterns that in-
cur different communication costs, making the scheduling
of the communication between the compute nodes a cru-
cial component. (iv) Our performance models indicate that
the sort-merge join implementation achieves its maximum
performance. The radix hash join on the other hand is far



from its theoretical maximum, but still outperforms the sort-
merge join, confirming previous studies comparing hash and
sort-based join algorithms [3].

2. BACKGROUND
This section provides the necessary background on remote

direct memory access (RDMA), one-sided remote memory
operations, and the technologies used in high-performance
computing (HPC) systems.

2.1 RDMA & RMA
Remote Direct Memory Access (RDMA) enables direct

access to the main memory of a remote host. The primary
benefit of RDMA is a reduction in CPU load because the
data does not need to be copied into intermediate buffers
in the network stack. The operating system is not on the
performance-critical path and the CPU remains available
for processing while a network operation is taking place in
parallel. Therefore, RDMA enables the interleaving of com-
munication and computation, thereby hiding all or parts of
the network latency.

RDMA provides two communication mechanisms: two-
sided (send & receive) and one-sided (read & write) oper-
ations. Both mechanisms differ in terms of semantics and
their need for inter-process synchronization.

Two-sided operations represent traditional channel seman-
tics, where both the sender and the receiver need to be active
in order to complete the transfer. Because of this, the re-
ceiver is often referred to as an active target. The receiver
posts several RDMA-enabled buffers into which the data will
be written by the network card. The sender of a message is
not aware of the exact locations of the receive buffers.

One-sided operations represent the remote memory access
(RMA) semantics. The initiator of a request can directly ac-
cess parts of the remote memory and has full control where
the data will be placed. Read and write operations are exe-
cuted without any involvement of the target machine, there-
fore it is often called a passive target.

Modern low-latency networks such as InfiniBand [23] rely
on direct access to memory in order to achieve high band-
width utilization and low latency. However, in most imple-
mentations, memory has to be registered with the network
card before it is accessible for RDMA transfers [17]. During
the registration process, the memory is pinned such that it
cannot be swapped out and the necessary memory transla-
tion information are stored accessible by the network card.
Memory that can be accessed through RDMA operations is
referred to as a memory region. The initiator of a read or
write operation has to be in the possession of the necessary
access information before it can access the memory region.

2.2 Message-Passing Interface
The Message-Passing Interface (MPI) is a widely used in-

terface in high-performance computing systems. In the fol-
lowing section, we provide an introduction to MPI, and a
detailed description of the one-sided MPI operations, used
in our join implementations.

2.2.1 Overview
MPI is a portable standard library interface for writing

parallel programs in high-performance computing (HPC)
applications [20]. Its operations have been defined from the
ground up to support parallel large-scale systems, but the

interface is used on a variety of computing infrastructure:
from small clusters to high-end supercomputers. The latter
often ship with a highly optimized MPI implementation.

MPI is widely used in high-performance applications be-
cause it provides a rich hardware-independent interface, thus
making the application code portable, while at the same
time leveraging the performance of the underlying hardware
by binding to different implementations optimized for the
target platform. The developer is shielded from the com-
plexity of the distributed environment and is – to a large
extend – unaware of the physical location of the different
processes that make up his program. It is the responsibility
of the library to select the most appropriate communication
method for each pair of processes.

An example of an efficient RMA library is Fast One-sided
MPI (foMPI) [19], a scalable MPI implementation optimized
for the Cray XC30 and XC40 systems [11]. The library inter-
faces with multiple low-level interfaces, and selects the most
suitable communication mechanism based on the relative
distance of two processes. For inter-node communication, it
uses the Distributed Memory Application API (DMAPP),
while for intra-node communication, it interfaces with XP-
MEM, a kernel module that allows to map the memory of
one process into the virtual address space of another.

2.2.2 MPI One-Sided Operations
The memory that is accessible by other processes through

RMA operations is referred to as a memory window. To cre-
ate a window, MPI provides an MPI Win create operation
that makes a contiguous section of main memory available to
RMA operations. This call is a collective call, which means
that it has to be executed by every process that wants to
perform RMA operations, even if the process does not reg-
ister memory itself.

Before any operation can be executed on a window, the
processes need to be properly synchronized. MPI provides
multiple synchronization mechanisms: MPI Win fence syn-
chronizes all RMA calls on a specific window, such that all
incoming and outgoing RMA operations will complete be-
fore the call returns. The period in-between two fence calls is
referred to as an RMA epoch. Since MPI Win fence is a col-
lective call, this type of synchronization is called active tar-
get synchronization. It is useful for applications designed to
operate in distinct rounds where every process goes through
the exact same number of epochs.

To allow for applications with more complex communica-
tion patterns, MPI provides passive target synchronization
mechanisms through the MPI Win lock and MPI Win unlock

operations. Before an RMA operation on a specific win-
dow can be executed, it needs to be locked. The lock pro-
vides either exclusive (MPI LOCK EXCLUSIVE) or concurrent
(MPI LOCK SHARED) access. When releasing a lock, the li-
brary ensures that all pending RMA operations have com-
pleted both at the origin and at the target before the call
returns. To amortize the costs of synchronization, the user
should initiate multiple data transfers per epoch.

To read from and write to a remote window, MPI offers
the MPI Get and MPI Put calls respectively. When using pas-
sive synchronization, MPI Win flush is used to ensure that
all outstanding RMA operations initiated by the calling pro-
cess have been executed without the need to release the lock.
After the flush call, the buffers provided to previous MPI Put

and MPI Get operations can be reused or read [21].



Figure 1: Distributed radix hash join with two processes.

3. JOIN ALGORITHMS
In this section, we provide a high-level overview and a

performance model of the distributed radix hash join and
the distributed sort-merge join.

3.1 Radix Hash Join
In the radix hash join, the input data is first partitioned

into cache-sized partitions. Next, hash tables are build for
each partition of the inner relation, and probed with the
data from the corresponding partition of the outer relation.
Figure 1 illustrates the execution of the radix hash join with
two processes.

3.1.1 Histogram and Assignment Computation
The distributed radix hash join computes a global his-

togram in order to determine the size of the communication
buffers and memory windows. The time required to com-
pute the histograms Thist depends on the input data size
and the rate Pscan at which each of the p processes can scan
over the data.

Thist =
|R|+ |S|
p · Pscan

(1)

Using this histogram, the algorithm can determine (i) an
assignment of partitions to nodes and (ii) a set of offsets
within the memory windows into which each process can
write exclusively, thus reducing the amount of synchroniza-
tion required during the join operation.

3.1.2 Multi-Pass Partitioning
The goal of the partitioning phase is to create small cache-

sized partitions of the inner relation. This significantly speeds
up the build and probe phases [30]. In order to create a
large number of small partitions, a large partitioning fan-
out is required. However, random access to a large number
of locations leads to a significant increase in TLB misses if
the number of partitions is larger than the TLB size and to
cache trashing if the number of partitions is larger than the
number of available cache lines. A multi-pass partitioning
strategy has been adopted to address this issue [30]. In each
pass, the partitions of the previous pass are refined such that
the partitioning fan-out FP in each step does not exceed the
number of TLB and cache entries. This is achieved by using

a different hash function in each pass. The number of passes
d depends on the size of the inner relation R.

d =
⌈
logFP

(|R|/cache size)
⌉

(2)

Previous work on distributed radix joins has shown that
the partitioning phase can be interleaved with the data re-
distribution over the network [6]. A relation is partitioned
into (i) a local buffer, if the partition will be processed lo-
cally, or (ii) into an RDMA buffer, if it has been assigned
to a remote node. Remote write operations are executed at
regular intervals in order to interleave the computation and
communication. The partitioning rate Pnet of each process
is either limited by the partitioning speed of the process
Ppart (compute-bound) or by the available network band-
width BWnode, which is shared among all t processes on the
same node (bandwidth-bound).

Pnet = min

(
Ppart,

BWnode

t

)
(3)

Subsequent partitioning passes are executed locally with-
out any network transfer. Each process can therefore parti-
tion the data at the partitioning rate Ppart. The total time
required to partition the data is equal to the time required
to iterate over the data d times.

Tpart =

(
1

p · Pnet
+

d− 1

p · Ppart

)
· (|R|+ |S|) (4)

At the end of this phase, the data has been partitioned
and distributed among all the processes. Matching tuples
have been assigned to the same partition.

3.1.3 Build & Probe
In the build phase, a hash table is created for each parti-

tion Rp of the inner relation. Because the hash table fits into
the processor cache, the build operation can be performed
at a high rate Pbuild. The number of generated partitions
depends on the partitioning fan-out FP and the number of
partitioning passes d. Creating the hash tables requires one
pass over every element of the inner relation R.

Tbuild = (FP )d · |Rp|
p · Pbuild

=
|R|

p · Pbuild
(5)

Data from the corresponding partition Sp of the outer re-
lation is used to probe the hash table. Probing the in-cache
hash tables requires a single pass over the outer relation S.

Tprobe = (FP )d · |Sp|
p · Pprobe

=
|S|

p · Pprobe
(6)

Equation 6 does not include the time required to material-
izing the output of the join. The costs of fetching additional
payload data over the network depends on the selectivity of
the join and the size of the payload fields.

3.1.4 Performance Model
The hash join executes the partitioning, build, and probe

phases sequentially. Assuming no interference between the
phases, we can determine a lower bound of the execution
time of the hash join algorithm.

Trdx = Thist + Tpart + Tbuild + Tprobe (7)

A comparison between the predicted and measured exe-
cution time is provided in Section 5.5.



Figure 2: Distributed sort-merge join with two processes.

3.2 Sort-Merge Join
A second variant of join algorithms is based on sorting

both input relations. In the sorting phase, we make use of a
highly parallel sort-merge algorithm, which allows to inter-
leave the sorting and the data transfer. Figure 2 illustrates
the execution of the sort-merge join for two processes.

3.2.1 Sorting
In the first phase of the sorting operation, each thread par-

titions the input data. We use range-partitioning to ensure
that matching elements in both relations will be assigned
to the same machine for processing. Because we assume a
continuous key space, we can split the input relations into
ranges of the same size. The time required to range-partition
the data depends on the size of the input relations, the num-
ber of processes p, and the partitioning rate Ppart.

Tpart =
|R|+ |S|
p · Ppart

(8)

Once the data has been partitioned, individual runs of
fixed size l are created. The total number of runs depends
on the size of each of the two input relations and the size of
each run l.

NR =
|R|
l

and NS =
|S|
l

(9)

A run is sorted and then transmitted asynchronously to
the target node. While the network transfer is taking place,
the process can continue sorting the next run of input data,
thus interleaving processing and communication. The per-
formance of the algorithm can either be limited by the rate
Prun at which a run can be sorted (compute-bound) or the
network bandwidth BWnode available to all t processes on
the same node.

Psort = min

(
Prun(l),

BWnode

t

)
(10)

The total time required to sort the input tuples into small
sorted runs depends primarily on the input size.

Tsort = (NR + NS) · l

p · Psort
=
|R|+ |S|
p · Psort

(11)

After a process has sorted its input data, it waits until it
has received all the sorted runs of its range from the other

nodes. Once all the data has been received, the algorithm
starts merging the sorted runs using m-way merging, which
combines multiple input runs into one sorted output. Sev-
eral iterations over the data might be required until both
relations are fully sorted. The number of iterations d{R,S}
needed depends on the number of runs N{R,S} and the merge
fan-in FM .

dR =
⌈
logFM

(NR/p)
⌉

and dS =
⌈
logFM

(NS/p)
⌉

(12)

From the depth of both merge trees, we can determine the
time required to merge the runs of both relations.

Tmerge = dR ·
|R|

p · Pmerge
+ dS ·

|S|
p · Pmerge

(13)

After the sorting phase, both relations are partitioned
among all the nodes. Within each partition the elements
are fully sorted.

3.2.2 Joining Sorted Relations
To compute the join result, each process merges the sorted

partition of the inner relation with the corresponding parti-
tion of the outer relation.

Tmatch =
|R|+ |S|
p · Pscan

(14)

The order of the tuples in the output is also sorted. The
costs associated with materializing the output of the sort-
merge join depends on the selectivity of the input and the
payload that needs to be accessed over the network.

3.2.3 Performance Model
The hash join executes the partitioning, sorting, merging,

and matching phases sequentially. Assuming no interference
between the phases, we can determine a lower bound of the
execution time of the sort-merge join algorithm.

Tsm = Tpart + Tsort + Tmerge + Tmatch (15)

The predicted and measured execution times of the sort-
merge join are discussed in the experimental evaluation in
Section 5.5.

4. IMPLEMENTATION
We have implemented the distributed hash and sort-merge

joins on top of foMPI [19] with 7,000 lines of C++ code1 .

4.1 Radix Hash Join
The implementation of the radix hash join is hardware-

conscious and uses a cache-conscious partitioning algorithm.

4.1.1 Histogram & Assignment Computation
In the beginning of the algorithm, each process scans

its part of the input data and computes two process-level
histograms, one for each input relation. These local his-
tograms are combined into a global histogram through an
MPI Allreduce call. We use the MPI SUM operator as an ar-
gument to the call. This operation combines the values from
all processes – in our case it computes the sum – and dis-
tributes the result back, such that each process receives a
copy of the global histogram.

1http://www.systems.ethz.ch/projects/paralleljoins



The join supports arbitrary partition-process assignments.
In our implementation, we use a round-robin scheme to as-
sign partitions to processes.

To compute the window size, each process masks the as-
signment vector with its process number such that the en-
tries of the assigned partitions are one, and zero otherwise.
This mask is applied to the global histogram. The sum of
all remaining entries is equal to the required window size.

Computing the private offsets for each process and each
partition is performed in three steps. First, the base offsets
of each partition are computed. The base offsets are the
starting offsets of each partition in relation to the starting
address of the window. Next, the relative offsets within a
partition need to be computed from the local histograms
using a prefix sum computation. To perform this prefix
computation across all processes, MPI provides an MPI Scan

functionality. This function returns for the i-th process the
reduction (calculated according to a user-defined function)
of the input values for processes 0 to i. In our case, the prefix
sum is implemented by combining the MPI Scan function
with the MPI SUM operator. Third, the private offsets of a
process within a window can be determined by adding the
starting offset of a partition and the relative private offset.

At the end of this computation, each process is aware of
(i) the assignment of partitions to processes, (ii) the amount
of incoming data, and (iii) the exact location to which the
process has exclusive access when partitioning its input.

4.1.2 Network Partitioning
From the computation described in Section 4.1.1, we know

the exact window size of each process for both input rela-
tions. Two windows are allocated: one for the inner and one
for the outer relation. Because MPI Win create is a collec-
tive routine, this phase requires global synchronization.

After the window allocation phase, each process acquires
an MPI LOCK SHARED lock on all the windows. We allow con-
current access because the histogram computation provides
us with the necessary information to determine ranges of
exclusive access for each partition and process.

Next, each process allocates a set of communication buffers
for each partition into which the process will partition the
data locally. These buffers are of fixed size (64 kilobytes).

After the setup phase, the algorithm starts with the ac-
tual partitioning and redistribution of the input. Data is
partitioned using AVX instructions into the local output
buffers. When an output buffer is full, the process will is-
sue an MPI Put into its private offset in the target window.
Interleaving computation and communication is essential to
reach good performance. Therefore, we allocate multiple (at
least two) output buffers for each remote partition. When
all the buffers of a specific partition have been used once,
the process needs to ensure that is can safely reuse them.
This is achieved by executing an MPI Win flush.

During the partitioning, the 16-byte 〈key, record id〉 tuples
are compressed into 64-bit values using prefix compression.
Radix partitioning groups keys with log(FP ) (fan-out) iden-
tical bits. The partitioning bits can be removed from the
key once the tuple has been assigned to a partition. If an
input relation contains less than 274 billion tuples (4 TB per
relation), the key and the record id can be represented with
38 bits each. On 4,096 cores, the minimum fan-out is 212.
Hence a tuple can be compressed into 2 · 38− 12 = 64 bits.
This reduces the total amount of data by a factor of 2.

After having partitioned the data, the shared window lock
is released, which ensures successful completion of all outgo-
ing RMA operations. After the call returns, the process can
release all its partitioning buffers. However, it needs to wait
for the other processes to finish writing to its window. This
synchronization is done through the use of an MPI Barrier

at the end of the partitioning phase.

4.1.3 Local Processing
The local processing is composed of (i) subsequent parti-

tioning passes and (ii) the build-probe phase.
If the partitions from the first partitioning pass are larger

than the cache size, additional partitioning passes are re-
quired. For these passes we use a similar AVX partitioning
code as in the first partitioning pass with the following mod-
ifications: (i) the output buffers are no longer of fixed size
but are sized such that they can hold all the data and (ii) no
MPI calls are being generated.

For the build-probe phase, we use the hash table imple-
mentation of Balkesen et al. [4]. The hash table is a contigu-
ous array of buckets, which enables cache-friendly access.

4.2 Sort-Merge Join
The sort-merge join is hardware-conscious and uses vector

instructions in its sorting phase. To be able to compare our
results with previous work on sort-merge join algorithms [3]
and as it is done in most modern column stores [15], we use
compression to optimize the performance of the join.

4.2.1 Sorting
During the partitioning operation, every process tracks

how many elements are assigned to each of the p parti-
tion, thus creating a histogram. The same prefix compres-
sion is used as in the hash join. The compression is order-
preserving and the resulting elements are 64 bit wide.

To compute the window size, a process must know how
much data has been assigned to it. The histogram from
the partitioning phase, together with the MPI SUM operator,
is given as an input to the MPI Reduce scatter block call.
This call performs an element-wise reduction (in this case
it computes a sum) of all the histograms and scatters the
result to the nodes, i.e., node i will receive the sum of the i-
th element of the histograms. The result of the reduction is
equal to the required window size, which is created through
the MPI Win create call.

To determine the private offsets into which processes can
write, the join algorithm uses the MPI Scan function with
the histogram and the MPI SUM operator as input in order to
perform a distributed element-wise prefix sum computation,
which provides the private offsets in the memory windows
into which a process can write.

Afterwards, each thread creates runs of fixed size (128
kilobytes), which are sorted locally. For sorting, we use in-
cache sorting with AVX instructions [3]. When a run has
been sorted, it is immediately be transmitted to the tar-
get window by executing an MPI Put operation. To avoid
contention on the receiving node, not every process starts
sorting the first partition. Instead, process i starts process-
ing partition i + 1. Each process writes to its private range
within the window. Individual runs are appended one af-
ter the other. Because the amount of data in a partition is
not necessarily a multiple of the run size, the last run might
contain fewer elements.



Figure 3: Comparison between the performance of the radix
hash join on a rack-scale system and the Cray XC30 system.
Error bars represent 95% confidence intervals.

Because of the variable size of the last run, the receiving
process needs to be aware of the amount of incoming data
from every process. Otherwise the algorithm cannot deter-
mine where the last sorted run of process i ends and the first
run for process i + 1 starts. To that end, MPI Alltoall is
called on the histogram data, which sends the j-th element
of the histogram from process i to process j, which in turn
receives it in the i-th place of the result vector. From this
information, the algorithm can determine the start and end
offset of every run.

Next, the algorithm merges the sorted runs into one sin-
gle relation. Multiple runs are merged simultaneously using
an in-cache merge tree. The merge process is accelerated
through the use of AVX instructions [3].

4.2.2 Joining Sorted Relations
After the distributed sort-merge operation, the relations

are partitioned into p ranges (where p is the number of pro-
cesses) and all elements within a range have been sorted.
Range-partitioning ensures that matching elements from both
relations have been assigned to the same process.

At this stage, every process can start joining its part of
the data. No further communication or synchronization be-
tween processes is necessary. Scanning the relations is a lin-
ear operation through both relations, and modern hardware
allows for very fast sequential access.

5. EXPERIMENTAL EVALUATION
In this section, we evaluate our algorithms experimen-

tally on two Cray supercomputers, which provide us with a
highly-tuned distributed setup and a large number of cores.

5.1 Experimental Setup
In order to make our results comparable to previous work

on join algorithms, we use the same workloads as the authors
of [3, 5, 6, 9, 27]. The experiments focus on large-to-large
joins with highly distinct key values. The data is composed
of narrow 16-byte tuples, containing an 8-byte key and an 8-
byte record id (RID). The record identifiers are range parti-
tioned among the compute nodes. The key values can occur
in arbitrary order. Each core is assigned to the same amount
of input data. In our experiments, one process serves up to

Figure 4: Scale-out experiment of the radix hash join and
sort-merge join algorithm on the Cray XC 30 system. Error
bars represent 95% confidence intervals.

40 million tuples per relation, which results in 4.8 TB of in-
put data on 4,096 cores. The relative sizes of the inner and
outer relation ranges between 1-to-8 and 1-to-1. The impact
of different selectivities is also studied in this section.

To create the input relations, each node is assigned to
generate a range of keys. The nodes ensure that the gener-
ated keys are in random order. Next, the input is divided
into chunks. These chunks are exchanged between each pair
of processes. After the shuffling operation, every node is in
possession of keys from the entire value range. A final pass
over the data puts the elements into a random order.

5.1.1 Cray Supercomputers
The Cray XC30 [11] used in the experimental evaluation

has 28 compute cabinets implementing a hierarchical archi-
tecture: each cabinet can be fitted with up to three chassis.
A chassis can hold up to sixteen compute blades, which in
turn are composed of four compute nodes. The overall sys-
tem can offer up to 5,272 usable compute nodes [12].

Compute nodes are single-socket 8-core (Intel Xeon E5-
2670) machines with 32 GB of main memory. They are con-
nected through an Aries routing and communications ASIC,
and a Dragonfly network topology with a peak network bi-
section bandwidth of 33 TB/s. The Aries ASIC is a system-
on-a-chip device comprising four NICs and an Aries router.
The NICs provide network connectivity to all four nodes of
the same blade. Each NIC is connected to the compute node
by a 16x PCI Express 3 interface. The router is connected to
the chassis back plane and through it to the network fabric.

The second machine used for the experiments is a Cray
XC40 machine. It has the same architecture as the XC30
but differs in the node design: each compute node has two
18-core (Intel Xeon E5-2695 v4) processors and 64 GB of
main memory per node.

Comparison with commodity hardware: Despite the
large amount of compute power packaged as one large instal-
lation, the individual compute nodes used in Cray supercom-
puters resemble commodity hardware, i.e., x86 processors,
a network card, and 32 GB of main memory.

The Cray Aries network provides higher throughput and
lower latency than commodity hardware. However, we ex-



(a) Total execution (b) Network partitioning pass

Figure 5: Breakdown of the execution time of the radix hash join for 40 million tuples/relation/core.

pect that high-speed networks such as silicon photonics or
InfiniBand 4xEDR [23], which provides 100 Gb/s bandwidth
and a latency in the single digit microsecond range, will close
this gap in the near future, making it possible to obtain sim-
ilar results to ours on a conventional cluster.

5.2 Baseline Experiments
Previous work on distributed radix hash joins has shown

that the hash join can achieve good performance on RDMA-
enabled high-speed networks [6]. The experiments have been
conducted on two InfiniBand networks (QDR and FDR)
with up to 10 machines with 8 threads per machine. Be-
cause the nodes of the supercomputer are also composed of
multi-core Intel Xeon CPUs and are connected through low-
latency network, we use the performance results gathered on
rack-scale systems with InfiniBand as a baseline.

We extrapolate the performance of the radix hash join
algorithm on a larger number of cores using linear regression
and compare this estimate with the measured performance
of the join on the Cray XC30 system. Both algorithms share
a common code base. This version of the radix hash join
does not use compression to reduce the amount of data that
needs to be transmitted over the network.

The comparison between the estimated and measured per-
formance is shown in Figure 3. We can observe that the mea-
sured performance follows the extrapolated line very closely.
From this experiment we can conclude that the algorithm
proposed in this paper achieves similar performance than the
baseline. Furthermore, we can observe that the algorithm
maintains this performance when scaling to a thousand pro-
cessor cores.

5.3 Scale-Out Experiments
Figure 4 shows the overall throughput of the radix hash

join and the sort-merge join using data compression. As a
workload, we assign 40 million tuples to each relation and
core. Every tuple of the inner relation matches with exactly
one element of the outer relation.

The results show that both algorithms are able to increase
the throughput as more cores are added to the system. The
radix hash join can process 48.7 billion tuples per second.

The sort-merge join reaches a maximum throughput of 43.5
billion tuples per second on 4,096 cores. The scale-out be-
haviour of both algorithms is sub-linear. On systems with
4,096 cores, hashing outperforms the sort-merge approach
by 12%, which is in line with previous work on hash and
sort-merge joins [3].

A comparison with the baseline experiments highlights the
importance of data compression. During partitioning, the
16-byte tuples are compressed into 8-byte values, which re-
sults in a significant performance increase as less data needs
to be transmitted over the network. This result emphasizes
that the primary cost of joins is data movement.

5.3.1 Radix Hash Join Analysis
Figure 5a shows the execution time of the different phases

of the radix hash join and illustrates the effects of scale-out
in more detail. We break down the execution of the join as
follows: (i) the histogram computation, which involves com-
puting the local histogram, the exchange of the histograms
over the network, and the computation of the partition off-
sets, (ii) the time required to allocate the RMA windows,
(iii) the network partitioning phase, which includes the par-
titioning of the data, the asynchronous transfer to the target
process, and the flushing of transmission buffers, (iv) the lo-
cal partitioning pass, which ensures that the partitions fit
into the processor cache, and (v) the build and probe phase,
in which a hash table is created over each partition of the in-
ner relation and probed using the data from the correspond-
ing partition of the outer relation. All times are averaged
over all the processes. Because we consider the join only
to be finished when the last process terminates, we report
the difference between the maximum execution time and the
sum of the averaged execution times. This value gives an
indication of how evenly the computation has been balanced
across all processes.

Given that we scale out the system resources and the in-
put size simultaneously, one would expect constant execu-
tion time of all phases. However, we observe an increase
in execution time as we add more cores, which explains the
sub-linear increase in throughput shown in Figure 4.



(a) Total execution (b) Sorting operation

Figure 6: Breakdown of the execution time of the sort-merge join for 40 million tuples/relation/core.

We observe a constant execution time for the histogram
computation and the window allocation phase.

The network partitioning phase on the other hand in-
creases significantly. Figure 5b shows a detailed breakdown
of this phase. One can observe that the time required to
partition the data remains constant up to 1,024 cores. Start-
ing from 1,024 cores, the partitioning fan-out has to be in-
creased beyond its optimal setting, which incurs a minor
performance penalty. Most of the additional time is spent
in the MPI Put and MPI Flush operations which generate
the requests to transmit the data, respectively ensure that
the data transfers have completed. This increase is caused
by the additional overhead of managing a larger amount
of buffers and the lack of any network scheduling. Further
details on the costs of communication at large scale are pro-
vided in Section 5.3.3.

The local partitioning phase exhibits constant execution
time because the per-core amount of data is kept constant
throughout the experiment. The build-probe operation on
the other hand shows a minor increase in execution time
because the generated partitions get larger as we add more
cores and process more data overall.

For the compute imbalance, i.e., the time difference be-
tween the average and maximum execution time, we ob-
serve a clear increase as we add cores to the system. This
is expected as the supercomputer is shared by multiple or-
ganizations and complete performance isolation cannot be
guaranteed for large deployments. Furthermore, the nodes
involved in a large experiment cannot always be physically
colocated, resulting in a higher remote memory access la-
tency for some nodes. We observe that the performance of
the hash join is influenced by a small number of stragglers.

5.3.2 Sort-Merge Join Analysis
Figure 6a shows the break down of the execution time of

the sort-merge join. The individual phases are (i) the range
partitioning phase, which includes the histogram and offset
computation, (ii) the window allocation time, (iii) the time
to sort and transmit the tuples, (iv) the time required to
merge the sorted runs, and (v) the time required to join
both relations. Similar to the hash join, the times shown

in Figure 6a are averaged out over all processes and the
difference between the average and total execution time is
reported as the compute imbalance.

For the sort-merge join, we can observe an increase in the
time required to partition and sort the data. Similar to the
hash join, the partitioning fan-out has to be pushed beyond
its optimal configuration for 2,048 and 4,096 cores, which
leads to a small increase in execution time. The sort-merge
join uses one single partitioning pass over the data. How-
ever, given that the increase is small, a second partitioning
pass does not pay off at these scales.

In Figure 6b we see that the sorting phase is dominated
by the time required to sort the tuples. The MPI PUT op-
eration time remains constant up to 1,024 cores, followed
by a sudden increase in its execution time. This effect can
be explained by the fact that sorting is more compute in-
tensive than hashing, which allows for better interleaving of
computation and communication. Furthermore, the com-
munication pattern of the sort-merge join is better suited
for the underlying network hardware. A detailed discussion
is provided in Section 5.3.3.

Given that the per-core data size remains constant, the
time required to merge and match the data does not change.

5.3.3 Network Communication Analysis
A key performance factor for both algorithms is the cost

of communication. In Sections 5.3.1 and 5.3.2 we made the
following observations: (i) The time required to execute all
MPI Put calls is significantly higher for the hash join than for
the sort-merge join. (ii) The cost of enqueuing an MPI Put

request steadily increases for the hash join as the number
of cores is increased. (iii) The MPI Put costs remain con-
stant for the sort-merge join up to 1,024 cores, followed by
a sudden increase in execution time.

These observations can be explained by the fact that both
algorithms have two different communication patterns.

The hash join interleaves the partitioning and the net-
work communication. To that end, it allocates a temporary
buffer space into which data is written. Once a buffer is
full, an MPI Put request is generated and a new buffer is
used to continue processing. Because the amount of buffer
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Figure 7: Execution time of the radix hash join and the sort-merge join algorithm for different input sizes.

space is the same for every partition and uniform data is
used, the partition buffers will be scheduled for transmis-
sion at similar points in time, causing temporal hotspots
on the network. This is aggravated by having more pro-
cesses per machine. Because the hardware has a limited
request queue, the processes will be blocked while trying
to enqueue their request, causing a significant increase in
the time spend in the MPI Put call. This problem is further
enhanced as the partitioning fan-out increases. During the
network partitioning, every process communicates with ev-
ery other process in the system simultaneously. Having more
active communication channels incurs a significant overhead.

The sort-merge join partitions the data into individual
ranges before it interleave the sorting operation and the net-
work transfer. A process only sorts one run at a time. After
the run is sorted, it is immediately enqueued for transfer.
Alternating between sorting and executing an MPI Put calls
creates an even transmission rate on the sender side. To
avoid over-saturation at the receiver, each thread starts pro-
cessing a different range, i.e. the i-th process starts sorting
range i+ 1. Since the data is distributed uniformly and the
processes are synchronized at the start of the sorting phase,
for small deployments, they remain synchronized through-
out the phase. During any point in time, a process i is
transmitting data to exactly one process j, which in turn
receives data only from the i-th process. Without synchro-
nization, this pair-wise communication pattern can only be
maintained for small deployments. In large deployments,
nodes cannot be guaranteed to be physically colocated and
variable network latencies disrupt this pattern, causing the
increase in MPI Put costs for 2,048 and 4,096 cores.

5.3.4 Small and Large Relations
To study the effect of different input data sizes and the

ratio of the inner and outer relation, we use several work-
loads: (i) A 1-to-1 input where each tuple of the inner rela-
tion matches with exactly one element in the outer relation.
We use 10, 20, and 40 million tuples per relation and core;
(ii) 1-to-N workloads, where each element in the inner rela-
tion finds exactly N matches in the outer relation.

In Figure 7a, we see the performance of the hash join for
different input sizes. We observe that a reduction of the

Workload Radix hash j. Sort-merge j.
Input Output Time 95% CI Time 95% CI

40M/40M 40M 4.34s ±0.15s 5.70s ±0.14s
20M/40M 40M 3.45s ±0.15s 4.67s ±0.23s
10M/40M 40M 2.88s ±0.29s 3.83s ±0.27s
10M/40M 20M 2.92s ±0.10s 3.75s ±0.25s
10M/40M 10M 2.91s ±0.18s 3.87s ±0.41s

Table 1: Execution time for workloads with different relation
sizes and selectivities for 1,024 processes.

input size by half does not lead to a 2× reduction in execu-
tion time. The execution time of both partitioning passes
as well as the build-probe phase is directly proportional to
the input size. However, the histogram computation, win-
dow allocation, and the compute imbalance are not solely
dependent on the input but have additional fixed costs.

For the sort-merge join (Figure 7b), the time for sort-
ing, merging, and matching the tuples is reduced by half.
Window allocation and compute imbalance are not directly
affected by the input size, resulting in a sub-linear speed-up.

Table 1 (lines 1-3) shows the execution time of both al-
gorithms on 1,024 cores for different relation sizes. One can
observe that the execution time depends primarily on the
input size and is therefore dominated by the larger relation.

5.3.5 Input Selectivity
To study the impact of selectivity on the join algorithm,

we use a 1-to-4 workload with 10 million and 40 million
tuples per core. The workload is generated such that a dif-
ferent number of output tuples are produced. In Table 1
(lines 3-5), we show that the performance of the join re-
mains constant for all three workloads. This is due to the
fact that the execution time of the join is dominated by the
costs of processing the input. The actual matching of the
tuples accounts for a small percentage of the execution time.

As previous work [27, 9, 4, 5, 3], we investigate the join
operation in isolation and do not materialize the output, i.e.,
we do not fetch additional data over the network after the
join result has been computed.
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Figure 8: Scale-out experiments with different number of cores per compute node for 40 million tuples/relation/core.

5.4 Scale-Up Experiments
When designing a distributed system, one is confronted

with two design choices: scale-out and scale-up. In order
to determine which of the two options is better suited for
our implementations, we ran both algorithms on the Cray
XC40 system, which allows us to increase the number of
processes to 16 cores per machine. In addition, we performed
experiments on the Cray XC30 system with 4 per node.

For both algorithms, we observe that the configuration
with 4 cores per machine yields the highest throughput. As
seen in Figure 8, the radix hash join benefits from the re-
duced interference as it is more memory intensive in its par-
titioning phase than the sorting operation of sort-merge join.

The performance of both algorithms suffers when increas-
ing the number of processes to 16 cores per node. We mea-
sured that considerably more time is spent executing the
MPI Put and MPI Flush operations. More processes per ma-
chine put more load on each individual network card, which
makes it difficult to fully interleave computation and com-
munication. In general, the more processes share the same
network card, the more state the network card needs to hold
(connections, memory translations, etc.). This is an impor-
tant observation at these scales because this phenomenon is
difficult to observe in conventional clusters.

We conclude that the performance of both joins is directly
related to the performance of the network and the number
of processes that share the same network card.

5.5 Comparison with the model
Using the model of both algorithms, we can compare the

estimated and measured execution time. Table 2 shows the
results of the experiments along with the predictions of the
model for both algorithms on 1,024 cores. To instantiate
the model, we use performance numbers gathered through
component-level micro benchmarks.

For the hash join, we can see that the model predicts the
performance of phases not involving any network operation.
However, the model does not account for the cost associ-
ated with window allocation and registration. A significant
difference comes from the noise inherent to large systems.
This is reflected in the compute imbalance and the waiting
time after the data exchange. From this observation, we can

Radix hash join

Phase Exec. Time Model Diff.

Histogram Comp. 0.34s 0.36s −0.02s
Window Allocation 0.21s — +0.21s
Network Partitioning 2.08s 0.67s +1.41s
Local Partitioning 0.58s 0.67s −0.09s
Build-Probe 0.51s 0.51s +0.00s
Imbalance 0.62s — +0.62s
Total 4.34s 2.21s +2.13s

Sort-merge join

Partitoning 1.20s 1.02s +0.18s
Window Allocation 0.06s — +0.06s
Sorting 1.99s 1.45s +0.54s
Merging 1.81s 1.78s +0.03s
Matching 0.26s 0.36s −0.10s
Imbalance 0.38s — +0.38s
Total 5.70s 4.61s +1.09s

Parameters [million tuples per second]

RHJ: Pscan = 225, PPart = 120, Pnet = 1024, Pbuild = 120, Pprobe = 225

SMJ: Ppart = 78, Psort = 75, Pnet = 1024, Pmerge = 45, Pscan = 225

Table 2: Model for 1,024 cores and 40M tuples/rel./core.

conclude that reducing the costs of the network operations
would significantly speed up the hash join.

Similar observations can be made for the sort-merge join.
The difference between measured and predicted execution
time is due to the compute imbalance and the network wait
time. We observe that despite these two factors, the exe-
cution time of the sort-merge join is close to the time pre-
dicted by the model as the sort-merge join is better behaved
in terms of communication pattern.

6. DISCUSSION
In this section, we discuss the outcome of the experiments

focusing on the relative performance of hashing and sorting,
the costs of communication along with the importance of
network scheduling and the types of workloads used, and
include a discussion on data skew.



6.1 Hashing vs. Sorting at Large Scale
In this work, we look at the behaviour of sort-based and

hash-based join algorithms on large scale-out architectures.
Our findings show that the hash join is still the algorithm
of choice in terms of raw throughput. However, our results
reveal that several shortcomings prevent it from reaching
an even higher throughput. One significant disadvantage
lies in the uncoordinated all-to-all communication pattern
during the first partitioning pass. Addressing these issues
requires significant changes to the structure of the algorithm,
potentially resulting in a new type of algorithm.

Although the raw throughput is lower, the sort-merge join
has several inherent advantages over the hash join. The
interleaving of sorting and network communication creates
a more steady load on the network. The fact that at each
point in time every node has exactly one communication
partner allows for more efficient processing on the network.
This implicit scheduling can be maintained up to thousand
cores, after which more sophisticated methods are required.
In addition, the sort-merge join outputs sorted tuples, which
might be advantageous later on in a query pipeline.

6.2 Network Scheduling
Issuing MPI Put requests to the hardware is significantly

more costly for the radix hash than for the sort-merge join.
This is caused by the fact that the underlying hardware can
only handle a limited number of simultaneous requests. To
improve performance, these operations need to be coordi-
nated. The results show that the hash join suffers from not
having an effective scheduling technique. The problem is
aggravated as more processes share the same network card.

The sort-merge join overcomes this problem at small scale.
Each process starts sorting a different range of the input.
Despite this implicit network schedule, we observe that sig-
nificantly more time is spend in the network calls as the
number of CPU cores increases.

In essence, light-weight but effective network scheduling
techniques are needed for both algorithms in order to main-
tain good performance while scaling out.

6.3 Data skew
In the experimental evaluation, we use uniform data, that

is distributed evenly among all the processor cores. The goal
of this study is to investigate the maximum achievable per-
formance of the most popular algorithms on large scale-out
architectures. To be able to process skewed data, good load-
balancing needs to be achieved. Several techniques have
been introduced for hash and sort-merge algorithms. These
techniques are orthogonal to our evaluation and both join
implementations could be enhanced to effectively mitigate
workload imbalances caused by data skew.

Rödiger et al. [33] propose to detect skewed elements in
the input with approximate histograms. The performance
impact of these heavy hitters is reduced through redistribu-
tion and replication of the skewed elements. The authors
show that their join implementation achieves good perfor-
mance and is able to scale well on a rack-scale system. This
process can be integrated into the histogram computation
and the network partitioning pass of our radix hash join.

In HPC applications, sorting is a commonly used opera-
tion. By default, sorting algorithms can work with skewed
data. Most distributed sorting algorithms can be put in

one of two categories: merge-based and splitter-based ap-
proaches. Merge-based sorting algorithms combine data from
two or more processes [7]. Splitter-based approaches try to
subdivide the input into chunks of roughly equal size [13, 16,
22, 25, 36]. The latter category utilize minimal data move-
ment because the data only moves during the split opera-
tion. In our implementation of the sort-merge join, we use
a splitter-based approach. When processing skewed data,
techniques for finding the optimal pivot elements can be
used [36]. We expect that a histogram-based technique for
finding the optimal splitter values can be integrated into the
partitioning phase of our sort-merge join.

7. RELATED WORK
Comparing sort-merge and hash join algorithms has been

the topic of recent work for joins on multi-core systems
and efficient algorithms for both strategies have been pro-
posed [1, 3, 4, 5, 9, 27, 30]. Kim et al. [27] concluded
that although modern hardware currently favors hash join
algorithms, future processors with wider Single-Instruction-
Multiple-Data (SIMD) instructions would significantly speed
up sort-merge joins. Albutiu et al. [1] presented a sort-merge
join optimized for multi-socket NUMA machines. Their im-
plementation reaches a throughput of 160M tuples/second
on 64 cores. Based on the ideas proposed by Manegold et
al. [30], Balkesen et al. [4, 5] developed and evaluated an
efficient implementation of the radix hash join and report a
maximum throughput of 750M tuples/second on 64 cores.
The same authors compareed sort-merge and hash joins [3],
and concluded that despite wider SIMD vectors, the radix
hash join still outperforms sort-merge based algorithms.

RDMA has been used in key-value stores, and these sys-
tems exhibit good performance and scalability [14, 24, 26].
On 20 machines, FaRM [14] can serve 150M lookups/second.

Recent work on distributed database algorithms has in-
vestigated the use of new network primitives and RDMA in
the context of joins. Frey et al. [18] proposed the idea of the
data-cyclotron, a system with a ring-shaped network topol-
ogy in which fragments of one relation are constantly trans-
mitted from one machine to the next. Barthels et al. [6] pro-
posed to use RDMA in order to reduce the communication
costs of large data transfers and hide the remote memory
access latencies by interleaving communication and compu-
tation. The reported throughput of 1B tuples/second on
10 machines is used as a baseline in this paper. Binnig et
al. [8] argued that given the trend towards high-speed inter-
connects with RDMA capabilities, database systems need
to be fundamentally redesigned and propose a new archi-
tectural design in which the memory of each storage node
can directly be accessed through one-sided RMA operations.
On 4 machines, their join implementation can process up to
130M tuples/second. Li et al. [29] investigated how a rela-
tional database whose memory demands exceed the available
amount of main memory can make use of remote memory
through RDMA technology.

Rödiger et al. [34, 35] looked at distributed query execu-
tion with high speed networks. FlowJoin [33] is a distributed
hash join algorithm which can mitigate negative effects on
performance caused by data skew.

Polychroniou et al. [32] focused on minimizing the network
traffic during a join. This approach is critical to improve
performance of joins on bandwidth-limited systems.



In recent work, the use of MPI has spread to other areas of
computer science primarily because of the high-level inter-
face which allows to write portable distributed applications.
Several distributed databases and data processing systems,
have adopted MPI as their communication layer [2, 10].

8. CONCLUSIONS
In this paper, we propose distributed hash and sort-merge

join algorithms that use MPI as their communication ab-
straction. The algorithms are optimized to use one-sided
memory operations in order to take full advantage of modern
high-speed networks. Their design addresses several chal-
lenges arising from large-scale distribution, primarily the au-
tomatic selection of the underlying communication method
and the management of communication buffers.

We evaluated both join implementations on two different
distributed environments and showed that having the right
balance of compute and communication resources is crucial
to reach maximum performance. The proposed models show
that the sort-merge join reaches its peak throughput. Re-
ducing the network overhead would significantly speed up
the radix hash join. Despite this fact, the performance of
the hash join is superior to that of the sort-merge join.

Executing joins over large data in near-real time has a lot
of applications in analytical data processing, machine learn-
ing, and data sciences. This paper analyses the behavior
of distributed joins at large scale and shows that the radix
hash and sort-merge join algorithms scale to 4,096 cores,
achieving a throughput of 48.7 billion tuples per second.
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[35] W. Rödiger, T. Mühlbauer, P. Unterbrunner, A. Reiser,
A. Kemper, and T. Neumann. Locality-sensitive operators
for parallel main-memory database clusters. In ICDE,
pages 592–603, 2014.

[36] E. Solomonik and L. V. Kalé. Highly scalable parallel
sorting. In IPDPS, pages 1–12, 2010.


