
spcl.inf.ethz.ch

@spcl_eth

S. DI GIROLAMO, P. JOLIVET, K. D. UNDERWOOD, T. HOEFLER

Exploiting Offload Enabled Network Interfaces



spcl.inf.ethz.ch

@spcl_eth

2

1980’s 2000’s 2020’s

Lossless Networks

RDMA

Device Programming

Offload

Lossy Networks

Ethernet



spcl.inf.ethz.ch

@spcl_eth

2

1980’s 2000’s 2020’s

Lossless Networks

RDMA

Device Programming

Offload

Lossy Networks

Ethernet



spcl.inf.ethz.ch

@spcl_eth

2

1980’s 2000’s 2020’s

Lossless Networks

RDMA

Device Programming

Offload

Lossy Networks

Ethernet

How to 

program 

QsNet?



spcl.inf.ethz.ch

@spcl_eth

2

1980’s 2000’s 2020’s

Lossless Networks

RDMA

Device Programming

Offload

Lossy Networks

Ethernet

How to 

program 

QsNet?

How to 

offload in 

Portals 4?



spcl.inf.ethz.ch

@spcl_eth

2

1980’s 2000’s 2020’s

Lossless Networks

RDMA

Device Programming

Offload

Lossy Networks

Ethernet

How to 

program 

QsNet?

How to 

offload in 

Portals 4?

How to 

offload in 

libfabric?



spcl.inf.ethz.ch

@spcl_eth

We need an 

abstraction!

2

1980’s 2000’s 2020’s

Lossless Networks

RDMA

Device Programming

Offload

Lossy Networks

Ethernet



spcl.inf.ethz.ch

@spcl_eth

OFFLOAD

3

Computations DependenciesCommunications
(non-blocking)

L0: recv a from P1; 

L1: b = compute f(buff, a); 

L2: send b to P1;

L0 and CPU-> L1

L1 -> L2

Offload Engine
CPU

recv

send

comp EXPRESS



spcl.inf.ethz.ch

@spcl_eth

(s-1)G

o

(s-1)G

oo

(s-1)G

(s-1)G

o

4

Performance Model

[1] A. Alexandrov et al. "LogGP: incorporating long messages into the LogP model—one step closer towards a realistic model for 

parallel computation.“, Proceedings of the seventh annual ACM symposium on Parallel algorithms and architectures. ACM, 1995.

CPU

OE

OE

CPU

P0

P1

P1{

L0: recv m1 from P1; 

L1: send m2 to P1;

L0 -> L1

}

P0{

L0: recv m1 from P1; 

L1: send m2 to P1;

}

time



spcl.inf.ethz.ch

@spcl_eth

(s-1)G

o

(s-1)G

oo

(s-1)G

(s-1)G

o

4

Performance Model

[1] A. Alexandrov et al. "LogGP: incorporating long messages into the LogP model—one step closer towards a realistic model for 

parallel computation.“, Proceedings of the seventh annual ACM symposium on Parallel algorithms and architectures. ACM, 1995.

CPU

OE

OE

CPU

P0

P1

P1{

L0: recv m1 from P1; 

L1: send m2 to P1;

L0 -> L1

}

P0{

L0: recv m1 from P1; 

L1: send m2 to P1;

}

time



spcl.inf.ethz.ch

@spcl_eth

(s-1)G

o

(s-1)G

oo

(s-1)G

(s-1)G

o

4

Performance Model

[1] A. Alexandrov et al. "LogGP: incorporating long messages into the LogP model—one step closer towards a realistic model for 

parallel computation.“, Proceedings of the seventh annual ACM symposium on Parallel algorithms and architectures. ACM, 1995.

CPU

OE

OE

CPU

P0

P1

P1{

L0: recv m1 from P1; 

L1: send m2 to P1;

L0 -> L1

}

P0{

L0: recv m1 from P1; 

L1: send m2 to P1;

}

time



spcl.inf.ethz.ch

@spcl_eth

m

(s-1)G m

o

(s-1)G

oo

(s-1)G

(s-1)G

o

4

Performance Model

[1] A. Alexandrov et al. "LogGP: incorporating long messages into the LogP model—one step closer towards a realistic model for 

parallel computation.“, Proceedings of the seventh annual ACM symposium on Parallel algorithms and architectures. ACM, 1995.

CPU

OE

OE

CPU

P0

P1

P1{

L0: recv m1 from P1; 

L1: send m2 to P1;

L0 -> L1

}

P0{

L0: recv m1 from P1; 

L1: send m2 to P1;

}

time



spcl.inf.ethz.ch

@spcl_eth

5

Offloading Collectives

A collective operation is fully offloaded if:

1. No synchronization is required in order to start the collective operation

2. Once a collective operation is started, no further CPU intervention is required in order 

to progress or complete it.

L0: recv msg1 from 5; 

L1: recv msg2 from 6;

L3: res = compute f(res, msg1);

L4: res = compute f(res, msg2); 

L5: send res to 0;

L1 and CPU -> L3

L2 and CPU -> L4

L3 and L4 -> L5

recv

send

comp

recv comp

CPU

Definition. A schedule is a local dependency graph describing a partial ordered set of operations.

Definition. A collective communication involving 𝑛 nodes can be modeled as a set of schedules 𝑆 = 𝑆1, … , 𝑆𝑛
where each node 𝑖 participates in the collective executing its own schedule 𝑆1



spcl.inf.ethz.ch

@spcl_eth

5

Offloading Collectives

A collective operation is fully offloaded if:

1. No synchronization is required in order to start the collective operation

2. Once a collective operation is started, no further CPU intervention is required in order 

to progress or complete it.

62 5

1

3

0

4

recv

send

comp

recv comp

CPU

Definition. A schedule is a local dependency graph describing a partial ordered set of operations.

Definition. A collective communication involving 𝑛 nodes can be modeled as a set of schedules 𝑆 = 𝑆1, … , 𝑆𝑛
where each node 𝑖 participates in the collective executing its own schedule 𝑆1



spcl.inf.ethz.ch

@spcl_eth

6

Asynchronous algorithms, with their ability to tolerate memory 
latency, form an important class of algorithms for modern 
computer architectures.

Edmond Chow et al., “Asynchronous Iterative Algorithm for Computing Incomplete Factorizations 

on GPUs”, High Performance Computing. Springer International Publishing, 2015.



spcl.inf.ethz.ch

@spcl_eth

Theory Synchronized

7

Solo Collectives

Solo

P0 P1 P2 P3 P0 P1 P2 P3 P0 P1 P2 P3

 Synchronized collectives lead to the synchronization of the 

participating nodes

 A solo collective starts its execution as soon as one node (the 

initiator) starts its own schedule



spcl.inf.ethz.ch

@spcl_eth

Theory Synchronized

7

Solo Collectives

Solo

P0 P1 P2 P3 P0 P1 P2 P3 P0 P1 P2 P3

 Synchronized collectives lead to the synchronization of the 

participating nodes

 A solo collective starts its execution as soon as one node (the 

initiator) starts its own schedule

Collective call



spcl.inf.ethz.ch

@spcl_eth

Theory Synchronized

7

Solo Collectives

Solo

P0 P1 P2 P3 P0 P1 P2 P3 P0 P1 P2 P3

 Synchronized collectives lead to the synchronization of the 

participating nodes

 A solo collective starts its execution as soon as one node (the 

initiator) starts its own schedule

Collective call Data message



spcl.inf.ethz.ch

@spcl_eth

Theory Synchronized

7

Solo Collectives

Solo

P0 P1 P2 P3 P0 P1 P2 P3 P0 P1 P2 P3

 Synchronized collectives lead to the synchronization of the 

participating nodes

 A solo collective starts its execution as soon as one node (the 

initiator) starts its own schedule

Collective call Data message



spcl.inf.ethz.ch

@spcl_eth

Theory Synchronized

7

Solo Collectives

Solo

P0 P1 P2 P3 P0 P1 P2 P3 P0 P1 P2 P3

 Synchronized collectives lead to the synchronization of the 

participating nodes

 A solo collective starts its execution as soon as one node (the 

initiator) starts its own schedule

Collective call Data message



spcl.inf.ethz.ch

@spcl_eth

Theory Synchronized

7

Solo Collectives

Solo

P0 P1 P2 P3 P0 P1 P2 P3 P0 P1 P2 P3

 Synchronized collectives lead to the synchronization of the 

participating nodes

 A solo collective starts its execution as soon as one node (the 

initiator) starts its own schedule

Collective call Data message



spcl.inf.ethz.ch

@spcl_eth

Theory Synchronized

7

Solo Collectives

Solo

P0 P1 P2 P3 P0 P1 P2 P3 P0 P1 P2 P3

 Synchronized collectives lead to the synchronization of the 

participating nodes

 A solo collective starts its execution as soon as one node (the 

initiator) starts its own schedule

Collective call Data message Activation message



spcl.inf.ethz.ch

@spcl_eth

Theory Synchronized

7

Solo Collectives

Solo

P0 P1 P2 P3 P0 P1 P2 P3 P0 P1 P2 P3

 Synchronized collectives lead to the synchronization of the 

participating nodes

 A solo collective starts its execution as soon as one node (the 

initiator) starts its own schedule

Collective call Data message Activation message



spcl.inf.ethz.ch

@spcl_eth

8

Solo Collectives: Activation

 Root-Activation: the initiator is always the root of the collective

 Non-Root-Activation: the initiator can be any participating node

P0 P1 P2 P3 P4 P5 P6 P7



spcl.inf.ethz.ch

@spcl_eth

8

Solo Collectives: Activation

 Root-Activation: the initiator is always the root of the collective

 Non-Root-Activation: the initiator can be any participating node

P0 P1 P2 P3 P4 P5 P6 P7



spcl.inf.ethz.ch

@spcl_eth

8

Solo Collectives: Activation

 Root-Activation: the initiator is always the root of the collective

 Non-Root-Activation: the initiator can be any participating node

P0 P1 P2 P3 P4 P5 P6 P7



spcl.inf.ethz.ch

@spcl_eth

8

Solo Collectives: Activation

 Root-Activation: the initiator is always the root of the collective

 Non-Root-Activation: the initiator can be any participating node

P0 P1 P2 P3 P4 P5 P6 P7



spcl.inf.ethz.ch

@spcl_eth

8

Solo Collectives: Activation

 Root-Activation: the initiator is always the root of the collective

 Non-Root-Activation: the initiator can be any participating node

P0 P1 P2 P3 P4 P5 P6 P7



spcl.inf.ethz.ch

@spcl_eth

8

Solo Collectives: Activation

 Root-Activation: the initiator is always the root of the collective

 Non-Root-Activation: the initiator can be any participating node

P0 P1 P2 P3 P4 P5 P6 P7



spcl.inf.ethz.ch

@spcl_eth

8

Solo Collectives: Activation

 Root-Activation: the initiator is always the root of the collective

 Non-Root-Activation: the initiator can be any participating node

P0 P1 P2 P3 P4 P5 P6 P7



spcl.inf.ethz.ch

@spcl_eth

8

Solo Collectives: Activation

 Root-Activation: the initiator is always the root of the collective

 Non-Root-Activation: the initiator can be any participating node

P0 P1 P2 P3 P4 P5 P6 P7



spcl.inf.ethz.ch

@spcl_eth

8

Solo Collectives: Activation

 Root-Activation: the initiator is always the root of the collective

 Non-Root-Activation: the initiator can be any participating node

P0 P1 P2 P3 P4 P5 P6 P7



spcl.inf.ethz.ch

@spcl_eth

8

Solo Collectives: Activation

 Root-Activation: the initiator is always the root of the collective

 Non-Root-Activation: the initiator can be any participating node

P0 P1 P2 P3 P4 P5 P6 P7



spcl.inf.ethz.ch

@spcl_eth

8

Solo Collectives: Activation

 Root-Activation: the initiator is always the root of the collective

 Non-Root-Activation: the initiator can be any participating node

P0 P1 P2 P3 P4 P5 P6 P7



spcl.inf.ethz.ch

@spcl_eth

8

Solo Collectives: Activation

 Root-Activation: the initiator is always the root of the collective

 Non-Root-Activation: the initiator can be any participating node

P0 P1 P2 P3 P4 P5 P6 P7



spcl.inf.ethz.ch

@spcl_eth

8

Solo Collectives: Activation

 Root-Activation: the initiator is always the root of the collective

 Non-Root-Activation: the initiator can be any participating node

P0 P1 P2 P3 P4 P5 P6 P7



spcl.inf.ethz.ch

@spcl_eth

8

Solo Collectives: Activation

 Root-Activation: the initiator is always the root of the collective

 Non-Root-Activation: the initiator can be any participating node

P0 P1 P2 P3 P4 P5 P6 P7



spcl.inf.ethz.ch

@spcl_eth

8

Solo Collectives: Activation

 Root-Activation: the initiator is always the root of the collective

 Non-Root-Activation: the initiator can be any participating node

P0 P1 P2 P3 P4 P5 P6 P7



spcl.inf.ethz.ch

@spcl_eth

8

Solo Collectives: Activation

 Root-Activation: the initiator is always the root of the collective

 Non-Root-Activation: the initiator can be any participating node

P0 P1 P2 P3 P4 P5 P6 P7



spcl.inf.ethz.ch

@spcl_eth

TargetInitiator

9

A Case Study: Portals 4

[2] “The Portal 4.0.2 Network Programming Interface” 

Portals Table 

Priority List Overflow List

ME

ME

ME
Discard

ME

ME

NIMD

MD

MD

MD

Interconnection

Network
NI

 Based on the one-sided communication model

 Matching/Non-Matching semantics can be adopted



spcl.inf.ethz.ch

@spcl_eth

TargetInitiator

9

A Case Study: Portals 4

[2] “The Portal 4.0.2 Network Programming Interface” 

Portals Table 

Priority List Overflow List

ME

ME

ME
Discard

ME

ME

NIMD

MD

MD

MD

Interconnection

Network
NI

 Based on the one-sided communication model

 Matching/Non-Matching semantics can be adopted



spcl.inf.ethz.ch

@spcl_eth

10

Communication primitives

 Put/Get operations are natively supported by Portals 4

 One-sided + matching semantic

A Case Study: Portals 4

Atomic operations

 Operands are the data specified by the MD at the initiator and by the ME 

at the target

 Available operators: min, max, sum, prod, swap, and, or, …

Counters 

 Associated with MDs or MEs

 Count specific events (e.g., operation completion)

Triggered operations

 Put/Get/Atomic associated with a counter

 Executed when the associated counter reaches the specified threshold



spcl.inf.ethz.ch

@spcl_eth

10

x y

x

z

y

A Case Study: Portals 4

Counters 

 Associated with MDs or MEs

 Count specific events (e.g., operation completion)

Triggered operations

 Put/Get/Atomic associated with a counter

 Executed when the associated counter reaches the specified threshold



spcl.inf.ethz.ch

@spcl_eth

x yct ct

10

x

z

y

A Case Study: Portals 4

Counters 

 Associated with MDs or MEs

 Count specific events (e.g., operation completion)

Triggered operations

 Put/Get/Atomic associated with a counter

 Executed when the associated counter reaches the specified threshold



spcl.inf.ethz.ch

@spcl_eth

x yct ct

x

z

y

ct ct

10

A Case Study: Portals 4

Counters 

 Associated with MDs or MEs

 Count specific events (e.g., operation completion)

Triggered operations

 Put/Get/Atomic associated with a counter

 Executed when the associated counter reaches the specified threshold



spcl.inf.ethz.ch

@spcl_eth

11

Experimental results

Curie, a Tier-0 system 

5,040 nodes

2 eight-core Intel Sandy Bridge processors

Full fat-tree Infiniband QDR

OMPI: Open MPI 1.8.4

OMPI/P4: Open MPI 1.8.4 + Portals 4 backend

FFLIB: proof of concept library

One process per computing node

Broadcast Allreduce

More about FFLIB at 

http://spcl.inf.ethz.ch/Research/Parallel_Programming/FFlib/



spcl.inf.ethz.ch

@spcl_eth

12

Experimental results
AllgatherScatter

Curie, a Tier-0 system 

5,040 nodes

2 eight-core Intel Sandy Bridge processors

Full fat-tree Infiniband QDR

OMPI: Open MPI 1.8.4

OMPI/P4: Open MPI 1.8.4 + Portals 4 backend

FFLIB: proof of concept library

One process per computing node

More about FFLIB at 

http://spcl.inf.ethz.ch/Research/Parallel_Programming/FFlib/



spcl.inf.ethz.ch

@spcl_eth

 Why? To study offloaded collectives at large scale

 How? Extending the LogGOPSim to simulate Portals 4 functionalities

13

Simulations

[3] T. Hoefler, T. Schneider, A. Lumsdaine. “LogGOPSim - Simulating Large-Scale Applications in the LogGOPS Model”, In Proceedings of 

the 19th ACM International Symposium on High Performance Distributed Computing (HPDC '10). ACM, 2010.

[4] Underwood et al., "Enabling Flexible Collective Communication Offload with Triggered Operations“, IEEE 19th Annual Symposium on 

High Performance Interconnects (HOTI ‘11). IEEE, 2011.

AllreduceBroadcast

L o g G m

P4-SW 5𝜇𝑠 6𝜇𝑠 6𝜇𝑠 0.4𝑛𝑠 0.9𝑛𝑠

P4-HW 2.7𝜇𝑠 1.2𝜇𝑠 0.5𝜇𝑠 0.4𝑛𝑠 0.3𝑛𝑠 [4]



spcl.inf.ethz.ch

@spcl_eth

Co-Authors

14

Abstract Machine Model Offloading Collectives

Solo Collectives Mapping to Portals 4

Results

P. Jolivet
K. D. Underwood

T. Hoefler


