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Abstract—In this paper we present PolarFly, a diameter-2
network topology based on the Erdős-Rényi family of polarity
graphs from finite geometry. This is a highly scalable low-
diameter topology that asymptotically reaches the Moore bound
on the number of nodes for a given network degree and diameter.

PolarFly achieves high Moore bound efficiency even for the
moderate radixes commonly seen in current and near-future
routers, reaching more than 96% of the theoretical peak. It
also offers more feasible router degrees than the state-of-the-art
solutions, greatly adding to the selection of scalable diameter-
2 networks. PolarFly enjoys many other topological properties
highly relevant in practice, such as a modular design and expand-
ability that allow incremental growth in network size without
rewiring the whole network. Our evaluation shows that PolarFly
outperforms competitive networks in terms of scalability, cost
and performance for various traffic patterns.

I. INTRODUCTION

Traditional demand for scalable networks comes from govern-
ment labs and research institutions to perform large scientific
simulations. For example Fukagu [1], the largest supercom-
puter in the world at the time of this writing, connects 158, 976
processing nodes in a single system. The immediate forerun-
ners in the Top500 list [2], Sierra [3] and Summit [4]. use
Infiniband configurations with, respectively, 4, 474 and 4, 608
processing nodes. Another notable example of large scale net-
work is BlueGeneQ [5], with 98, 304 network endpoints. Meta
recently announced the AI Research SuperCluster (RSC) [6],
which is expected to be the fastest AI supercomputer in the
world in later 2022 with almost 10, 000 nodes. RSC will help
Meta’s AI researchers build better AI models that can learn
from trillions of examples, work across hundreds of different
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languages to analyze text, images and video together, and
develop new augmented reality tools. Microsoft, Google and
Amazon also have expressed strong interest in simulating large
AI models with analogous network scale [7], [8].

A common requirement of academic, governmental and
industrial High-Performance Computing (HPC) data centers,
is increased efficiency and reduced network cost, which is
typically proportional to the number of network links. For this
reason low-diameter networks, and in particular diameter 2
and 3 topologies, have seen growing interest in the scientific
community over the last few years [9]–[12]. Low diameter
networks are also considered an essential ingredient to tackle
one of the major issues in data centers, tail latency [13].

The emergence of high-radix optical IO modules is a tech-
nological amplifier of low diameter networks. These modules
increase the network by squeezing many connections per unit
of space or ”shoreline”, leading to higher system connectivity
[14]–[24]. In addition, tremendous efforts are being made to
bring silicon photonic connections directly into the chip, using
various integration methods [14], [15], [25], commonly known
as co-packaging.

Co-packaged photonics not only reduces power consump-
tion and improves performance, but also impacts the overall
network design. With co-packaged modules, each element
of the chipset (compute, acceleration, memory and storage)
becomes a first-class citizen with a direct low-latency inter-
face to the network. To maximize application performance
in this novel system design, the onus is on network fabric
to provide high-bandwidth, low-latency communication and
extreme scalability. This further increases the need for scalable
low-diameter networks.

A. State of Art Diameter 2 Topologies: Slim Fly
Given the availability of high-radix routers, it is desirable
to maximize the number of nodes that can be supported on
a network of a given diameter. Slim Fly [26] was the first
topology analyzed in the networking community that explicitly
optimized its structure towards the Moore bound [27], an upper
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bound on the number of vertices in a graph with given diameter
and for a given maximal degree. By fixing its diameter to 2,
Slim Fly reduces construction cost and power consumption,
while ensuring low latency and high bandwidth.

However, Slim Fly has several issues with respect to practi-
cal layout and deployment. The number of feasible configura-
tions/topological constructions is limited, and it is not compet-
itive with commercially available products. And there are no
results in the literature to address network re-configurability
and expansion. This is a matter of great importance in real-
world scenarios, where data centers need to increase the size
of a compute center gradually over time without being forced
to rewire and re-layout the whole interconnect.
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Fig. 1: Design space of feasible degrees (network radixes) for PolarFly and Slim Fly.
Asymptotically, there are 50% more PolarFly feasible degrees than what Slim Fly offers.

B. Contributions
To address the above, we present PolarFly: a diameter-2
network topology that is asymptotically optimal in terms of
the Moore bound.
• PolarFly comes with a larger number of feasible designs,

in contrast to Slim Fly [26], as shown in Figure 1.
Asymptotically, PolarFly offers 50% more configurations
that can be constructed, without much overlap with the
design space of Slim Fly. This is especially beneficial for
co-packaged systems, where the network is integrated in
the same chip with the computational engines and the
network radix is fixed.

• PolarFly can be constructed from routers having radix
at or near powers of 2. In particular, PolarFly supports
radixes 32, 48, 62 and 128, making the network design
more practical for HW implementations.

• PolarFly has a surprisingly elegant construction that al-
lows modularity and expansion. Specifically, the network
can be decomposed into groups of nodes, all but one of
which is a fan-out of triangles, to which new node groups
may be added incrementally.

• PolarFly is asymptotically optimal in terms of the Moore
bound, while Slim Fly asymptotically achieves only 8/9
of the bound. Hence, PolarFly asymptotically supports
as many routers as possible for the router degree in a
diameter-2 system, and offers reductions in construction
costs of up to 20%.

• PolarFly exhibits high bisection bandwidth, empirically
approaching an optimal 50% of edges in the cut-set as q

gets large. PolarFly also shows high resilience upon link
breakage, with the diameter experimentally staying at 4
even after 55% link breakage.

Our evaluation shows that PolarFly is performance- and cost-
competitive with other network topologies, including Slim
Fly, Dragonfly, and Fat Tree. Thanks to its compact layout,
PolarFly achieves very high saturation under random traffic
with low latency, for both minimal and non-minimal adaptive
routing. Moreover, under adversarial permutation patterns,
PolarFly saturates between 50% and 66%, outperforming Slim
Fly and Dragonfly, and approaching the non-blocking Fat Tree.

II. BACKGROUND

A. Network Model
We model an interconnection network as an undirected graph
G = (V,E); V is the set of nodes and E is the set of
links (|V | = N ). We consider only direct networks with
co-packaged modules, so there is no notion of endpoints
attached to routers: each node in the network serves both
as a router/switch and as a compute endpoint. There are N
such nodes in total, and k channels from each node to other
node (radix). The diameter D denotes the maximum length of
shortest paths between any pair of nodes.

B. The Degree-Diameter Problem and Network Design
The degree of a network is determined by current technology,
and the diameter is chosen according to the system require-
ments. Based on this, one would like to maximize the number
of nodes in such a network. This is the degree-diameter
problem: find the maximum number n(D, k) (or N ) of vertices
in a graph given maximal degree k and diameter D.

The degree-diameter problem is a major open problem in
graph theory. For a comprehensive survey, see [28]. Bounds
exist for this problem, but few optimal graphs have been
identified. Loz, Pérez-Rosés and Pineda-Villavicencio give two
tables [27] with the largest known graphs and bounds as of
2010 for a given degree and diameter. Only a few of the graphs
are known to be optimal.

1) The Moore Bound
The Moore bound [29] is the most general upper bound on
the number of vertices n for a graph with maximum degree k
and diameter D, and is given by

N ≤ 1 + k ·
D−1∑
i=0

(k − 1)i. (1)

Few graphs of any diameter and degree actually meet the
Moore bound; in fact, few even come close. Hoffman and
Singleton [29], Bannai and Ito [30], and Damerell [31] have
identified all of the graphs that meet the bound.

The Erdős-Rényi polarity graphs were introduced by Erdős
and Rényi in [32] and by Brown in [33]. They have diameter
2 and asymptotically approach the Moore bound, which is
N ≤ 1+k2 for graphs of diameter 2. They also have properties
useful for network design, which we exploit for PolarFly.
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III. FEASIBILITY ANALYSIS OF CANDIDATE TOPOLOGIES

There are many available topologies. However, not all are
suitable for use in a data center, especially in a co-packaged
setting. In this section, we investigate representative networks
and show that PolarFly meets the data center needs best of all.

We consider Slim Fly [26] (a variant with D = 2),
Dragonfly [34] (the “balanced” variant with D = 3), and
HyperX (Hamming graph) [35] that generalizes Flattened But-
terflies [36] with D = 2. We also use established three-stage
Fat Trees [37]. Finally, for completeness, we also consider two
Fat Tree variants, Orthogonal Fat Trees [38] and Multi-Layer
Full Meshes [38]. In the following, we identify the criteria for
a topology to be a suitable candidate for a data center.

Directness. Direct networks can be constructed using only
one type of co-packaged chip that integrates the compute, rout-
ing hardware, and communication ports in the same package.
In contrast, indirect networks such as fat trees, require design,
fabrication, and deployment of additional chiplet(s) for the
switches, which significantly increases their overall cost.

Flexibility. A flexible network provides many feasible con-
figurations that could be constructed using available equipment
while delivering high performance. This means that one must
be able to build networks using switches with feasible radix.

Low Diameter. Upcoming distributed shared-memory sys-
tems such as PIUMA [39], and future disaggregated memory
systems [40], heavily rely on low-latency remote accesses for
performance scalability. This can only be delivered by scalable
networks with small diameter, ideally two, or networks with
average path length of two. In case of direct networks, low-
diameter topologies also support higher ingestion bandwidth.

Modularity. In a modular network, the nodes can be de-
composed into smaller units that could be, e.g., racks, blades,
or chassis. This feature facilitates manufacturing, deployment
and cabling. Most of the considered networks satisfy this
requirement. For example, plain Fat Trees consist of pods,
while Dragonflies have a group-based structure.

Expandability. A network is expandable if its size can be
incrementally increased by adding a basic unit, such as a rack,
by using empty ports in an under-provisioned network. This
need is usually related to budgetary issues – the budget-limited
purchased system is smaller than the optimal system, and may
only be extended to a larger size later. Incremental growth may
be preferred over complete rewiring into a new topology, as the
latter is much more disruptive, expensive and time-consuming.
While some of the considered networks, like Dragonfly, do
enable incremental growth, it is not known how to increase
the size of the most competitive target Slim Fly.

We now analyze the considered networks and show whether
they satisfy the above criteria. A summary of the analysis
is illustrated in Table I. All networks are at least partially
modular and flexible. Most networks have diameter two. Only
PolarFly satisfies all the criteria almost fully.

IV. POLARFLY TOPOLOGY

In this section, we discuss in detail the graph underlying the
PolarFly layout. This mathematical description is used in the

Topology Direct Modular Expandable Flexible Diameter-2

Fat tree é � � � é
Dragonfly � � � � é
HyperX � � � � �
OFT é � é � �
MLFM é � é � �
Slim Fly � � � � �

PolarFly � � � � �

TABLE I: Feasibility. “�”: full support, “�”: partial support, “é”: no support.

construction and for the exploitation of the graph properties.
The topology of PolarFly is an Erdős-Rényi (ER) polarity

graph, also known as a Brown graph, constructed using the
relationship of points and lines in finite geometry. These were
discovered independently by Erdős and Rényi [32] and Brown
[33]. There is a great deal of mathematical structure to these
graphs, and they have been studied in depth, both in the
original papers [32], [33] and other references, e.g. [41]–[43].

ER graphs have several useful features for network design:
• Low diameter. They have diameter 2, giving a short path

between any two nodes.
• Scalability. At the same time, they asymptotically reach

the Moore bound, surpassing the scalability of all other
diameter-2 topologies. We compare to other diameter-2
topologies that are direct, as needed for co-packaging,
and show the comparison in Figure 2.

• Flexibility. They cover a wide range of degrees, having
degree k = q + 1 for every prime power q. While not
completely general, they meet or come very close to the
radixes of many current and near-term high-radix routers.
For example, for q = 31, 47, 61 and 127, ERq may be
applied to systems with routers of radix 32, 48, 64 and
128, with all router ports used at radix 32, 48 and 128.
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A. Some Background on Finite Fields and Their Arithmetic
The construction of ER polarity graphs is based upon the
arithmetic operations of finite fields. A field is a set having
addition and multiplication, where every element has an addi-
tive inverse, and every non-zero element has a multiplicative
inverse. The construction of ER polarity graphs depends
especially upon the existence of multiplicative inverses.

The set of integers modulo a prime p is an example of
a finite field. Finite fields Fq of order q exist for all prime
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powers q, and for no other integers. Finite fields are also called
Galois extension fields. They are fundamental to many areas
in mathematics and computer science, and are discussed in
detail in [44]–[46] and in many other references.

It is important to note that addition and multiplication
operations in Fq are quite different from those in R:
• If q = p is a prime, then addition and multiplication are

just modular arithmetic over p.
• If q = pm is a prime power, with m > 1, then addition

and multiplication in Fq are derived from modular arith-
metic over an irreducible degree-m polynomial over Fp.
For further details on arithmetic in the finite fields Fq ,
with q not prime, see any of the references listed above.

We will use primes q = p for the examples in this paper
for simplicity, so the addition and multiplication in the dot
products is just modular arithmetic over p. The same graph
construction will hold for any prime power q = pm, using the
associated arithmetic of Fq for the dot products.

B. Geometric Intuition
Erdős-Rényi polarity graphs express the orthogonality (or per-
pendicularity) between vectors, or equivalently, lines passing
through the origin. The dot product is a convenient way of
expressing this; two length-n vectors v and w are orthogonal
when v · w =

∑n
i=1 viwi = 0.

Note that multiples of a vector retain the same orthogonality
relationships as the original vector. So for our purposes, we
may consider all multiples of a vector to be the same, and
simply choose one as representative of all its multiples.

ER polarity graphs are defined by vertices that represent
length-3 vectors over a field, and edges that exist between
two vertices if the vectors they represent are orthogonal. This
graph has diameter 2.

As an example, consider ordinary Euclidean 3-dimensional
space. The existence of 2-hop paths between any two vectors
in the corresponding graph depends upon this fact: any pair of
(non-multiple) vectors has a vector to which both are orthog-
onal: their cross-product. The 2-hop path linking them passes
through the orthogonal vector. This is shown in Figure 3.

Fig. 3: Let `0 and `1 be arbitrary lines in Euclidean 3-space passing through the origin.
The line `0 is perpendicular to the plane P0, and the line `1 is perpendicular to the
plane P1. The two planes intersect in a line m which is perpendicular to both `0 and
`1. A graph including `0, `1 and m as vertices has edges (`0, m) and (m, `1), so there
is a 2-hop path from `0 to `1 passing through m. This construction may be generalized
to F3

3, using the dot product to represent perpendicularity.

Euclidean 3-space obviously has infinitely many lines and
planes passing through the origin. However, a similar con-

struction may be used to obtain a finite space of dimension 3
over the finite field Fq . The geometric relationships are similar
to those discussed above in the Euclidean case. Orthogonality
is again expressed by the dot product, using the addition and
multiplication from Fq . So the construction over Fq also gives
rise to a graph of diameter 2, but this time the graph is finite.

Because Fq is finite with modular arithmetic, some non-
zero vectors in F3

q have the interesting property that they are
orthogonal to themselves, which never happens in Euclidean
space. For example, consider F3

3, where the arithmetic oper-
ations are modular addition and multiplication mod 3. The
vector [1, 1, 1] is self-orthogonal, since [1, 1, 1] · [1, 1, 1] =
1 + 1 + 1 = 0 mod 3.

C. Construction With Dot Products over Fq

ER polarity graphs are easily constructed using the set of non-
zero left-normalized vectors [x, y, z] ∈ F3

q as vertices. These
are vectors in which the first non-zero entry is 1.

For example, in F3
3, [1, 0, 2] and [0, 1, 0] are vectors in

the set under consideration, but [0, 2, 1] would not be, since
its first non-zero entry is 2. Instead, [0, 2, 1] is multiplied
by the multiplicative inverse of 2 (mod 3), giving its left-
normalized representation: 2·[0, 2, 1] = [0, 1, 2]. The existence
of multiplicative inverses in the field Fq assures us that each
non-zero vector can be represented as a left-normalized vector.
ERq is then constructed as follows:

• The vertices are the left-normalized vectors in F3
q .

• The edges are pairs (v, w) of vertices that are orthogonal
to each other, as per the dot product; in other words, using
the addition and multiplication of Fq , the dot product of
v and w is 0.

Self-orthogonal vertices are distinguished from the others and
are called quadric. All other vertices are called non-quadrics.
Quadrics may be considered to have a self-loop, and play a
special role in the construction of PolarFly.

We show an example of this construction in Figure 4. There
is a great deal of structure in the ERq graph, some of which
can be seen there and in the graph layout in Figure 6. We
exploit this in the construction of an efficient network.

Fig. 4: The dot-product construction of ER3. The left-normalized vectors of F3
3 are

the vertices, arranged lexicographically, and clockwise starting at the top. The base
field is F3. 3 is a prime rather than a prime power, so the operations are addition
and multiplication mod 3. Edges exist between vertices v and w when the dot product
v · w is 0, using arithmetic from F3. For example, the vertex [1, 1, 1] is adjacent to
[0, 1, 2], since the dot product ([1, 1, 1] · [0, 1, 2]) = 0 + 1 + 2 ≡ 0 mod 3. The
self-adjacent quadrics (W ) for which the dot products w · w are 0 are red. Vertices
adjacent to quadrics (V1) are green, and vertices not adjacent to quadrics (V2) are blue.
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D. Minimal paths, intermediate points and routing
Since an ER graph has diameter 2, the minimal path between
two vertices is either 1 or 2 hops. A path is of length 1 if and
only if the vertices are orthogonal (so their dot product is 0).

There is only one minimal path of length 1 or 2 between
vertices. For reasons of efficiency, table-based routing is the
best method for finding paths. However, the unique intermedi-
ate vertex on a 2-hop path may also be found by solving a pair
of linear equations representing the dot-product construction.

Intuitively, the two vertices are represented by two distinct
lines, which are orthogonal to a single line (or single vertex
in projective space), as seen in Figure 3. So the problem
of finding the intermediate vertex in a minimal 2-hop path
reduces to finding that unique orthogonal line.

The intermediate vertex v between vertices s and d is
orthogonal to both s and d, so s·v = d·v = 0. Thus v is found
by solving this system of equations, via an augmented matrix:[

s0 s1 s2 0
d0 d1 d2 0

]
Since s and d are not multiples of each other, and since
all vectors in ERq must be left-normalized, there will be a
unique solution v to this system of equations, which may be
found by Gaussian elimination or otherwise.

For example, in ER3, the vectors (0, 0, 1) and (1, 2, 2) are
not orthogonal, (since their dot product is not 0) so the minimal
path has length 2. The left-normalized solution in F3

3 to the
resulting augmented matrix[

0 0 1 0
1 2 2 0

]
is (1, 1, 0). Figure 4 confirms that (1, 1, 0) is indeed intermedi-
ate on the unique length-2 path between (0, 0, 1) and (1, 2, 2).

Another, perhaps simpler way to obtain the vertex v orthog-
onal to both s and d is to compute the cross-product of s and
d, as discussed in [43]:

s× d = (s2d3 − d3s2, s3d1 − d3s1, s1d2 − s2d1) (2)

Since multiples of a vector represent the same vertex, the co-
ordinates obtained from cross-product can be left-normalized
to obtain v. For example, in ER3, the intermediate vertex
between the vectors (0, 0, 1) and (1, 2, 2) is given by:

(−2, 1, 0) = (1, 1, 0)

as vectors modulo 3.
Because vectors in ERq are left-normalized, this method is

quite efficient, in the worst case needing only two multiplies
and three adds in Fq to compute the cross-product, then at
most another two multiplies for the left-normalization.

E. Formal Construction
1) A Bipartite Graph From Finite Geometry
The projective plane PG(2, q) is a geometric structure that
arises from projecting lines and planes in three-dimensional
space over Fq to points and lines respectively. As discussed

above, projective points can be thought of as the left-
normalized vectors in F3

q . In more formal language, each
point [a] in PG(2, q) is an equivalence class of 3-tuples where
(a1, a2, a3) ∼ (b1, b2, b3) if and only if these tuples are
multiples of each other. Projective lines (b1 : b2 : b3) contain
all points [x] so that b1x1+b2x2+b3x3 = 0 in Fq . By counting
such vectors, we see there are q2 + q + 1 points in PG(2, q).
Dually, there are q2 + q + 1 lines in PG(2, q) as we will see.

We will construct ERq graphs for any prime power q using
properties of points and lines in PG(2, q). To begin, we first
build a bipartite graph B(q). The vertex set of B(q) is U ∪V
where U is the set of points in PG(2, q) and V is the set of
lines in PG(2, q). There is an edge between v ∈ U and w ∈ V
if and only if the point v lies on the line w. In PG(2, q), each
point lies on q + 1 lines, and each line contains q + 1 points.
The graph B(q) has 2(q2+q+1) vertices and degree q+1. The
graph B(q) has diameter 3, which will be reduced to diameter
2 by a polarity construction in the next section.

2) Decreasing the Diameter Using a Polarity Map
For each point [a] in PG(2, q), the dual [a]⊥ is the line in
PG(2, q) which contains all points (x1, x2, x3) so that a1x1+
a2x2+a3x3 = 0. Since the dual map is a bijection, this shows
that PG(2, q) contains q2 + q+1 lines. The dual of a line can
be defined symmetrically. Notice that ([a]⊥)⊥ = [a]. Clearly,
[x] lies on line [a]⊥ if and only if [a] lies on [x]⊥. Such a
bijection is also known as polarity.

In order to decrease the diameter of B(q), we use this
polarity: take B(q) and glue the vertices v ∈ U and w ∈ V
together if and only if [w] = [v]⊥. That is, combine the point
[v] ∈ U and the line [w] ∈ V together if they are duals of
each other. Define ERq to be the graph formed by applying
this gluing process to B(q). ERq has q2+q+1 vertices since
we glued pairs of vertices in B(q) together. The degree is still
q + 1, since every line passing through point [v] is glued to a
point on [v]⊥, but now the diameter is reduced to 2.

This construction is quite general: if a polarity map exists
on a bipartite graph with N = 2n vertices, maximum degree
k, and diameter D, it can be used to construct another graph
with n vertices, maximum degree k, and diameter D − 1.

3) Quadric Vertices
In a finite geometry, the point [a] may lie on its own dual, the
line [a]⊥. When this occurs, i.e., when a21 + a22 + a23 = 0, the
vertex [a] is called a quadric vertex. In ERq , there is a loop at
vertex [a] since [a] and [a]⊥ are glued together. These quadric
vertices are the same as the self-orthogonal vectors discussed
at the end of Section IV-B, and will be discussed further in
Section IV-F in terms of the layout of the network.

F. Structural Properties of ER polarity graphs
We make heavy use of the structure of ER graphs in the design
of the network discussed in this paper.

ER graphs ERq have N = q2 + q + 1 vertices, degree
k = q + 1, and diameter D = 2. The vertex set of ERq can
be divided into three disjoint subsets [43]:
• W (q)→ set of q + 1 quadric vertices.

5



• V1(q)→ set of q(q+1)
2 vertices adjacent to W (q).

• V2(q)→ set of q(q−1)
2 vertices not adjacent to W (q).

The following properties used in the construction and analysis
of the network were presented by Bachratý and Širáň in [41].

Property 1. [41] For every odd prime power q, ERq has the
following properties:

1) No two vertices in W (q) are directly connected. Every
vertex in W (q) is adjacent to exactly q vertices in V1(q).

2) Every vertex in V1(q) is adjacent to exactly 2 vertices in
W (q), and q−1

2 vertices each in V1(q) and V2(q).

3) Every vertex in V2(q) is adjacent to exactly q+1
2 vertices

each in V1(q) and V2(q).

4) There is exactly one path of length two between every
vertex pair (considering the self-loop of the self-adjacent
quadrics as an edge).

5) As a corollary, the edges incident with quadric vertices do
not participate in any triangle. Any edge incident with two
non-quadric vertices participates in exactly one triangle.

V. POLARFLY LAYOUT

Network layouts need a modular topology decomposable into
smaller units for easy and cost-effective deployment. Since
ER graphs are derived from polarity quotient graphs of finite
projective planes, such structures are not trivially available, in
contrast to topologies derived from multiple generating sets,
such as Slim Fly [26] or Bundlefly [47], in which modular
units can be readily obtained from individual generators.

Instead, we use the connectivity of quadrics to other vertices
to obtain a modular and generalized layout for PolarFly.
Property 1 from Section IV-F tells us that every quadric
v ∈ W (q) is connected to exactly q vertices in V1(q). We
use these q vertices to construct q clusters, plus the quadrics
themselves as the (q + 1)st cluster.

More formally, Algorithm 1 assigns the vertices in ERq into
q+1 clusters, which corresponds to assigning nodes to racks in
PolarFly . We use the terms racks and clusters interchangeably.

For brevity, we only discuss ERq for odd q (even radix) as
even prime powers q = 2i are sparse in the set of all prime
powers. The layout for even q is similarly modular, and is
derived using an analogue to Property 1 for even q [41].

Algorithm 1 PolarFly layout

ERq← ER Graph of max degree q + 1
1: Initialize empty clusters (racks) C0, C1 . . . , Cq

2: Add all quadrics W (q) to C0

3: Select an arbitrary quadric v ∈W (q)
4: for each vertex u adjacent to v
5: Add u to an empty cluster Ci

6: Add all non-quadric neighbors of u to Ci

Figure 5 is a diagram of the layout, and Figure 6 shows an
example of the ERq graph structure supporting this layout.

Proposition V.1. Algorithm 1 adds every vertex in ERq to
exactly one cluster.

Proof. Each vertex is at most 2 hops away from the quadric v
selected in Algorithm 1 line 3. The algorithm assigns clusters
to W (q) and all non-quadrics at shortest distance ≤ 2 from
v. Thus, every vertex is added to at least one cluster. By
Property 1.5, the vertices adjacent to v are independent and
have no common neighbor aside from v. Hence, non-quadric
vertices are added to at most one cluster. The quadrics are
added to exactly one cluster, C0.

A. Intra-rack Layout
1) The quadrics cluster
The layout of the quadrics cluster is quite simple: there are
no edges within C0 by Property 1.1. This is seen in ER7 in
Figure 6(a), and also in ER3 in Figure 4.

Layout

C0

C1 C2 Cq

...

q+1
q+1

q-2 q-2q-2

...

#quadric
routers: q+1

No links
between
quadrics

Degree of
a quadric: q

... ... ...

...

...
...

......

...

...
...

...
...

......

...

...
...

...
...

......

...

...

q+1

Degree of a
non-quadric: q+1

Fig. 5: The layout.

2) Non-quadrics clusters
The layout of a non-quadrics cluster is also rather simple:
the edges of a non-quadrics cluster form a fan made up of
q−1
2 triangles. The fan has a center vertex, and centers of all

fans have a common quadric neighbor. The triangles share
only the center, and are otherwise disjoint, giving a fan-blade
appearance. This is easily seen in ER7 in Figure 6, and may
be traced out in ER3 in Figure 4.

Proposition V.2. The vertices of a cluster form q−1
2 triangles,

all having the center of the cluster as a common vertex.

Proof. Let v be the quadric chosen as a starter. Then every
vertex ci adjacent to v is selected as the center of cluster Ci.
By Property 1.2, ci has q−1 non-quadric neighbors, and with
ci, these make up the q elements of the non-quadric cluster
Ci. So there is an edge between ci and any other vertex in Ci.

If u is one of the non-center vertices, Property 1.5 tells us
that the edge (ci, u) is contained in exactly one triangle in
Ci. This shows that Ci consists of exactly q−1

2 edge-disjoint
triangles, each of which contains ci.

This fan structure gives PolarFly a modular layout with
isomorphic structures induced by all q non-quadric clusters. In
physical terms, this means that the q2 non-quadric nodes can
be deployed as q identical copies of the same rack. Moreover,
the fan layout for PolarFly is generalizable to any odd prime
power q, unlike Slim Fly where generator sets and thus the
intra-rack layout can change significantly with router radix.
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(a) A non-quadric cluster. An arbitrary
quadric (in red) generates the center
vertices (in bright green). For each cen-
ter vertex c, all non-quadric neighbors
of c are added to the cluster. Edges of
one such cluster are rendered in black.
This figure illustrates Section V-A.

(b) Inter-cluster connectivity from the
cluster shown in (a). Edges to the
quadrics are shown in red, edges to
the V1(q) vertices in another cluster in
green, and edges to the V2(q) vertices
in the other cluster in blue. This figure
illustrates Propositions V.3 and V.4.

Fig. 6: Layout for PolarFly with q = 7. The quadrics W (7) (quadrics) are in red (top
layer), V1(7) are in green (middle layer) and V2(7) are in blue (bottom layer). The
left figure shows the q−1

2 = 3 fan-blades (triangles) emanating from the center c (light
green) of a non-quadric cluster. The right figure shows the q−2 = 5 edges between two
non-quadric clusters, and q+1 = 8 edges between a non-quadric cluster and quadrics.

B. Inter-rack Layout
There are two types of racks in PolarFly : one quadric rack
C0 and q non-quadric racks {C1, ...Cq}. In this section, we
describe the connectivity between two racks. For ease of
notation, we use V1(q, Ci) and V2(q, Ci) to denote vertices
of Ci in V1(q) and V2(q) subsets, respectively (Section IV-F).

1) Connections between Ci and the quadrics
Proposition V.3. For every cluster Ci, with i > 0:
1) Each vertex in V1(q, Ci) is adjacent to exactly two vertices

in C0.
2) There are exactly q + 1 links between Ci and C0.
3) Each quadric in C0 is adjacent to exactly one vertex in Ci.

Proof. Proposition V.3.1 follows directly from Property 1.2.
Ci has q+1

2 vertices from V1(q): the center vertex and its q−1
2

neighbors in V1(q). Hence, there are q + 1 edges between Ci

and C0. Since there is an average of 1 link to Ci per quadric, to
prove Proposition V.3.3, it is sufficient to show that no quadric
is adjacent to more than one vertex in Ci. Let v ∈ W (q) be
adjacent to multiple vertices in Ci. Either v lies in a triangle
or there are multiple 2-hop paths between v and the center of
Ci. This contradicts Property 1.5.

2) Connections between the non-quadric clusters
Proposition V.4. Let Ci and Cj be two clusters with 0 <
i, j ≤ q and i 6= j. Let ci denote the center of cluster Ci.
Then:

1) Every vertex in V2(q, Ci) is adjacent to exactly one vertex
in Cj .

2) There are q − 2 independent edges between Ci and Cj .
3) There exists a vertex u′ ∈V1(q, Ci)\{ci} such that every

vertex in V1(q, Ci)\{u′, ci} is adjacent to exactly one
vertex in Cj , and u′ is not adjacent to Cj .

Proof. For a vertex w ∈ Ci such that w 6= ci, let S(w) denote
the set of edges between w and all clusters other than Ci and

C0. If w ∈V1(q, Ci), then |S(w)| = q−3, and if w ∈V2(q, Ci),
then |S(w)| = q − 1. Every edge in S(w) must connect w to
a unique cluster, otherwise there will be multiple 2-hop paths
from w to the center of a cluster. This proves Proposition V.4.1.

We give a brief sketch of the proof for Proposition V.4.2
for brevity. Adding |S(w)| for all vertices w ∈ Ci, we see
that there are (q− 1)(q− 2) edges between Ci and other non-
quadric clusters. If Proposition V.4.2 is false, then there exists
a non-quadric vertex at least 3-hops away from the center ci.
This is a contradiction since ERq has diameter 2.

From Propositions V.4.1 and V.4.2, we see that there are
(q−3)/2 independent edges between V1(q, Ci) and Cj . None
of these edges are incident to ci. Further, |V1(q, Ci) \ {ci}| =
q−1
2 . Hence, there must be exactly one u′ ∈V1(q, Ci)\{ci}

which is not adjacent to Cj . Vertex u′ can be identified easily
as it shares a common quadric neighbor with center cj .

Propositions V.3 and V.4 show that there are q − 2 links
between all q(q−1)

2 pairs of non-quadric racks, and q + 1
links between quadric rack and each of the q non-quadric
racks. Thus, PolarFly exhibits a nearly balanced all-to-all
connectivity between racks. Moreover, links between any pair
of racks can be bundled into cost-effective solutions such as
a single multi-core fiber [47].

Using ER7 as an example, Proposition V.3 may be seen in
the red edges of Figure 6(b), and Proposition V.4 may be seen
in the green and blue edges of Figure 6(b).

C. Triangles and Other Polygons in PolarFly
PolarFly has many triangles, and no quadrangles. The absence
of quadrangles is because each pair of non-quadric vertices has
exactly one path of length 2, by Property 1.4. If PolarFly had
a quadrangle, there would then be vertices with two paths of
length 2 between them.

We discuss the abundance of triangles and the implications
of this throughout the rest of this section. This becomes
important when we analyze the path diversity of PolarFly in
the next section.

1) The Number and Types of Triangles in PolarFly
Triangles are of two kinds: those entirely internal to a non-
quadric cluster, and those linking three distinct non-quadric
clusters together.

Proposition V.5. There are
(
q+1
3

)
triangles in ERq .

Proof. By Property 1.5, edges not incident to a quadric
participate in one triangle, and edges incident to a quadric
participate in no triangles. There are q(q+1)2

2 total edges, and
q(q + 1) edges incident to a quadric. Thus

(q + 1)q(q − 1)

2

edges are not incident to a quadric. This implies that there are

(q + 1)q(q − 1)

6
=

(
q + 1

3

)
triangles.
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Proposition V.6. The triangles of ERq either join three
distinct non-quadric clusters or are internal to a single non-
quadric cluster. In particular,
(a)

(
q
3

)
triangles join non-quadric clusters.

(b)
(
q
2

)
triangles are internal to non-quadric clusters.

Proof. There are a total of
(
q
2

)
(q − 2) inter-cluster edges

across non-quadric clusters. From Property 1.4, each such edge
participates in exactly one triangle. So there are

q(q − 1)(q − 2)

2 · 3
=

(
q

3

)
such inter-cluster triangles. Each of these must be made up
of three distinct clusters: if not, then the edge (a, b) internal
to a cluster will also be on a triangle entirely internal to that
cluster, thus there will be two length-2 paths between a and
b, which cannot occur.

There are q−1
2 triangles internal to a non-quadric cluster, by

Proposition V.2, and there are q such clusters, so there are

q · q − 1

2
=

(
q

2

)
triangles internal to non-quadric clusters.

Finally, (
q

3

)
+

(
q

2

)
=

(
q + 1

3

)
,

so this accounts for all triangles in ERq , by Proposition V.5.

2) Intra-cluster triangles
The q−1

2 internal triangles in a non-quadric cluster share the
cluster center as a triangle vertex, giving the edges of the
cluster the form of a triangle fan-out. They pairwise share no
other vertices.

If q ≡ 1 mod 4, the vertices of each internal triangle
consist of the center and either two vertices from V1, or two
vertices from V2.

If q ≡ 3 mod 4, the vertices of each internal triangle
consist of the center, an element of V1 and an element of
V2. This may be seen in Figures 6b and 13.

3) Inter-cluster Triangles and a Block Design on Clusters
The remaining triangles are all inter-cluster triangles. In this
section, we prove the following Theorem V.7, which says that
every non-quadric cluster triplet is joined by one triangle.

This gives rise to a 3 − (q, 3, 1) block design, where the
q non-quadric clusters are the points, triangles joining cluster
triplets are the blocks, and each set of 3 points appears in 1
block. Block designs are well known combinatorial structures
that express symmetries in terms of the points and blocks [48],
and are therefore of interest in constructing networks.

Theorem V.7. Every triplet of non-quadric clusters under any
cluster layout is connected by exactly one triangle.

The theorem is a consequence of the symmetry between all
length-2 paths in ERq that have a quadric as the intermediate

node. This symmetry was first shown in [43], and is restated
below as Theorem V.8.

To prove Theorem V.7, it suffices to show that all non-
quadric triplets are joined by at most one triangle. The theorem
then follows from an application of the pigeonhole principle.

To do this, we show a corollary of Theorem V.8 that ex-
presses a symmetry on non-quadric cluster triplets. A technical
lemma exhibits an example of such triplets that are joined by at
most one triangle. The symmetry in the corollary then implies
that this is true of all non-quadric triplets in ERq .

Theorem V.8. [43, Corollary 5] Let (s0, w0, d0) and
(s1, w1, d1) be paths of length 2 in ERq , where si and di ∈ V1
and wi ∈ W , the quadrics cluster. Then there exists some
automorphism θ of ERq such that θ(w0) = w1, θ(s0) = s1
and θ(d0) = d1.

Corollary V.9. If there exists some non-quadric cluster X
such that every non-quadric cluster triplet that includes X is
joined by at most one triangle, then every non-quadric cluster
triplet is joined by at most one triangle.

Proof. Let w be the starter quadric, and let X be a cluster
meeting the above condition. Let xc be the center of X .

We assume that there exists some triplet (D,E, F ) of
distinct non-quadric clusters joined by more than one triangle,
and show a contradiction.

Let dc, ec and fc be the centers of D,E, and F respectively.
By assumption, the triplet (D,E, F ) is joined by two distinct
triangles with vertices (d0, e0, f0) and (d1, e1, f1).

Let Y 6= X be an arbitrary cluster with center yc. By
Theorem V.8, there is an automorphism θ of ERq so that
θ(w) = w, θ(dc) = xc, and θ(ec) = yc. Any automorphism
of ERq preserves edges, so θ(fc) is connected to θ(w) = w,
making θ(fc) the center of some cluster Z. Again, θ pre-
serves edges, so two distinct triangles (θ(d0), θ(e0), θ(f0)) and
(θ(d1), θ(e1), θ(f1)) link X , Y and Z.

By the condition on X , (X,Y, Z) cannot be a triplet,
so Z must be one of X or Y . But then the triangle
(θ(d0), θ(e0), θ(f0)) joins exactly two non-quadric clusters.
This contradicts Proposition V.6.

Lemma V.10. Let X be a non-quadric cluster whose center
x has form (1, x1, x2) as a point in P2(Fq). Then any triple
of distinct non-quadric clusters that includes X is joined by
at most one triangle.

Proof. Let X be as stated, and let Y,Z 6= X be distinct
clusters such that the triple (X,Y, Z) is joined by the triangle
(a, b, c) with a ∈ X , b ∈ Y and c ∈ Z. Write each point r as
r = (r0, r1, r2), a point in P2(Fq). Given centers x, y, and z
of X , Y , and Z, we will write down a system of equations to
count how many possible triples (a, b, c) can exist.

By construction, the points a, b and c are connected to the
respective centers x, y and z, and to each other in ERq . This
implies that

a · x = b · y = c · z = a · b = b · c = c · a = 0
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in Fq . Because a · x = 0 and x = (1, x1, x2),

a0 = −(a1x1 + a2x2). (3)

Because a · b = b · y = 0 and a · c = c · z = 0, (a, b, y)
and (a, c, z) are two-hop paths. The cross-product derivation
of the intermediate vertex of a two-hop path given in (2) from
Section IV-D then shows that

b = a× y and c = a× z. (4)

Using b · c = 0, the above cross-products may be substituted
for b and c, giving:

(a× y) · (a× z) = 0

Substituting (3) into this equation gives

r11a
2
1 + r12a1a2 + r22a

2
2 = 0 (5)

where r11, r12 and r22 are constants in yi, zi for i ∈ {0, 1, 2}.
Notice that (4) implies we can determine the entries of the
points b and c completely once we determine a. Thus we have
reduced our problem to understanding the number of solutions
to (5) in terms of a1 and a2.

Either a2 is 0 or a2 is invertible. If a2 = 0, then (5) implies
a1 = 0, and (3) implies a0 = 0. This is impossible since
(0, 0, 0) 6∈ P2(Fq). So a2 must be invertible.

Without loss of generality, we may then solve for a vertex
of the form a′ = (a′0, a

′
1, 1), since a′ may then be multiplied

by a2 and then left-normalized to give a ∈ P2(Fq).
In that case, (5) reduces to a quadratic polynomial in a′1,

which has at most two solutions. However, notice that a = b =
c = w, the starter quadric, satisfies all of the equations. In this
case, a, b, and c do not form a triangle. This implies there is
at most one valid solution to (5) and at most one vertex triplet
(a, b, c) that form a triangle between the clusters X,Y and Z.

We are now ready to prove the main theorem of this section.

Proof of Theorem V.7. Let w = (w0, w1, w2) be the quadric
vertex that generates the cluster layout. At least one of w1 and
w2 is non-zero, since w is non-zero and self-orthogonal.

There is thus at least one vector x having form (1, x1, x2)
that is orthogonal to w (as can be calculated using the dot
product on w), and this vector x is the center of some non-
quadric cluster X . By Lemma V.10, any non-quadric cluster
triplet that includes X is joined by at most one triangle.

Corollary V.9 then implies that every non-quadric cluster
triplet is joined by at most one triangle. By Proposition V.6(a),
the number of inter-cluster triangles is

(
q
3

)
, which is the same

as the number of non-quadric cluster triplets. The theorem
immediately follows by the pigeonhole principle.

4) Distribution of inter-cluster triangles
We can further classify the triangles in ERq . The distribution
of the inter-cluster triangles is as shown in Table II. The table
follows from a simple combinatorial argument.

We note that every element of V1 serves as a center in
the two layouts induced by its adjacent quadrics. Since the

(v1, v1, v1) (v1, v1, v2) (v1, v2, v2) (v2, v2, v2)

q ≡ 1 mod 4
q(q−1)(q−5)

24
0

q(q−1)2

8
0

q ≡ 3 mod 4 0
q(q−1)(q−3)

8
0

(q+1)q(q−1)
24

TABLE II: Distribution of inter-cluster triangles, of different forms. The variable v1
indicates a vertex in V1, and the variable v2 indicates a vertex in V2.

choice of a particular layout does not affect adjacency at
all, triangles remain the same in all layouts, in terms of
participating vertices. Any triangle with a participating center
is entirely internal to the center’s cluster. So if q ≡ 1
mod 4, any triangle holding an element of V1 must be of the
form (v1, v1, v1) or (v1, v2, v2). Likewise, if q ≡ 3 mod 4,
any triangle holding an element of V1 must be of the form
(v1, v1, v2). We also know that the total number of inter-cluster
triangles for any q is

(
q
3

)
.

Clusters are either internal to a cluster, or entirely inter-
cluster, as in the proof of Proposition V.6. This also implies
that if a triangle is internal to a cluster with a center c in a
given layout, it will be entirely inter-cluster for any layout in
which c is not a center, in other words, layouts induced by
any of the q − 1 quadrics not adjacent to c.

We assume some particular layout starting with an arbitrary
starting quadric, and calculate the inter-cluster triangles for
that layout. The triangles of course remain the same for any
particular layout.

Case 1: q ≡ 1 mod 4. First, we calculate the number of
inter-cluster triangles of the form (v1, v1, v1). Choose one of
the q non-quadric clusters at random. There are (q−1)

2 non-
center V1 elements in the cluster. We choose one of these
and call it w. Looking at a layout in which w is a center,
w participates in q−1

2 triangles of the form (v1, v1, v1), of
which exactly two are internal to the cluster, so the other q−5

2
triangles are entirely inter-cluster. Considering all the non-
center V1 elements in all the clusters, we get

q(q − 1)(q − 5)

4

triangles, but each is counted six times. So there are

q(q − 1)(q − 5)

24

triangles in total of the form (v1, v1, v1). We also have that w
participates in q−1

2 triangles of the form (v1, v2, v2). None of
these is internal to the cluster, since all internal triangles of
that form are (c, v2, v2), where c is the center. Considering all
the non-center V1 elements in all the clusters, we get

q(q − 1)2

4
,

but each is counted twice. So there are
q(q − 1)2

8

triangles in total of the form (v1, v2, v2). Since

q(q − 1)2

8
+
q(q − 1)(q − 5)

24
=

(
q

3

)
,
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we have accounted for all of the inter-cluster triangles for
q ≡ 1 mod 4.

Case 2: q ≡ 3 mod 4. First, we calculate the number of
inter-cluster triangles of the form (v1, v1, v2). Choose one of
the q non-quadric clusters at random. There are q−1

2 non-center
V1 elements in the cluster. We choose one of these and call it
w. We see by considering a layout in which w is a center that
w0 participates in ( q−12 triangles of the form (v1, v1, v2), of
which exactly 1 is internal to the cluster, so the other q−3

2
triangles are entirely inter-cluster. Considering all the non-
center V1 elements in all the clusters, we get q(q−1)(q−3)

4
triangles, but each is counted twice. So there are

q(q − 1)(q − 3)

8

triangles in total of the form (v1, v1, v2). We know that when
q ≡ 3 mod 4, there are no triangles of the form (v1, v2, v2)
nor of the form (v1, v1, v1), so the remaining triangles must
be of the form (v2, v2, v2), and there are(

q

3

)
− q(q − 1)(q − 3)

8
=

(q + 1)q(q − 1)(q − 1)

24

of these.
As a corollary of Table II, we have Table III, giving the

possible types of the intermediate vertex of an alternative 2-
hop path between two adjacent vertices. Such a 2-hop path
always exists if neither of the vertices are quadric.

v1 v2

q ≡ 1 mod 4
v1 v1 v2

v2 v2 v1

q ≡ 3 mod 4
v1 v2 v1

v2 v1 v2

TABLE III: Types of the intermediate vertices in a 2-hop path between two adjacent
non-quadric vertices.

VI. EXPANDABILITY

Expandability is crucial in budget-driven scenarios, as dis-
cussed in Section III. In an underprovisioned expandable net-
work, unused ports on the nodes can be used to incrementally
connect additional nodes to the network. In this section, we
show that PolarFly affords incremental expansion and present
two methods to accomplish this.

Importantly, these methods do not require rewiring of the
existing links. They offer a trade-off across different parame-
ters, as summarized in Table IV. These methods are based on
cluster replication in PolarFly, which is defined as follows:

Definition VI.1. Given a graph G(V,E), replication of a
vertex cluster C ⊆ V creates a new graph G′(V ∪ C ′, E′).
For every vertex v ∈ C, there exists a replica v′ ∈ C ′ such
that in the graph G′:

... ...

Quadric Replica�on Non-Quadric Replica�on

C2 CqC1 C1 C2 Cq Cq+1

C0 C0' C0

Fig. 7: Expansion methods.

• For every intra-cluster edge (v, w) ∈ E between two ver-
tices {v, w} ∈ C, the corresponding replicas {v′, w′} ∈
C ′ are also adjacent, i.e. (v′, w′) ∈ E′.

• For every inter-cluster edge (v, w) ∈ E where v ∈ C and
w /∈ C, the replica v′ is adjacent to w, i.e. (v′, w) ∈ E′.

Physically, replication is achieved by simply adding an ad-
ditional rack of nodes, which has similar intra-rack layout and
connectivity to rest of the clusters as its original counterpart.
Hence, cluster replication methods (sec.VI-A and VI-B) allow
modular expansion without rewiring any of the existing links.

A. Replicating the Quadric Cluster
One way to expand PolarFly is to replicate quadric cluster
C0 as per Def.VI.1, until the desired scale is reached. After
replication, to increase the network radix of quadrics, we
directly connect every quadric v ∈ C0 and all of its replicas
with each other. It can be shown that every replication of C0:

1) Increases the number of vertices by q+1, while preserv-
ing the diameter D = 2.

2) Increases the degree of quadrics W (q) (and their replicas)
and vertices in V1(q) by 1 and 2, respectively.

3) Creates q+1 edges between the replicated cluster C ′0 and
all other clusters.

With this method, using n additional ports per node, the
size of PolarFly can be increased by n(q+1)

2 , while keeping the
diameter D = 2. However, new links are only added between
quadric nodes and V1(q). Hence, a large number of quadric
replications can result in a non-uniform degree distribution.

Method Scalability Degree
Distribution Diameter Average Shortest

Path Length Rewiring

Replicate Quadrics q+1
2

Non-uniform 2 < 2 None

Replicate Non-Quadrics ≈ q Uniform 3 < 2 None

TABLE IV: Characteristics of Expansion Methods. Scalability refers to the increase in
number of nodes per unit increase in the maximum network radix.

B. Replicating Non-Quadric Clusters
In this method, we expand PolarFly by replicating non-quadric
clusters Ci|i>0 in a round-robin order, as per Def.VI.1. The
replica of Ci is labeled Cq+i, as shown in Figure 7.

Replicating a non-quadric cluster does not add edges to
existing center vertices, which can lead to a non-uniform
degree distribution. To mitigate this, we note that for every
non-quadric cluster Cj where i 6= j (and replica Cq+j if it
exists), there is exactly one vertex in Ci with no edges to
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Cj (Cq+j , respectively). We connect the replica of this vertex
with the centers of Cj (Cq+j , respectively). It can be shown
that for any n ≤ q, n such replications of non-quadric clusters:

1) Increase the number of vertices by qn, which is approx-
imately 2× compared to quadric replication.

2) Increase the maximum degree by n+ 1.
3) Increase diameter to 3 – for every vertex u ∈ Ci|i>0

(replica u′ ∈ Ci+q), there are at most q − 1 vertices, all
in replica Ci+q (Ci, respectively), that are at a shortest
distance of 3 from u (u′, respectively).

With non-quadric repliction, new links are distributed across
all vertices, providing a near-uniform degree distribution.
While the diameter of topology increases to 3, the average
shortest path length is still clearly less than 2.

VII. ROUTING

To facilitate the adoption of PF, we rely on established
schemes and show in the evaluation (Section VIII) that they
deliver high performance. However, to show the highest PF
potential, we also develop a new adaptive protocol suited
specifically for PF. Note that under co-packaged setting, nodes
and routers are the same entity in direct networks.

A. Minimal Static Routing
With minimal static routing, a packet is routed from its source
router Rs over the minimal path to its destination router Rt.

B. Valiant Routing
Let Rs and Rt denote the source and destination routers,
respectively. For each packet, the Valiant routing scheme [49]
selects a random router Rr such that Rr 6= Rs and Rr 6= Rt.
Then, it routes the packet from Rs to Rr and Rr to Rt along
the corresponding shortest paths. This avoids potential hot
spots in the network, but reduces the available bandwidth.

The general Valiant design selects some intermediate router.
For PolarFly, we use a variant which we call Compact Valiant,
where Rr is chosen from the neighborhood of Rs. The path
length for any packet in Compact Valiant is at most 3-hops, as
opposed to 4-hops in general Valiant. This reduces the amount
of bandwidth wasted on links due to intermediate traffic.

However, the 3-hop route selection will be disadvantageous
if the shortest path between Rr and Rt goes through the source
router Rs. In this scenario, the random neighbor selection
would result in the packets bouncing back to the source router.
Fortunately, in PolarFly, this situation is easily avoided as it
occurs only when Rs and Rt are adjacent. Hence, we use
Compact Valiant only when Rs and Rt are not adjacent.

C. Adaptive Routing
In adaptive routing, the router into which a packet is first
injected decides whether this packet should be routed over
a minimal path or over a Valiant path. This decision is made
on the basis of occupancy of local output buffers used in the
respective paths, as well as the lengths of the considered paths.
This routing algorithm is called Universal Globally-Adaptive
Load-balancing (UGAL) [50].

For PolarFly, we also explore a UGAL variant which we
call UGALPF. To achieve high bandwidth, UGALPF reduces
the average hops per packet by using:
• Compact Valiant described in Section VII-B, and
• Adaptation threshold – Valiant path is chosen over min-path

only when fractional occupancy of the output buffer towards
min-path is greater than a threshold ( 23 in our case).

Thus, UGALPF offers a trade-off between adaptability of
UGAL and low hop count of minimal static routing.

VIII. PERFORMANCE ANALYSIS

We now evaluate the latency and throughput of PolarFly.

A. Methodology and Comparison Targets
We compare PolarFly to Slim Fly [26] (as the most competitive
diameter-2 network), Dragonfly [34] (as a popular recent
choice when developing interconnects), Jellyfish [51] (as a
random expander network) and 3-level fat tree [37] (as the
most widespread existing interconnect baseline). Except fat
tree, all topologies are direct. As numerous past works illus-
trate, networks such as torus, hypercube or Flattened Butterfly
are less competitive in latency and bandwidth [26], [34], [52].

We use two variants of Dragonfly – (a) balanced Drag-
onfly (DF1), and (b) Dragonfly with radix and scale almost
equivalent to PolarFly (DF2). Configurations of the baseline
topologies are given in Table V.

Network Parameters Number of Routers Network Radix

PolarFly (PF) q=31, p=16 993 32
Slim Fly (SF) q=23, p=18 1058 35
Balanced Dragonfly (DF1) a=12, h=6, p=6 876 17
Equivalent Dragonfly (DF2) a=6, h=27, p=10 978 978
Jellyfish (JF) – 993 32
Fat Tree (FT) n=3, k=18 972 36

TABLE V: Configuration of topologies used for simulations.

Following traffic patterns are simulated to effectively
analyze the network behavior:
1) Uniform random traffic – for each packet, the source selects

a destination uniformly at random (representing graph pro-
cessing and distributed-memory graph algorithms, sparse
linear algebra solvers, and adaptive mesh refinement meth-
ods [26], [53]–[58]).

2) Tornado traffic – endpoints on every router i send all traffic
halfway across to endpoints on router i+ N

2 modulo N .
3) Random permutation traffic – a fixed permutation mapping

of source to destination is chosen uniformly at random
from the set of all permutations. In PolarFly, Tornado and
Random permutation traffic are adversarial for min-path
routing because there is only one shortest path between
any pair of routers.

4) Finally, two special permutation traffic patterns Perm1Hop
and Perm2Hop are chosen to analyze UGALPF. In
Perm1Hop, every router communicates with a 1-hop neigh-
bor – the min-path length is 1-hop and valiant path length
in UGALPF is 4-hops. In Perm2Hop, every router com-
municates with a 2-hop neighbor – the min-path length is
2-hop and valiant path length in UGALPF is 3-hops.
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(d) Tornado Permutation Traffic.

Fig. 8: Performance analysis (comparison with other topologies).

We use the established BookSim simulator [59] to conduct
cycle-accurate simulations. Each router along with all of its
endpoints in BookSim represents a single co-packaged node.
To mimic co-packaged setting under permutation traffic, we
enforce that all endpoints of a router send data to endpoints
of only one other router. In other words, permutations are
computed between routers, and not endpoints.

Packets of size 4 flits each are injected with a Bernoulli
process. We use input-queued routers with 128 flit buffers per
port and 4 virtual channels. In all simulations, we use a warm-
up phase where no measurements are taken, to ensure that the
simulator first reaches a steady-state.

B. Discussion of Results – Comparison against Baselines
Figure 8 compares the performance of PolarFly (PF) and
the topologies shown in Table V. The labels follow the
scheme <network>-<routing>. The offered load in Figure 8
is normalized to the maximum capacity of each network.

For Permutation traffic, min-path routing in direct networks
can achieve at most 1

p of peak throughput, because all p
endpoints of a source router access the same path to the
destination router. Hence, we only compare adaptive routing
performance under permutation patterns in these topologies.

In general, we observe that PolarFly offers superior perfor-
mance – for all traffic patterns, it outperforms all competitive
direct topologies. Its advantages over Jellyfish and Dragonfly
in terms of lower latency, are a direct consequence of its
low diameter. Its benefits over Slim Fly in terms of higher
saturation bandwidth, are due to careful design of routing
protocols that exploit PolarFly structure to ensure that the
routing decisions are as good as possible. Amongst the Drag-
onflies, the balanced DF1 outperforms DF2 whose throughput
is bottlenecked by the traffic volume on intra-group links.

For the Uniform traffic, the adaptive routing based on
Compact Valiant (UGALPF) exhibits latency and saturation
throughput comparable to that of min-path routing, while
significantly outperforming other adaptive algorithms and
baseline topologies. Remarkably, the maximum throughput
sustained by PolarFly for uniform traffic is comparable to the
fat tree, with considerable reduction in latency.

For Random and Tornado Permutation traffic patterns, Po-
larFly is able to sustain up to 50% of the full injection
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Fig. 9: Performance of adaptive routing in PolarFly under Permutation Traffic

bandwidth, using adaptive algorithms UGAL and UGALPF.
The performance of these patterns is similar to Perm2Hop
traffic shown in figure 9a, as min-path for most packets
is 2-hops long. The total buffer space in the min-path is
higher compared to Perm1Hop (Figure 9b, all 1-hop min-
paths), rendering UGALPF slower to adapt to congestion.
Hence, UGALPF has considerably higher latency than UGAL
for Tornado, Random and Perm2Hop permutation patterns.
UGAL has relatively higher entropy in terms of path selection,
resulting in smaller queues inside routers and lower latency.
Figure 9 also provides detailed insight into adversarial nature
of permutation patterns for min-path routing in PolarFly. It can
only withstand 5% of the full injection bandwidth, compared
to almost 50% with adaptive routing.

C. Discussion of Results - PolarFly Size
Next, we investigate the impact of PolarFly size on the per-
formance by (a) varying q (radix), and (b) expanding network
incrementally using the methods described in Section VI. We
analyze balanced variants of PolarFly topology under uniform
traffic i.e. the ratio of number of endpoints to network radix
is maintained to 1 : 2 in all experiments.

Figure 10 shows the latency and throughput for PolarFly
for q = 13, 19, 25 and 31, which corresponds to 183, 381, 651
and 993 routers, respectively. The labels follow the scheme
<network>q-<routing>. All PolarFlies provide similar satu-
ration bandwidth and latency for both min-path and UGALPF
routing. This shows that PolarFly performance is stable with
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Fig. 10: Performance Comparison of Polarfly of different sizes under uniform traffic

respect to the size of the network.
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Fig. 11: Performance analysis of incrementally expanded PolarFly.

Figure 11 shows the latency and throughput of Polarfly
incrementally expanded by adding 3, 6, 9 and 12 clusters by
quadric or non-quadric cluster replication, which corresponds
to approximately 10%, 19%, 29% and 39% increase in net-
work size, respectively. The labels of incrementally expanded
networks follow the scheme <network><size increase in percent>-
<routing>. We observe that 39% incremental growth in size
using quadric replication results in a 31% drop in throughput.
Comparatively, non-quadric replication creates only 19% drop
in throughput for an equivalent increase in network size, thanks
to its near-uniform degree distribution. Moreover, after the
first replication, subsequent non-quadric replications have little
impact on maximum throughput – 73% of peak bandwidth
with 10% incremental growth vs 67% of peak bandwidth with
39% incremental growth.

IX. STRUCTURAL ANALYSIS

We compare bisection bandwidth and link failure resilience of
PolarFly, against the topologies given in Table V.

A. Bisection bandwidth
Figure 12 shows the bisection bandwidth of compared topolo-
gies in terms of the fraction of edges in the bisection cut-
set computed by METIS [60]. Fat Trees provide optimal
bisection bandwidth with 50% edges lying in the cut-set.
PolarFly closely approximates the optimal ratio, reaching it
asymptotically. For network radix ≥ 18, PolarFly has more
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Fig. 12: Bisection bandwidth of different topologies shown by the number of links in
the cut normalized to total links in the topology.

than 40% links crossing the bisection, even surpassing random
expander networks such as Jellyfish [51]. This is not suprising
since PolarFly topology expands extremely well, enforcing an
almost Moore Bound spanning tree view from each vertex,
whereas Jellyfish relies on random distribution of links and
only achieves 50% of links in expectation for a random bi-
section. PolarFly has significantly higher bisection bandwidth
compared to deterministic topologies SlimFly and Dragonfly,
that have only 33% and 17% links in bisection.

B. Fault Tolerance and Path Diversity
On the topology configurations given in Table V, we simulate
100 random link failures until network disconnection, and
compute the median disconnection ratio.1 We then randomly
select a run with median disconnection ratio, and report its
variation in network diameter and average shortest path length
in Figure 14. We also analyze path diversity in PolarFly in
Table VI to better understand its behavior under link failures.

Path length Conditions Number of paths

1 v, w adjacent 1

2 v, w adjacent and one of v, w quadric 0
all other cases 1

3 v, w adjacent 0
v, w not adjacent, x not quadric q − 1
v, w not adjacent, x quadric q

4 v, w adjacent and neither of v, w quadric (q − 1)2

v, w adjacent and one of v, w quadric q2 − q
v, w not adjacent and both of v, w quadric q2 − q
v, w not adjacent, v, w ∈ V1, x not quadric q2 − 4

v, w not adjacent, v quadric, w ∈ V1 q2 − 3
v, w not adjacent, v, w ∈ V1, x quadric q2 − 2
v, w not adjacent, v ∈ V1, w ∈ V2 q2 − 2
v, w not adjacent, v quadric, w ∈ V2 q2 − 1
v, w not adjacent, v ∈ V2, w ∈ V2 q2

TABLE VI: Path diversity in ERq for small lengths: the number of paths of given
lengths between arbitrary vertices v and w, and the conditions under which such paths
exist. The vertex x is the unique intermediate vertex between v and w (if it exists).
There are many different cases for path length 4; however, all are O(q2). They are
listed from smallest number of paths to largest.

1Mean and Standard Deviation statistics cannot be used because if any run
disconnects at a particular failure ratio, its diameter becomes infinite.
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(a) Overhead view of ER17. (b) Side view of ER17. (c) Overhead view of ER19. (d) Side view of ER19.

Fig. 13: Graphs for ER17 and ER19 are compared. The edges from the starting quadric to the clusters and the cluster edges are rendered in black. All other edges are rendered
in light grey. Quadrics are in red, the centers are in light green, V1 vertices are in green in the top layer, and V2 vertices are in blue in the bottom layer. The triangle fan-outs
internal to the clusters may be compared for q = 17 and q = 19: 17 ≡ 1 mod 4, and the triangle pairing of V1 vertices with each other, and V2 vertices with each other may
be seen in subfigures 13a and 13b, with no vertical edges within a cluster joining the V1 upper layer with the V2 lower layer. Likewise, 19 ≡ 3 mod 4, so the triangle pairing
of V1 vertices with V2 vertices are seen in subfigures 13c and 13d, in this case with vertical edges within a cluster joining the V1 upper layer with the V2 lower layer.
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Fig. 14: Resilience properties of topologies as a function of the fraction of failed links.

Jellyfish, being a random expander, is highly resilient to
link failures – random failures in Jellyfish result in just another
random graph. PolarFly and SlimFly exhibit similar resilience,
with higher disconnection ratio than both Fat tree and balanced
Dragonfly DF1. They are both expanders and have comparable
resilience to Jellyfish. However, being diameter-2 networks
with close to Moore bound scalability, the diameter of PolarFly
and SlimFly increases more rapidly than Jellyfish. Compared
to PolarFly, SlimFly has slightly more redundancy in minimal
paths, resulting in marginally higher disconnection ratio, even
though it reduces scalability.

If a single link fails, the diameter of PolarFly increases to
3, or 4 if the link is from a quadric. Table VI shows that there
are no 2- or 3-hop paths between quadrics and the adjacent
vertices, which intuitively explains why PolarFly diameter
increases to 4 with only 5% link failure, as in Figure 14.
However, PolarFly has a great deal of path diversity for path
length 4, so its diameter stays at 4 even when 55% links fail.

If a node x fails, PolarFly diameter would increase from
2 to 3, as the 2-hop minimal paths between neighbors of x
would be lost. However, for any neighbor v of x, the neighbors
of v have 1-hop or 2-hop paths to other neighbors of x, that
do not pass through x. Hence, despite x failing, v can still
reach other nodes within 3-hops.

X. COST ANALYSIS

We now analyze the cost of the network topologies under iso-
injection bandwidth constraints. We fill focus on a specific case
which is reflective of the latest technological developments:
co-packaged Optical IO (OIO) [16]. The primary cost indicator
is the total number of optical IO ports: each port requires an
OIO module, a laser, a connector and cables. Technological
constraints limit to the number of OIO modules that can be
co-packaged in a die due to shoreline limitations: the state of
the art is 4 to 6 OIO modules per die, with 8 links per module.
We consider configurations with approximately 1,024 nodes,
with each topology having the same injection bandwidth.
Given that not all the constructions have exactly that number
of nodes, we normalize the number of links to a network
configuration with 1,024 nodes. In addition, we also consider
the achievable injection performance and we normalize the
achievable performance, under two distinct scenarios: uniform
and permutation traffic. While most networks reach compa-
rable saturation points with uniform traffic, typically around
90%, fat trees are almost insensitive to the type of permutation
while direct topologies must resort to some type of misrouting,
bringing their saturation points down to approximately 50%.
Both Polarfly and Slim Fly use 4 OIO modules with 32 links
per node, while Dragonfly 6 OIO modules with 48 links. Fat
trees use switches with 4 OIO modules and 32 links, and
each of the 1,024 nodes has 2 OIOs with 16 injection links.
Figure 15 shows the relative costs to PolarFly under the two
traffic patterns. Slim Fly has a slight cost increase of about
20%, reflective of the lower fraction of Moore’s bound, while
the Dragonfly is a diameter 3 network, so the ratio injection
bandwidth to overall bandwidth is 1:3 vs 1:2 for PolarFly and
Slim Fly. Due to packaging limitations, fat tree switches can
only connect two input nodes with 16 links each, resulting
in a rather deep 10-level construction of 512 switches per
level, and 256 switches in the top level. PolarFly compares
very favorably to fat trees with a 5.19X cost reduction under
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uniform traffic and 2.68X under permutation traffic.
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Fig. 15: Cost per node under different topologies normalized to 1,024 nodes.

XI. RELATED WORK

Network topologies considered in this paper are described in
detail in Section II, more details are also provided in a recent
survey [61]. Early works into novel topologies with diameter
lower than that of 3-stage Fat trees [37] include Flattened
Butterfly [52] and its generalization called HyperX [35], and
the Dragonfly topology [34], [62]. These designs mainly aimed
at facilitating the physical layout of networks. Lowering the
diameter of a network in order to reduce cost and power con-
sumption while maintaining high performance have been intro-
duced in the Slim Fly class of interconnects [26], [63]. Since
then, several other designs followed, including Xpander [9],
Megafly [64], Bundlefly [47] or Galaxyfly [65]. However,
they do not focus on diameter-2 and thus none of them
improves upon key properties such as latency, cost, or power
consumption. PolarFly extends this line of work by exploiting
a family of graphs that is asymptotically optimal with respect
to the Moore Bound, allowing close to optimal scalability.
It simultaneously offers superior cost, power consumption,
and performance. Moreover, it specifically targets the recent
developments into copackaged optics, something not addressed
so far in the literature for scalable network design.

Routing in low-diameter networks has also been a subject
of research, especially in recent years. For example, the Fat-
Paths [66] routing architecture, enables adaptive multipathing
in data-center and HPC clusters in low-diameter networks,
focusing on Slim Fly. However, none of these works is
particularly well suited for the unique structure of PolarFly
in which some routers form intra-connected clusters while a
single cluster of quadric routers forms an independent set. We
address this with a novel adaptive UGAL routing protocol
suited for PolarFly.

The mathematical foundations of the Erdős-Rényi polarity
graphs (ER) are embedded in projective geometry and were
laid down in mid-20th century. Singer [67] first formulated
perfect difference sets – a numerical structure that encodes
the incidence between lines and points of projective planes.
Erdős and Rényi [32] discovered the polarity quotient graph
of this incidence structure, which forms the basis of PolarFly.
Indpendently, Brown [33] also constructed the same graph
using orthogonality relationship of points in projective planes.

Building on these foundations, some prior works have
proposed an ER graph topology for high performance inter-
connection networks. Parhami et al. [68] use perfect difference
sets to construct the bipartite network of same degree, diameter
and order as the incidence graph described in section IV-E1.
Brahme et al. [69] rediscover the ER graphs by defining a
symmetric adjacency equation on the perfect difference sets.
They also compare the performance of certain communication
primitives on this topology and the Clos network. Camarero
et al. [70] use the polarity-map based construction of ER
graphs (section IV-E2) and compare the cost of conventional
networks with various topologies.

To the best of our knowledge, PolarFly is the first work to
comprehensively analyze networking properties of ER graphs,
covering several aspects beyond the prior attempts [69], [70],
including a comparison of feasible radixes, performance for
various traffic patterns, bisection width, resilience, and net-
work cost under a co-packaged and iso-bandwidth setting. We
also develop a novel modular layout, incremental expansion
strategies, and routing schemes to exploit non-minimal path
diversity, all of which utilize new mathematical properties of
the ER graphs that are presented for the first time in this paper.
In this way, our work extends the feasibility of ER graphs as
network topologies, well beyond the existing literature.

XII. CONCLUSION

In this paper, we propose PolarFly, a diameter-2 network
that asymptotically reaches the Moore upper bound on the
number of nodes for a given degree and diameter. PolarFly
improves upon Slim Fly, being more performant, scalable and
cost-effective by up to 10%. Importantly, PolarFly is flexible
(it offers a wide range of feasible designs using manufac-
turable routers), modular (its structure can be decomposed into
groups), and expandable (one can incrementally increase its
size without much performance loss). We expect that PolarFly
will become the enabler for more energy-efficient intercon-
nects in the next-generation era of co-packaged devices.
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fler, and E. Solomonik, “Communication-efficient jaccard similarity
for high-performance distributed genome comparisons,” in 2020 IEEE

16



International Parallel and Distributed Processing Symposium (IPDPS).
IEEE, 2020, pp. 1122–1132.

[56] S. Sakr, A. Bonifati, H. Voigt, A. Iosup, K. Ammar, R. Angles, W. Aref,
M. Arenas, M. Besta, P. A. Boncz et al., “The future is big graphs: a
community view on graph processing systems,” Communications of the
ACM, vol. 64, no. 9, pp. 62–71, 2021.

[57] L. Gianinazzi, P. Kalvoda, A. De Palma, M. Besta, and T. Hoefler,
“Communication-avoiding parallel minimum cuts and connected com-
ponents,” ACM SIGPLAN Notices, vol. 53, no. 1, pp. 219–232, 2018.

[58] M. Besta and T. Hoefler, “Accelerating irregular computations with
hardware transactional memory and active messages,” in Proceedings
of the 24th International Symposium on High-Performance Parallel and
Distributed Computing, 2015, pp. 161–172.

[59] N. Jiang, D. U. Becker, G. Michelogiannakis, J. Balfour, B. Towles, D. E.
Shaw, J. Kim, and W. J. Dally, “A detailed and flexible cycle-accurate
network-on-chip simulator,” in Performance Analysis of Systems and
Software (ISPASS), 2013 IEEE International Symposium on. IEEE,
2013, pp. 86–96.

[60] G. Karypis and V. Kumar, “MeTis: Unstructured Graph Partitioning and
Sparse Matrix Ordering System, Version 4.0,” http://www.cs.umn.edu/
∼metis, University of Minnesota, Minneapolis, MN, 2009.

[61] M. Besta, J. Domke, M. Schneider, M. Konieczny, S. Di Girolamo,
T. Schneider, A. Singla, and T. Hoefler, “High-performance routing with
multipathing and path diversity in ethernet and hpc networks,” IEEE
Transactions on Parallel and Distributed Systems, vol. 32, no. 4, pp.
943–959, 2020.

[62] B. Arimilli et al., “The PERCS High-Performance Interconnect,” in
Proceedings of the 2010 18th IEEE Symposium on High Performance
Interconnects, ser. HOTI ’10. Washington, DC, USA: IEEE Computer
Society, 2010, pp. 75–82.

[63] M. Besta, S. M. Hassan, S. Yalamanchili, R. Ausavarungnirun, O. Mutlu,
and T. Hoefler, “Slim noc: A low-diameter on-chip network topology for
high energy efficiency and scalability,” ACM SIGPLAN Notices, vol. 53,
no. 2, pp. 43–55, 2018.

[64] M. Flajslik, E. Borch, and M. A. Parker, “Megafly: A topology for
exascale systems,” in International Conference on High Performance
Computing. Springer, 2018, pp. 289–310.

[65] F. Lei, D. Dong, X. Liao, X. Su, and C. Li, “Galaxyfly: A novel family
of flexible-radix low-diameter topologies for large-scales interconnection
networks,” in Proceedings of the 2016 International Conference on
Supercomputing, 2016, pp. 1–12.

[66] M. Besta, M. Schneider, M. Konieczny, K. Cynk, E. Henriksson,
S. Di Girolamo, A. Singla, and T. Hoefler, “Fatpaths: Routing in
supercomputers and data centers when shortest paths fall short,” in SC20:
International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 2020, pp. 1–18.

[67] J. Singer, “A theorem in finite projective geometry and some applications
to number theory,” Transactions of the American Mathematical Society,
vol. 43, no. 3, pp. 377–385, 1938.

[68] B. Parhami and M. Rakov, “Perfect difference networks and related
interconnection structures for parallel and distributed systems,” IEEE
transactions on parallel and distributed systems, vol. 16, no. 8, pp. 714–
724, 2005.

[69] D. Brahme, O. Bhardwaj, and V. Chaudhary, “Symsig: A low latency
interconnection topology for hpc clusters,” in 20th Annual International
Conference on High Performance Computing. IEEE, 2013, pp. 462–
471.

[70] C. Camarero, C. Martı́nez, E. Vallejo, and R. Beivide, “Projective
networks: Topologies for large parallel computer systems,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 28, no. 7, pp. 2003–
2016, 2017.

17


