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The Message Passing Interface — Communicating Processes
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The Message Passing Interface — Communicating cDAGs

Process O Process 2 Process 4

Process 1 Process 3
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The Message Passing Interface — Distributed/Cut cDAGs

Process O Process 2 Process 4

Process 1
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One step back — how to conquer the complexity of cDAGs?

start

Work: W =T,

Depth: D =T,

Parallel efficiency: E, = —L
arailiel erriciency. p = pr

Treewidth: usually small (2 for series parallel graphs)

The generating program has an O(1) description

end
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Side note: Analyzing cDAGs generated by programs — hard but doable!

for (J = 1; jJ <= n; j = J*2)
for (k = j; k <= n; k = k++)
operation (x,Vy)

while(ciz < g1) {
xr = A1£IZ—I—bl;

Affine loop model

. - while(clz < ¢2) |
N RS N=m+1)log,n—n+ 2
n—-i--------i’-:- e = Ar_12 + br—1;
. % i while(ciz < gr) {
1t ! T = Apx + by;
29t A while (¢ 12 < guy1) {... 2
1 4-------- P k=t r = Ugz + vi; }
2 ] z=Uk1z +u—1;  Automatic work-depth analysis for
) |
selLn] Kefin = Uz + v1:) MPI (and other) programs!

TH, Grzegorz Kwasniewski: Automatic Complexity Analysis of Explicitly Parallel Programs, SPAA’14
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Process O

UIUC/NCSA Blue Waters in 2012
Total TCO ~S500M
49,000 AMD Bulldozer CPUs — 0.5 EB storage

Where do these processes go?

Understand supercomputer network architecture!
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A BRIEF HISTORY OF NETWORK TOPOLOGIES
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A BRIEF HISTORY OF NETWORK TOPOLOGIES
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#1: Bandwidth = 2V Nd—1
Y Latency = 4YN
Radix = 2d
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A BRIEF HISTORY OF NETWORK TOPOLOGIES
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An In-Depth Analysis of the Slingshot Interconnect

Daniele De Sensi
Department of Computer Science
ETH Zurich
ddesensi @ethz.ch

Duncan Roweth
Hewlett Packard Enterprise
duncan roweth@hpe.com

Abstract—The interconnect is one of the most critical compo-
nents in large scale computing systems, and its impact on the per-
formance of applications is going to increase with the system size.
In this paper, we will describe SLINGSHOT, an interconnection
network for large scale computing systems. SLINGSHOT is based
on high-radix switches, which allow building exascale and hyper-
scale datacenters networks with at most three switch-to-switch
hops. Moreover, SLINGSHOT provides efficient adaptive routing
and congestion control algorithms, and highly tunable traffic
classes. SLINGSHOT uses an optimized Ethernet protocol, which
allows it to be interoperable with standard Ethernet devices while
providing high performance to HPC applications. We analyze the
extent to which SLINGSHOT provides these features, evaluating
it on microbenchmarks and on several applications from the
datacenter and Al worlds, as well as on HPC applications. We
find that applications running on SLINGSHOT are less affected
by congestion compared to previous generation networks.

Index Terms—interconnection network, dragonfly, exascale,
datacenters, congestion

Salvatore Di Girolamo
Department of Computer Science
ETH Zurich
salvatore.digirolamo@inf.ethz.ch

Kim H. McMahon
Hewlett Packard Enterprise
kim.mcmahon@hpe.com

Torsten Hoefler
Department of Computer Science
ETH Zurich
torsten.hoefler @inf.ethz.ch

world. Due to the wide adoption of Ethernet in datacenters,
interconnection networks should be compatible with standard
Ethernet, so that they can be efficiently integrated with stan-
dard devices and storage systems. Moreover, many data center
workloads are latency-sensitive. For such applications, rail
latency is much more relevant than the best case or average
latency. For example, web search nodes must provide 99'"
percentile latencies of a few milliseconds [#]. This is also
a relevant problem for HPC applications, whose performance
may strongly depend on messages latency, especially when us-
ing many global or small messages synchronizations. Despite
the efforts in improving the performance of interconnection
networks, tail latency still severely affect large HPC and data
center systems [&]-[7].

To address these issues, Cray{| recently designed the SLING-
SHOT interconnection network. SLINGSHOT will power all
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fiber, high-radix switches

Key insight:

“It’s the diameter, stupid”

~ (e |

Lower diameter:

- Fewer cables traversed
- Fewer cables needed
- Fewer routers needed

=
Cost and energy savings:
- Up to 50% over Fat Tree
- Up to 33% over Dragonfly
?
Bandwidth ~ % N &% W
Latency =2 -1 L1
Radix =

Maciej Besta, TH: Slim Fly: A Cost Effective Low-Diameter Network Topology, ACM/IEEE SC14 Best Student Paper
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A BRIEF HISTORY OF NETWORK TOPOLOGIES
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Maciej Besta, TH: Slim Fly: A Cost Effective Low-Diameter Network Topology, ACM/IEEE SC14 Best Student Paper
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Topology mapping is NP hard ®

Chapter 5

An Overview of Topology Mapping Algorithms and Techniques in

- Peformance

High-Performance Computing

Compls Enwrenmih

Torsten Hoefler, Emmanuel Jeannot, Guillaume Mercier

TH and Marc Snir: Generic Topology Mapping Strategies for Large-scale Parallel Architectures , ACM ICS’11
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A new topology mapping heuristic — minimize bandwidth of both graphs

Application Graph (SpMV) Network Graph (8x8x8 torus)

RCM Permutation RCM Permutation

TH and Marc Snir: Generic Topology Mapping Strategies for Large-scale Parallel Architectures , ACM ICS’11
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Still a lot to be explored — e.g., parametric graphs!
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Assume processes are mapped nicely — structured communication

Process 0 Process 1
Process 3

Process 2

The generating program has an O(1) description = it has a lot of structure!

Process 4

Bulk synchronous (single global state) thinking model works great for humans like me.
Communications there can often be described algorithmically as collective operations — MPI does so!

MPI_Allgather MPI_Aligatherv MPI Allreduce MPI_Alltoall MPI_Alltoallv
MPI_Alltoallw MPI_Barrier MPI_Bcast MPI_Gather MPI_Gatherv
MPI_Reduce MPI_Scatter MPI_Scatterv MPI_Exscan MPI_Reduce_local
MPI_Reduce_scatter MPI_Scan MPI_Neighbor_allgather MPI_Neighbor_alltoall

TH, D. Moor: Energy, Memory, and Runtime Tradeoffs for Implementing Collective Communication Operations
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LogP — an accurate network model!

The LogP model family and the LogGOPS model [1]

A new parallel machine model reflects the critical technology

Ping-pong in simplified LogP (g<o, P=2)

4 PracTICcAL MODEL of source [—>. -
ParRaLLEL COMPUTATION 0 L L

UR GOAL IS TO DEVELOP A MODEL OF PARALLEL COMPUTATION THAT WILL

Dest.

a globallr:

Finding LogGOPS parameters Large scale LogGOPS Simulation

Netgauge [2], model from first principles, fit to data using LogGOPSIim [1], simulates LogGOPS with 10

. —— PRTT(1,0,s) 4_‘{___ 'II' I k
special ou[o] 9 o] 4 o] 5 million MPl ranks . S
ciont A oo § jg % 375
len T T T I '~1~1, oy A A4 A4 A = @©
k I g [¢] 1 { VA A A = E *
ernels alalala] aalelal aldla oy g A
PNV N AN VAV AV g 2 385
Network i« « « i N U \ YA 0, 2 a2 3
<5% error : § o=
N S N DN LSRN A | @ 2
Server A NIRRT VY NN N (ﬁ _(5.—(_[3 g o ;oo
_______ 2 m Simulated & B o« Sirisied
CPU ‘ ° o | ° | O— 2 Benchmarked  x Bonehmarked %
(s1)G i L | 16| L | 6 L %1% s1e | L S I s
t J d umber of Processes
' : Number of Processes

[1]: TH, T. Schneider and A. Lumsdaine: LogGOPSim - Simulating Large-Scale Applications in the LogGOPS Model, LSAP 2010, https://spcl.inf.ethz.ch/Research/Performance/LogGOPSim/
[2]: TH, T. Mehlan, A. Lumsdaine and W. Rehm: Netgauge: A Network Performance Measurement Framework, HPCC 2007, https://spcl.inf.ethz.ch/Research/Performance/Netgauge/
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Designing an optimal small-message broadcast algorithm in LogP

80 . . : .
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60 B I L(
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® 50 o !
< 40%
o 40 -
£ — ; B
— 30 i -
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binary tree
10 binomial tree |
9 | . optimal tree
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Numbers of Processes (P)

TH, D. Moor: Energy, Memory, and Runtime Tradeoffs for Implementing Collective Communication Operations, JSFI 2015
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What happens if processes/nodes fail?

Process 0 Process 1
é ) Process 3

Process 2 E Process 4
Things will fail! 2020 -
= Wang et al., 2010: “Peta-scale systems: MTBF 1.25 hours” | ~ o Rt

= Brightwell et al., 2011: “Next generation systems must be
designed to handle failures without interrupting the
workloads on the system or crippling the efficiency!of the
resource.”

Checkpoint/restart will take longer than MTBF!

S
g
2
o
=
w
®

We need to enable applications to survive fault
= .. toreach Petaseale Exascale!
= Like people did for decades in distributed systems!

Application-visible System Sockets
Ferreira et al.: Evaluating the Viability of Process Replication Reliability for Exascale Systems, SC11
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A fast, low-work, fault-tolerant broadcast

= @Gossip?
= |f root or message received: send to random other node until some global time expires
= Proven to be very effective
= Not strongly consistent @
= Nice theory

o

needs 1.64 log, n rounds to reach all w.h.p.

MPI_Bcast
= But for N=1000
17 rounds only color all nodes 95% of the time e
Where’s my MP'_BcaSt
o g o
Compute

= Very problematic for BSP-style applications

What's up MPI_Reduce

with rank 0?

Hoefler et al.: “Corrected Gossip Algorithms for Fast Reliable Broadcast on Unreliable Systems”, IPDPS’17
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But how does MPI (FT-MPICH) work then? Buntinas’ FT broadcast!

Uses a dynamic tree, each message contains information about children at next levels

Children propagate back to root, relying on local failure-detectors

Complex tree rebuild protocol

Root failure results in bcast never delivered
At least 2 log, n depth!

Hoefler et al.: “Corrected Gossip Algorithms for Fast Reliable Broadcast on Unreliable Systems”, IPDPS’17
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But how does MPI (FT-OpenMPI) work then? Binomial graph broadcast!

= Use fixed graph, send along redundant edges
= Binomial graphs: each node sends to and receives from log, n neighbors

= Can survive up to log, n worst-case node failures
= |n practice much more (not worst-case)

TH, Amnon Barak, A. Shiloh and Z. Drezner: “Corrected Gossip Algorithms for Fast Reliable Broadcast on Unreliable Systems”, IPDPS’17
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Both are far from optimal - from trees to gossip and back!

= The power of randomness: gossip but not just gossip!
= Combine the probabilistic gossip protocol with a deterministic correction protocol

Corrected gossip turns Monte Carlo style gossiping algorithms into Las Vegas style deterministic algorithms!

= But what is a fault-tolerant broadcast? Root failures, arbitrary failures?

WWILEY

= Assuming fail-stop, four criteria need to be fulfilled: f\’p:{f \
1. Integrity (all received messages have been sent) Iél;ﬁil')l::t'fsg
2. No duplicates (each sent message is received only once) e
3. Nonfaulty liveness (messages from a live node are received by all live nodes)
4. Faulty liveness (messages sent from a failed node are either received by all or none live nodes)

= We relax 3+4 a bit: three levels of consistency jesiviren wEscn

Albert Y Zomogs, Serses Edior

1. Not consistent (we provide an improvement over normal gossiping)
2. Nearly consistent (assuming no nodes fail during the correction phase, practical assumption)
3. Fully consistent (any failures allowed)

TH, Amnon Barak, A. Shiloh and Z. Drezner: “Corrected Gossip Algorithms for Fast Reliable Broadcast on Unreliable Systems”, IPDPS’17
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First algorithm: OCG (Opportunistic Corrected Gossip)

= Not consistent, works w.h.p. --- let’s first consider just gossiping

Are all these redundant
messages efficient?

,

TH, Amnon Barak, A. Shiloh and Z. Drezner: “Corrected Gossip Algorithms for Fast Reliable Broadcast on Unreliable Systems”, IPDPS’17 25
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First algorithm: OCG (Opportunistic Corrected Gossip)

ETH:zurich

Optimal deterministic
Fibonacci tree

1024
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S
o 512 -
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256 inefficient
0 | 1 | I |
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Time

TH, Amnon Barak, A. Shiloh and Z. Drezner: “Corrected Gossip Algorithms for Fast Reliable Broadcast on Unreliable Systems”, IPDPS’17

30
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First algorithm: OCG (Opportunistic Corrected Gossip)

=  OCG main idea: run gossip for a while and then switch to a deterministic ring-correction protocol
= Every node that received a message sends it to (rank + 1) % nranks

= Each message may be received twice
= But this depends on when we switch! But what is the longest uncolored chain?

TH, Amnon Barak, A. Shiloh and Z. Drezner: “Corrected Gossip Algorithms for Fast Reliable Broadcast on Unreliable Systems”, IPDPS’17
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The longest uncolored chain K!

99% probable
longest uncolored
chain

gossip becomes
inefficient

|
0 5 10 15 20 25 30
Time

TH, Amnon Barak, A. Shiloh and Z. Drezner: “Corrected Gossip Algorithms for Fast Reliable Broadcast on Unreliable Systems”, IPDPS’17
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First algorithm: OCG (Opportunistic Corrected Gossip)

=  When to switch from gossip to correction?
= Well, when the expected number of correction steps is small and gossip is inefficient
= We can bound the probability of a longest chain of length k

oCcG _ . T
* |n terms of the LogP parameters, T (gossip time), and N (nranks) Topt = arg;nm(T +2L+(2+ K)O)
o
®
. > O
)] . .
e 40 - The optimal time
- predicted to switch
- depends on L, O,
o) and N
= 35 - simulated
| i | i I - i
20 25 30 35

Gossip Time (T)

TH, Amnon Barak, A. Shiloh and Z. Drezner: “Corrected Gossip Algorithms for Fast Reliable Broadcast on Unreliable Systems”, IPDPS’17
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OCG Consistency

= OCG is more efficient than gossip but does not guarantee that all nodes are reached (even w/o failures)

Where’s my
bcast?

= So we need to check that they were actually reached!

TH, Amnon Barak, A. Shiloh and Z. Drezner: “Corrected Gossip Algorithms for Fast Reliable Broadcast on Unreliable Systems”, IPDPS’17
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Second algorithm: CCG (Checked Corrected Gossip)

= CCG sends to the next node until it sent to a node it received from (i.e., knows that node was alive!)
= Since the node it received from also sent, it “knows” that all other nodes have been covered!

= CCG guarantees that all nodes are reached unless a node dies in the middle of the correction phase!
= And another node assumes it finished its job!

TH, Amnon Barak, A. Shiloh and Z. Drezner: “Corrected Gossip Algorithms for Fast Reliable Broadcast on Unreliable Systems”, IPDPS’17
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Second algorithm: CCG (Checked Corrected Gossip)

=  When to switch from gossip to correction?

60 -
55- e .
= predicted
— 50 -
g simulated
|_45- /
40 - .

| |
20 25 _ 30 35
Gossip Time (T)
= A bit later than OCG

TH, Amnon Barak, A. Shiloh and Z. Drezner: “Corrected Gossip Algorithms for Fast Reliable Broadcast on Unreliable Systems”, IPDPS’17
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Third algorithm: FCG (Failure-proof Corrected Gossip)

= FCG can protect from f failures — similar to CCG but instead of aborting to send when heard from one, it
waits to hear from f+1 other nodes!

= So any f nodes can fail and it will still succeed (keep sending)

= Wait, what if there are less than f+1 nodes reached during gossip and they somehow die in the middle of
the protocol?

= So we need to involve the non-gossip-colored nodes

= They will wait to hear from a gossip-colored nodes to exit
= |f no such exit signal comes within a timeout period, panic!
= |n panic mode, send to every other node

= Every node that receives panic messages also panics

= This guarantees consistency (at a high cost)

= Panic mode is extremely unlikely in practice (much less likely than the failing of binomial graphs)
= Likelihood can be reduced arbitrarily with gossiping time!
= So panic is just a theoretical concern (to proof correctness)

TH, Amnon Barak, A. Shiloh and Z. Drezner: “Corrected Gossip Algorithms for Fast Reliable Broadcast on Unreliable Systems”, IPDPS’17
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Case study: TSUBAME 2.0

m algorithm f T lat work 1mncon.
= TiTech machine, published failure logs GOS [12] 0
= Node MTBF = 18,304 hours GOS [12] 3
= Assume 12 hour run on 4,096 nodes = 2.69 failures - -
=  We compare all algorithms and report OCG 0
1. Expected latency OCG 3 1 !
2. Expected work CCG 0
3. Expected inconsistency CCG 3
For CCG/OCG/FCG, we simulate until the — —
nonparameric Cl was within 2% of the median FCG 0
FCG 3
BIG [2] 3
BFB [8] 0

TH, Amnon Barak, A. Shiloh and Z. Drezner: “Corrected Gossip Algorithms for Fast Reliable Broadcast on Unreliable Systems”, IPDPS’17
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Scaling — Without failures

BFB
\

op]
o
|

Simulated Latency
n
]

20 -

B > s} 2 B > s v D > ©
© v \%) A ¢ I Oy ) e} © s
N v 9 :\Q QS) b::) Q;\ »\G?J %Q:l @{3

Nodes

TH, Amnon Barak, A. Shiloh and Z. Drezner: “Corrected Gossip Algorithms for Fast Reliable Broadcast on Unreliable Systems”, IPDPS’17



spcl.inf.ethz.ch 5o o
v een  IETH zUrich

Scaling — With failures (expected for 12 hours on TSUBAME 2.0)

60 -

Simulated Latency
I
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Nodes

TH, Amnon Barak, A. Shiloh and Z. Drezner: “Corrected Gossip Algorithms for Fast Reliable Broadcast on Unreliable Systems”, IPDPS’17
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How to get to optimal? Corrected (optimal) trees!

Piz Daint at CSCS

Gossip

tn 100 Binomial (ours)
.

=

J

3

E 50 7 Binomial (Cray, no SMp—

Binomial (Cray)
0 -

1152 2304 4608 9216 18432 36864

Processes

Martin Kuettler, Maksym Planeta, Jan Bierbaum, Carsten Weinhold, Hermann Haertig, Amnon Barak, TH: Corrected Trees for Reliable Group Communication, PPoPP’19



™ infethz. o
=7 ) = B A T Y FAR RO v esien ETHZzirich

The future (present) of computing — mega datacenters — economy of scale

Kolos datacenter
(mostly in a mine — 0.6 million m?)
1 GW renewable energy by 2027

The village of Ballangen, 2,600 people R ond c E"Tate,x'

north of the polar circle, Norway
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“The network is the Computer” John Gage, Sun Microsystems, 1984

“Datacenters are not supercomputers yet, but eventually they will be.” (me, now)

AWS News Blog

Elastic Network Adapter — High Performance Network Interface for
Amazon EC2

by Jeff Barr | on 28 JUN 2016

/ RDMA will unify the two:
Affordable fast networking and distributed memory

Fast accelerated networking (GPU, network acceleration)

on EC2 | Permalink | #* Share

Microsoft to Drive RDMA Into Datacenters and
Clouds

Movember 18, 2013 by Timothy Prickett Morgan

New research opportunities - RDMA networking offering RMA programming
(actually, we are moving post-RDMA with Smart NICs/sPIN — but no time to discuss that now)
(cf. Next Platform: “Vertical integration is eating the datacenter, part two”, Feb. 2020)
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Basics on R(D)MA memory models

Ii CPU
PCIe root

complex

NIC

>
[

Reads from elation:

© € ARsader_ws,uz

CPU

£ € Aader_w € AWnter_w Ly

]

PCIe root
complex

st(er) = dit(es) dat(er) # sreler) ex

NIC

get_{XP1}
B =Y

(o
I

Non-sequentially consistent behavior!

rf

read Y, 1
lgm._ hb

write X,1

rf J{;&r}

read X,0

read X,0
l po, hb

write Y, 0

l}ﬂ)

read Y, 1

rf

Dan et al.: “Modeling and Analysis of Remote Memory Access Programming”, OOPSLA’16 outstanding paper

RMA put get flush

DMAPP dmapp_put_nbi dmapp_get_nbi dmapp_gsync_wait
OFED (IB) ibv_wr_rdma_write ibv_wr_rdma_read ibv_reg_notify_cqg
Portals 4 PtlPut PtlGet Pt1CTWait

upC upc_memput upc_memget upc_fence

Fortran 2008  assignment assignment Sync_memory
MPL-3RMA  MPI_Put MPI_Get MPI_Win_flush

Modeling and Analysis of Remote Memory Access Programming

Patrick Lam
patrick. lam@uwaterloo.ca
University of Waterloo, Canada

Andrel Marian Dan Torsten Hoefler
andrei.dan@inf.ethz.ch

ETH Zurich, Switzerland

torsten.hoefler @inf ethz.ch
ETH Zurich, Switzerland

Martin Vechev

martin.vechev @inf.ethz.ch
ETH Zurich, Switzerland

Abstract

Recent advances in networking hardware have led o a new
generation of Remote Memory Access (RMA) networks in
which processors from different machines can communicate
directly, bypassing the operating svstem and allowing higher
performance. Researchers and practitioners have proposed
libraries and programming models for RMA to enable the
development of applications running on these networks,

However, the memory models implied by these RMA -
braries and languages are often loosely specified, poorly un-
derstood, and differ depending on the underlying network
architecture and other factors. Hence, it is difficult to pre-
cisely reason about the semantics of RMA programs or how
changes in the network architecture affect them.

Our work provides an important step towards understand-
ing existing RMA networks, thus influencing the design of
future RMA interfaces and hardware.

1. Introduction
Large-scale paralle]l systems are gaining importance for data
cenier, big data, and scientific computations. The traditional
programming models for such systems are message pass-
ing (e.g.. through the Message Passing Interface—MPT) and
TCP/IP sockets (as used by Hadoop, MapReduce, or Spark).
These models were designed for message-based intercon-
nection networks such as Ethernet. Remote Direct Memory
Access (RDMA) network interfaces, which have been used
in High-Performance Computing for years, offer higher per-
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Direct Access REplication (DARE) — and RDMA consensus protocol

leader election § 3.2 . normal operation § 3.3

4 leader outdated
— - - update term

: 1 leader receive commit
- send vote RSM op send
requests replicate reply

timeout
term-4-+

wait for
votes

outdated
update term

wait for
commit

receive votes

Leader-based replicated state machine — standard leader election (using RDMA as transport)

Poke, Hoefler: “DARE: High-Performance State Machine Replication on RDMA Networks”, HPDC’'15
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Direct Access REplication (DARE) — RDMA consensus protocol

UD UD {l’ﬂ:—ldi ;..;E
< > 8
QP QP
write R
D | Remote
Client M| server
- (3) configuration -+ (4) control data , A
: heartbeat RCI - RC
P BITMASK | :: '] “hray QPs|[€TT>QPs
p : private data :
P STATE ) .

Log access via RDMA to remote servers, control and reconfiguration via direct RDMA accesses!

Poke, Hoefler: “DARE: High-Performance State Machine Replication on RDMA Networks”, HPDC’'15
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Direct Access REplication (DARE) — performance
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Poke, Hoefler: “DARE: High-Performance State Machine Replication on RDMA Networks”, HPDC’'15
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RDMA join for distributed databases - algorithms

Process 1 ' Process 1 E : Process 2 '
L}
Inner Relation (Part 1) > : Inner Relation (Part 2)
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Distributed Direct-Access Radix Join Distributed Direct-Access Sort-Merge Join

Barthels et al.: “Distributed Join Algorithms on Thousands of Cores”, VLDB’17 e
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RDMA join for distributed databases - performance

SO0 '

40000

30000 | Radix hash join {MP1)
with data compression

20000 . e ——
a0rt-mearge join (M)
with data compression

10000

e & 024 48 A0

number of cores

Scaling joins to thousands of cores with
billions of tuples/s throughput

Barthels et al.: “Distributed Join Algorithms on Thousands of Cores”, VLDB’17
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Detailed performance breakdown
network eventually limits performance
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Each lock has its own
distributed MCS queue
(DQ) of writers

Readers and writers
synchronize with a
distributed counter (DC)

! MCS queues
form a
distributed
tree (DT)

Modular

DOOO
p O O OO

Schmid et al.: “High-Performance Distributed RMA Locks”, HPDC’16, Karsten Schwan Best Paper Award



spcl.inf.ethz.ch 5o o
v een  IETH zUrich

DC: every kth compute node
hosts a partial counter, all of

Large-scale RDMA Reader-Writer locking

which constitute the DC.

k =Tpc

A writer holds

the lock —_——/
Readers that

arrived at the CS

DOODOOO
DOOD OO

Readers that left

TDC =1 s s the CS
I'pc = e o
0(9| 7 JEIR

¥ @

Schmid et al.: “High-Performance Distributed RMA Locks”, HPDC'16, Karsten Schwan Best Paper Award
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Maximum number of lock

RDMA lock dESign Space . passings within a group in level i

before passing to next group

Design B / Design A

Locality vs fairness (for writers)

How many nodes

share a counter?
Maximum number of

consecutive lock
passings between
readers

Schmid et al.: “High-Performance Distributed RMA Locks”, HPDC’16, Karsten Schwan Best Paper Award
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Fast RDMA two-phase (database) locking - algorithms

Lock table

L

Lock table entry

Lock table Transaction table

Granted group counters

o] Joo] -

Lock mode

Waiting group queue

-
h
@
=
=0
@

14

Granted group

Granted group

s ] o] s foo <

Waiting group

RequestRequest

(a) Lock table entry

Granted group

Lo [ T e

Deadlock detection list

Barthels et al.: “Strong consistency is not hard to get: TwoPhase Locking and TwoPhase Commit on Thousands of Cores”, VLDB’19

(b) Auxiliary data structures
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Fast RDMA two-phase (database) locking - performance
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Barthels et al.: “Strong consistency is not hard to get: TwoPhase Locking and TwoPhase Commit on Thousands of Cores”, VLDB’19
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What if we could work with the cDAG abstraction directly?

51
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The path ahead — use cDAGs directly!

- Domain-Specific Language Stateful (parametric) Dataflow
@ | u , Graphs
——alV“u=90
 XC o My
° o’ | I3 m\&; Y%A/?ﬁ.
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Multi-core CPUs GPUs L



§ spcl.inf.ethz.ch SR
; @spzl_eth E'HZUFIC/'I
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