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ABSTRACT
We present the first parallel fixed-parameter algorithm for subgraph

isomorphism in planar graphs, bounded-genus graphs, and, more

generally, all minor-closed graphs of locally bounded treewidth.

Our randomized low depth algorithm has a near-linear work depen-
dency on the size of the target graph. Existing low depth algorithms

do not guarantee that the work remains asymptotically the same

for any constant-sized pattern. By using a connection to certain

separating cycles, our subgraph isomorphism algorithm can decide

the vertex connectivity of a planar graph (with high probability) in

asymptotically near-linear work and poly-logarithmic depth. Previ-

ously, no sub-quadratic work and poly-logarithmic depth bound

was known in planar graphs (in particular for distinguishing be-

tween four-connected and five-connected planar graphs).
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• Theory of computation→ Parallel algorithms.
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1 INTRODUCTION
Subgraph Isomorphism has applications for pattern discovery in

biological networks [3, 40, 46], graph databases [33], and electronic

circuit design [44]. It is also powerful subroutine to solve edge con-

nectivity and vertex connectivity of planar graphs [20]. The sub-

graph isomorphism problem is to look for occurrences of a pattern
graph 𝐻 as a subgraph of a target graph𝐺 . Subgraph isomorphism

is a generalization of many 𝑁𝑃-complete problems (such as finding

a Maximum Clique, Longest Path, or Hamiltonian Cycle [26]). The
problem remains hard even in bounded degree graphs [25] and

planar graphs [45].

Hence, it is natural to consider parameterized versions of the

problem that are tractable when some parameter is small. We focus

our attention to the case when the pattern graph 𝐻 is relatively

small, and give algorithms whose work grows slowly (i.e., close to

linear) with the size of the target graph 𝐺 , but is allowed to grow

quickly (i.e., exponential) in terms of the size of the pattern graph𝐻 .

This continues the development of fixed-parameter tractable (FPT)
algorithms for NP-hard problems [18].

We present a parallel fixed-parameter tractable algorithm with

low depth for subgraph isomorphism in planar graphs. Planar
graphs are an important class of graphs which arise naturally from

problems in geometry [36], when trying to lay out electronic cir-

cuits without crossings [1], and in image segmentation [49].

Drawing on existing FPT techniques [4, 19, 49], our algorithm ex-

ploits that local neighborhoods of a planar graph are well-behaved

and can be efficiently decomposed. We overcome two fundamental

challenges: The first challenge is the reliance on a breadth-first-

search (of unbounded depth) to construct the local neighborhoods.

We avoid this issue by applying a randomized clustering [37] into

low-diameter parts. This decomposition works because we can

bound the probability that an occurrence of the pattern is not in

a single cluster by a constant. The second challenge is the work-

efficient solution of a high depth dynamic program. We transform

the problem into a directed acyclic graph and exploit the properties

of the parametrized subgraph isomorphism problem to show that

introducing shortcuts for only a small subset of nodes suffices to

reduce the depth of the graph to poly-logarithmic in the target

graph’s size (and linear in the pattern graph’s size).

1.1 Preliminaries
Subgraph isomorphism is interested in occurrences of a graph pattern
𝐻 (with 𝑘 vertices and diameter 𝑑) as a subgraph of a target graph𝐺
(with 𝑛 vertices). Formally, a subgraph isomorphism is an injective

map 𝜙 from the vertices of 𝐻 to the vertices of 𝐺 such that if two

vertices 𝑢 and 𝑣 are adjacent in 𝐻 , then 𝜙 (𝑢) and 𝜙 (𝑣) are adjacent
in𝐺 . The simplest variant of the subgraph isomorphism problem is

to decide if any occurrence of the pattern exists in the target graph,

but we can also consider counting the occurrences or listing them.

For any graph 𝐺 ′
, we denote its vertex set as 𝑉 (𝐺 ′), its edge

set as 𝐸 (𝐺 ′), and the subgraph of 𝐺 ′
induced by a subset 𝑋 of its

vertices by 𝐺 ′[𝑋 ]. A graph that is formed from the graph 𝐺 by

contracting edges, deleting vertices, and deleting edges is a minor
of 𝐺 . A family of graphs is minor-closed if every minor of every

graph in the family is also in the family.

Vertex Connectivity. A graphwith at least 𝑐+1 vertices is 𝑐-vertex-
connected if removing any 𝑐 − 1 vertices does not disconnect the

graph. The vertex connectivity 𝑐 of a graph is the largest number 𝑐

for which the graph is 𝑐-vertex-connected.

Tree Decomposition and Treewidth. A tree decomposition provides
a recursive subdivision of a graph into overlapping subgraphs such

that each subgraph is disconnected from the rest of the graph after

removing few vertices. The decomposition tree records the recursive
subdivision in a tree and labels the nodes of the treewith the vertices

used to subdivide the graph (in a way that every edge occurs in at
least one of the tree nodes). See Figure 1 for an example of how a

decomposition tree represents a recursive subdivision of a graph.

The advantage of the tree decomposition is that it gives a way to

describe a divide-and-conquer approach (along some graph decom-

position) as a dynamic program on the decomposition tree instead.

The dynamic program maintains partial results that correspond to

the subgraphs of the current node in the decomposition tree and

combines the partial results in a bottom-up fashion on this tree.



Formally, a tree decomposition [8–11, 23, 34] of a graph𝐺 consists

of a nonempty decomposition tree T where each node 𝑋𝑖 of the tree

T is a subset of the vertices 𝑋𝑖 ⊆ 𝑉 of 𝐺 , such that:

• Every vertex 𝑢 of𝐺 is contained in a contiguous nonempty

subtree of the decomposition tree T .

• For every edge (𝑢, 𝑣) of the graph 𝐺 , there is a node 𝑋𝑖 of
the tree T where both endpoints 𝑢 and 𝑣 are in the node

𝑋𝑖 .

The maximum of |𝑋𝑖 | − 1 over all nodes 𝑋𝑖 of the tree T is the

width of the tree decomposition. The smallest width of any tree

decomposition of 𝐺 is the treewidth 𝜏 of 𝐺 .
We can assume for simplicity that every interior node in the

decomposition tree has exactly two children, as we can split high-

degree nodes and add empty leaf nodes without changing the width

of the decomposition. Moreover, a minimum width tree decomposi-

tion of a graph with𝑚 edges has 𝑂 (𝑚) nodes.

Model of Computation. We consider a synchronous shared mem-
ory parallel machine with concurrent reads and exclusive writes

(CREW PRAM). We express our bounds in terms of the total num-

ber of operations performed by any execution of the algorithm

by all processors (called work) and the length of the critical path

in the computation (called depth) [6]. By Brent’s scheduling al-

gorithm [6, 47], an algorithm with work𝑊 and depth 𝐷 can be

executed with 𝑃 processors in time𝑂 (𝑊 /𝑃 +𝐷) on a CREW PRAM.

Randomization. Numerous efficient parallel algorithms make

use of some form of randomness [28]. For some graph problems

(such as minimum cuts [28] and minimum spanning trees [15]), a

randomized algorithm has the lowest known bounds.

We assume each processor has access to an independent and

uniformly distributed random word in each time step. If an event

occurs with probability at least 1 − 𝑛−𝑎 for all constants 𝑎 > 1,

we say it occurs with high probability (w.h.p.). An algorithm that

returns the correct result with high probability is Monte Carlo.
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Figure 1: Illustration of a graph 𝐺 and one of its tree decom-
positions T of width 2. The highlighted subtrees in the tree
T correspond to the subgraphs highlighted in the graph 𝐺
of the same color. The root node {𝑐, 𝑒, 𝑓 } separates the two
highlighted subtrees, meaning that every path from the sub-
graph induced by the left subtree to the subgraph induced
by the right subtree contains a vertex that is in the root node
{𝑐, 𝑒, 𝑓 }.

Table 1: Bounds for deciding planar subgraph isomorphism.
(★) The algorithm is Monte Carlo, and its bounds hold w.h.p..

Work Depth

Alon et al.
★
[2] 𝑒𝑘 𝑛Θ(

√
𝑘 )

log𝑛 Θ(𝑘 log𝑛)
Eppstein [19] 𝑂 (23𝑘 log

2
(3𝑘+1)𝑛) Θ(𝑘𝑛)

Dorn [17] 𝑂 (218.81𝑘𝑛) 𝑂 (218.81𝑘𝑛)
Fomin et al.

★
[22] 2

𝑂 (𝑘/log𝑘 )𝑛𝑂 (1)
2
𝑂 (𝑘/log𝑘 )𝑛𝑂 (1)

This Paper ★ 𝑂 (23𝑘 log
2
(3𝑘+1) 𝑛 log𝑛) 𝑂 (𝑘 log

2 𝑛)

1.2 Related Work
For the general case of subgraph isomorphism, no algorithm with

less work than the naive 𝑛𝑘 is known. Ullmann presents an algo-

rithm that uses a backtracking search [51].

Tree patterns of bounded size can be found efficiently in general

graphs [2]. Much attention has been put on subgraph isomorphism

in special families of target graphs, which require some form of

sparsity and additional structure [2, 14, 19, 21].

Parameterized Complexity. The idea behind parameterized com-
plexity [18] is to identify (one or more) fundamental parameters

𝑝 of an NP-hard problem that characterize the difficult part of the

problem. Then, a fixed-parameter tractable algorithm’s runtime sep-

arable into 𝑓 (𝑝)𝑔(𝑛) (or 𝑓 (𝑝) + 𝑔(𝑛)) where 𝑓 is allowed to be any

function of 𝑝 and 𝑔 has to be polynomial in 𝑛 [18].

FPT Algorithms with low depth exist for several NP-complete

problems [5, 7, 13]. Refer to Table 1 (excl. row 1) for an overview of

the FPT algorithms for subgraph isomorphism in planar graphs.

Color Coding. Using aMonte Carlo technique calledColor Coding,
Alon et al. [2] obtain𝑂 (𝑒𝑘𝑛𝜏+1 log𝑛) work on a pattern of treewidth
𝜏 , which implies 𝑒𝑘𝑛Θ(

√
𝑘)

log𝑛 work for a planar pattern (as the

treewidth of a planar graph with 𝑘 vertices is Θ(
√
𝑘) [35, 48]). The

algorithm’s depth is poly-logarithmic in 𝑛 and polynomial in 𝑘 .

Their key idea is to color the vertices in the target graph with 𝑘

random colors, which allows a dynamic programming approach

that needs to keep an exponentially smaller state. Note that this

algorithm is not FPT for the size 𝑘 of the pattern (nor the treewidth

𝜏), because its runtime grows with 𝑛
√
𝑘
(or 𝑛𝜏+1).

Locally Bounded Treewidth. Eppstein presents the first FPT sub-

graph isomorphism algorithm for planar graphs that has a linear
dependency on the size of the pattern graph [19]. It runs in poly-

nomial time in 𝑛 for patterns of size 𝑂 (log𝑛/log log𝑛). The key
insight is to exploit that local neighborhoods of planar graphs have

bounded treewidth. Their algorithm generalizes to other minor-

closed families with a relationship between diameter and treewidth,

such as bounded-genus graphs [20]. They use a breadth-first-search

(BFS) to decompose the graph into these local neighborhoods.

Sampling. Fomin et al. [22] present a randomized sampling ap-

proach that produces subgraphs of sub-linear treewidth in 𝑘 . Then,

they apply an existing FPT dynamic program.



1.3 Our Contributions
We present the first FPT work planar subgraph isomorphism al-

gorithm with depth poly-logarithmic in 𝑛 and polynomial in 𝑘 .

Our Monte Carlo algorithm has 𝑘𝑂 (𝑘)𝑛 log𝑛 work and 𝑂 (𝑘 log2 𝑛)
depth in planar graphs and has FPT work in all minor-closed fami-

lies of graphs of locally bounded treewidth (see Section 4.3).

Table 1 contains the exact bounds and a comparison to the related

works regarding planar graphs. Note that if the pattern graph occurs

in the target graph, the expected work is 𝑘𝑂 (𝑘)𝑛. Our algorithm can

also list all 𝑥 occurrences of a pattern with 𝑂 (𝑥𝑘 (log𝑛 + log𝑥)) +
𝑘𝑂 (𝑘)𝑛 (log𝑛 + log𝑥) work and 𝑂 (𝑘 log2 𝑛 (log𝑛 + log𝑥)) depth.

We use a low-diameter decomposition, which can ensure that the

occurrences of the pattern graph are in the same low-diameter part

of the graph with sufficient probability. Then, we show how to

exploit the special structure of a tree decomposition based algo-

rithm to compute its results work-efficiently in parallel. Finally, we

provide a randomized extension to the algorithm that also handles

disconnected pattern graphs.

More generally, we can find isomorphic subgraphs that separate

a set of marked vertices (leaving them in different components

after removal of the subgraph). Because there is a relation between

finding certain separating cycles as subgraphs and planar vertex

connectivity, our subgraph isomorphism algorithm yields better

parallel bounds for deciding vertex connectivity in planar graphs.

We show that planar vertex connectivity can be answered in

𝑂 (𝑛 log𝑛)work and𝑂 (log2 𝑛) depth. Previously, only 2-connectivity
and 3-connectivity had sub-quadratic work and poly-logarithmic

depth solutions [38, 50].

2 FROM PLANAR TO LOW TREEWIDTH
Planar graphs do not have bounded treewidth (it can be up to√
𝑛), which prevents a direct application of bounded treewidth

techniques (as we use in Section 3). Fortunately, a planar graph of

diameter 𝑑 has treewidth at most 3𝑑 [19], and each occurrence of a

pattern with diameter 𝑑 is contained in a subgraph of diameter 𝑑

of the target graph.

Hence, a simple (but work-inefficient) approach to solve sub-

graph isomorphism in planar graphs would consist of building for

every vertex in the target graph the subgraph induced by nodes at

a distance at most 𝑑 , and then invoking an algorithm for bounded

treewidth graphs on each of those subgraphs. This approach of

covering the graph is inefficient because many vertices of the target

graph could be in multiple (even all) of these subgraphs, leading to

a total size of these subgraphs of Θ(𝑛2).
Instead, Eppstein [19] proposed (based on an idea by Baker [4])

a covering approach based on a single BFS to cover all subgraphs

of diameter at most 𝑑 with graphs of total size only 𝑂 (𝑑𝑛). It is
easy to see that naive BFS takes linear work and 𝑂 (𝐷) depth on a

diameter 𝐷 graph, but we care exactly about the situation when

the diameter 𝐷 is not bounded. Even on planar graphs, perform-

ing work-efficient and low-depth BFS is a challenging problem.

An approach by Klein [32] achieves 𝑂 (𝑛 log9 𝑛) work and poly-

logarithmic depth.

To avoid the issue of low-depth BFS, in our approach, we first

decompose the graph into randomized clusters of small diameter

(as illustrated in Figure 2 and Figure 3). This allows us to then run
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Figure 2: A randomized procedure splits the target graph 𝐺
into clusters. Each occurrence of the pattern 𝐻 is contained
inside a single cluster with constant probability. In the exam-
ple, the occurrence of the pattern 𝐻 with vertices 𝑓 , 𝑔, 𝑎, 𝑏, 𝑐
is contained in a single cluster, but the occurrence 𝑑, 𝑒, 𝑎, 𝑏, 𝑐
crosses the clusters. Hence, the former is found with this
clustering, but the latter is not.

a simple parallel BFS on those low diameter graphs and construct

a covering for each of those clusters. In summary, one run of our

subgraph isomorphism algorithm works as follows:

(1) Cover the target graphwith subgraphs𝐺0, . . . ,𝐺𝑖 of bounded

treewidth (they might overlap, as detailed in Section 2.1).

(2) Solve subgraph isomorphism for each such bounded treewidth

subgraph in parallel (as described in Section 3).

Since our covering algorithm is randomized, an occurrence of a

pattern may not be contained in any single subgraph in the cover.

However, in expectation 𝑂 (1) repetitions suffice to find an occur-

rence of the pattern if it exists. At most 𝑂 (log𝑛) runs suffice to

certify that no occurrence of a pattern exists with high probability.

Our main result for planar graphs is the following:

Theorem 2.1. Deciding (with high probability) if a connected
pattern graph 𝐻 occurs as a subgraph of a planar target graph 𝐺
takes 𝑂 ((3𝑘)3𝑘+1𝑛 log𝑛) work and 𝑂 (𝑘 log2 𝑛) depth.

For a pattern of small diameter 𝑑 , we obtain better bounds:

Corollary 2.2. Deciding (with high probability) if a connected
pattern graph𝐻 of diameter 𝑑 occurs as a subgraph of a planar graph
𝐺 takes 𝑂 ((3𝑑 + 3)3𝑘+1𝑛 log𝑛) work and 𝑂 (𝑘 log2 𝑛) depth.

To simplify the exposition, we assume (for now) that the pattern

graph is connected and focus on the decision version of the problem.

We then discuss how to remove the assumption of connectedness in

Section 4.1 and show how to modify the algorithm to list all occur-

rences of a pattern graph in Section 4.2. Moreover, we generalize

the approach from planar graphs to a class of graphs that contains

all bounded-genus graphs in Section 4.3.



2.1 Parallel Low-Treewidth Cover
We show how to construct (in parallel) a set of subgraphs of low

treewidth such that each occurrence of a connected pattern 𝐻 is

in at least one of the subgraphs with constant probability. The

first step is to use a low-diameter decomposition. The goal of a low-
diameter decomposition is to partition the vertices of the graph

into (vertex-disjoint) clusters of low diameter such that few edges

of the graph connect vertices in different clusters.

Exponential Start Time Clustering [37] is especially well-suited

for our purposes because it bounds the probability that an edge

connects two different clusters. This observation allows us to bound

the probability that a connected subgraph is split into multiple clus-

ters, and thus the clustering preserves the occurrences of a graph

pattern with nontrivial probability, as needed for our purposes.

A clustering of 𝐺 is a set of vertex-disjoint induced subgraphs

called clusters that together contain all vertices. We say an edge

crosses the clusters if it has endpoints in the vertex sets of two

distinct clusters.

Lemma 2.3 (Exponential Start Time Clustering [37]). With
𝑂 (𝑛) work and𝑂 (𝛽 log𝑛) depth, Exponential Start Time 𝛽-Clustering
produces, w.h.p., clusters of diameter 𝑂 (𝛽 log𝑛) where each edge
crosses the clusters with probability at most 1/𝛽 .

Note that Exponential Start-Time Clustering does not allow us to

fix the number of clusters a priori. Instead, the number of clusters

depends on the structure of the graph. For example, a clique will

most likely end up as a single low-diameter cluster.

Because every edge crosses the clusters with small probability,

the probability that a fixed occurrence of the pattern contains an

edge that crosses the clusters is also relatively small (for an appro-

priate choice of parameter 𝛽). See Figure 2 for an illustration.

Observation 1. The probability that no edge of a connected sub-
graph 𝐻 of the graph𝐺 crosses a cluster of an Exponential Start Time
2𝑘-Clustering of 𝐺 is at least 1/2

Proof. The idea is that some spanning tree of the occurrence

remains intact (i.e., no edge in the tree crosses a cluster) with the

given probability, which implies the result. Consider an arbitrary

spanning tree𝐴 of𝐻 . By Lemma 2.3, the probability that a particular

edge of the spanning tree crosses the clusters is at most
1

2𝑘
. By the

union bound, the probability that any of the 𝑘 − 1 edges of the

spanning tree 𝐴 crosses the clusters is at most
𝑘−1
2𝑘

< 1

2
. Hence, the

probability that no edge crosses the clusters is at least 1/2. □

We combine the clustering ideawith the approach fromEppstein [19]

and Baker [4] for the Parallel treewidth 𝑘-𝑑 cover algorithm.

Parallel Treewidth 𝑘-𝑑-Cover.

(1) Run Exponential Start Time 2𝑘-Clustering on 𝐺 .

(2) For each cluster, choose an arbitrary root 𝑣 and run a naive

parallel BFS within the cluster.

(3) This yields a BFS tree for each cluster. For each level 𝑖 of

the tree, output the subgraph 𝐺𝑖 induced by the vertices at

distance 𝑖 through 𝑖 + 𝑑 from 𝑣 (as illustrated in Figure 3).

The algorithm guarantees that each of the subgraphs has low

treewidth and that every occurrence of the pattern graph is in at

least one of the subgraphs with constant probability:

Theorem 2.4. For a planar target graph𝐺 and a connected pattern
graph𝐻 with𝑘 vertices and diameter𝑑 , a Parallel Treewidth𝑘-𝑑 Cover
produces a set of induced subgraphs 𝐺𝑖 of 𝐺 such that:

• Every graph 𝐺𝑖 has treewidth at most 3𝑑 .
• Every vertex of 𝐺 is contained in at most 𝑑 graphs 𝐺𝑖 .
• Every fixed occurrence of 𝐻 is contained in at least one of the

graphs 𝐺𝑖 with probability at least 1/2.

The algorithm takes, w.h.p., 𝑂 (𝑛𝑑) work and 𝑂 (𝑘 log𝑛) depth.

Proof. Each of the graphs 𝐺𝑖 is a subgraph of a planar graph

with diameter 𝑑 . Hence, it has treewidth at most 3𝑑 [19]. By Ob-

servation 1, an occurrence 𝐻 ′
of 𝐻 is in the same cluster with

probability at least 1/2. If this is the case, consider the first vertex
𝑢 of the pattern occurrence 𝐻 ′

encountered during the BFS done

for the cluster and let 𝑖 be the distance of 𝑢 from the root 𝑣 of the

BFS tree. Then, the occurrence 𝐻 ′
is an induced subgraph of 𝐺𝑖 .

The clusters have diameter 𝑂 (𝑘 log𝑛). Hence, the BFSes have
𝑂 (𝑘 log𝑛) depth. Each vertex and edge is part of at most 𝑑 sub-

graphs by construction, which implies that the work is 𝑂 (𝑛𝑑). □

It remains to find (in parallel) occurrences of the pattern on each

of the low treewidth subgraphs we constructed. The algorithm

in Section 3 requires that a tree decomposition of the subgraph

has already been computed. For a planar graph, constructing such

a decomposition of width 3𝑑 takes 𝑂 (𝑛) work and 𝑂 (𝑑) depth
given a planar embedding of the graph [4, 19]. Computing a planar

embedding takes 𝑂 (𝑛) work and 𝑂 (log2 𝑛) depth [31].

v

Figure 3: A cluster 𝐺 ′ is covered by a set of subgraphs that
are each induced by 𝑑 consecutive levels in a BFS tree of
the cluster. In the example, 𝑑 = 2. The bold BFS tree of the
graph𝐺 ′ rooted at 𝑣 guides the covering of the graph with the
induced subgraphs 𝐺0,𝐺1,𝐺2. If the original graph contains
a pattern of diameter 𝑑 , then at least one of the subgraphs
does as well. Note that the graphs 𝐺3 and 𝐺4 are not needed
because their diameter is smaller than the pattern’s diameter.



3 ALGORITHM FOR BOUNDED TREEWIDTH
The main result of this section is a parallel algorithm to solve sub-

graph isomorphism in parallel on graphs of bounded treewidth. It

is based on a simplified version of the algorithm from Eppstein [19].

We transform the original problem into a graph search problem.

Exploiting the particular structure of the resulting acyclic graph

allows us a low depth and work-efficient solution.

Lemma 3.1. Deciding if a connected pattern graph 𝐻 is isomorphic
to a subgraph of the target graph 𝐺 of treewidth 𝜏 takes 𝑂 (𝑘 log2 𝑛)
depth and 𝑂 ((𝜏 + 3)3𝑘+1𝑛) work. The bounds hold w.h.p..

The overall idea of the sequential algorithm is to gradually com-

pute the subgraph isomorphism while traversing the decomposi-

tion tree in a bottom-up fashion. We start by discussing the partial
matches (partially completed subgraph isomorphisms) the algo-

rithm employs, which are crucial for the parallel algorithm as well.

3.1 Partial Matches
Every node 𝑋 in the decomposition tree corresponds to a subgraph

𝐺 [𝑋 ] induced by 𝑋 in the target graph𝐺 with only a small number

of vertices 𝜏 + 1. Moreover, the descendants of the node 𝑋 (together

with𝑋 ) induce a subgraph𝐺𝑋 of the graph𝐺 that is separated from

the rest of the graph 𝐺 by the vertices in the tree decomposition

node 𝑋 . The idea of partial matches is to find occurrences of sub-

patterns of the pattern 𝐻 within these subgraphs and combining

them in a bottom-up fashion in the tree decomposition.

Partial matches exist between subgraphs of the pattern graph 𝐻

and these induced subgraphs 𝐺𝑋 . Because vertices that are in the

subgraph 𝐺𝑋 but are not in the separating set 𝑋 are not directly

connected to the rest of the graph𝐺 , it is not necessary to explicitly

store the mapping between pattern and target graph for these ver-

tices in order to combine a partial match inside this subgraph with

partial matches from the rest of the graph. Hence, when we build

partial matches, only the 𝜏𝑘 different mappings for these vertices

in the separating set 𝑋 are important. The remaining vertices that

have already been matched in a child are recorded as such. See

Figure 4 for an example.

Formally, a partial match of 𝑋 is a triple (𝜙,𝐶,𝑈 ), where 𝐶 de-

notes the set of vertices matched in a child, 𝑈 the set of vertices

marked as unmatched, and a subgraph isomorphism function 𝜙

from the subgraph 𝐻 [𝑉 (𝐻 )\(𝐶 ∪𝑈 )] to the subgraph 𝐺 [𝑋 ]. If a
vertex 𝑣 of𝐻 ismatched in a child, the vertex 𝑣 is mapped to a vertex

in 𝐺𝑋 which does not appear in 𝑋 . If a vertex 𝑣 of 𝐻 is unmatched,
then it is not matched to any vertex that appears in the subgraph

𝐺𝑋 .

3.2 Eppstein’s Sequential Algorithm
The idea is to extend the partial matches while traversing the de-
composition tree T bottom-up. The goal is to construct a partial

match of the root node where no vertex is unmatched. We focus

on how to construct such a partial match for the root, from which

a specific subgraph isomorphism can be recovered efficiently (by

collecting appropriate partial isomorphisms in a top-down traversal

of the tree; see also Section 4.2.1).

A partial match of a child node 𝑌 can be extended when going

to a parent node 𝑋 by matching some additional vertices that were

{c, e, f}

{c, d, e} {a, c, f}

{a, b, c} {a, f, g}

c

ed

a

b

f

g

Figure 4: A valid partial match of the root {𝑐, 𝑒, 𝑓 } of the de-
composition tree is built from two compatible (and valid)
partial matches of the left child {𝑐, 𝑑, 𝑒} and the right child
{𝑎, 𝑐, 𝑓 }. Observe how every vertex in the pattern that is
marked as ‘matched in a child’ at the root is matched in
exactly one of the two other partial matches. Also, note how
the partial matches agree on the vertices that the decompo-
sition nodes have in common: the partial match of the root
agrees with the left child’s match on 𝑐 and 𝑒 and with the
right child’s match on 𝑐.

unmatched by the child match to 𝑋 , marking the vertices that have

been matched by the child but are not in the parent as matched in
a child, and leaving the rest of the partial isomorphism function

the same (the vertices that were not newly matched in 𝑋 remain

unmatched).

A partial match that can be extended to a parent’s partial match

(possibly together with another child’s partial match) is called con-
sistent with a parent’s partial match. The precise rules for being

consistent follow. Consider a node 𝑋 of the decomposition tree, one

of its children 𝑌 , and the partial matches (𝜙𝑋 ,𝐶𝑋 ,𝑈𝑋 ) of 𝑋 and

(𝜙𝑌 ,𝐶𝑌 ,𝑈𝑌 ) of 𝑌 . For all vertices 𝑣 in 𝐻 :
• If 𝑣 is matched by 𝜙𝑌 to a node in 𝑋 or by 𝜙𝑋 to a node in

𝑌 , then they map to the same value: 𝜙𝑋 (𝑣) = 𝜙𝑌 (𝑣). This
prevents the partial matches (𝜙𝑋 ,𝐶𝑋 ,𝑈𝑋 ) and (𝜙𝑌 ,𝐶𝑌 ,𝑈𝑌 )
to map the same vertex in the pattern graph to different

nodes in the target graph.

• If the child partial match 𝜙𝑌 matches a vertex 𝑣 to a ver-

tex not in the parent label set 𝑋 or marks the vertex 𝑣

as matched in a child (i.e., in 𝐶𝑋 ), then the parent partial

match marks the vertex 𝑣 as matched in a child (i.e., in 𝐶𝑌 ).

In particular, we have 𝐶𝑌 ⊆ 𝐶𝑋 .
Note that these rules imply that the child’s partial match does not

match any vertex that is unmatched by the parent, i.e.,𝑈𝑌 ⊆ 𝑈𝑋 .
The point of the following combination rule is to ensure (on top

of consistency) that a vertex that is marked as matched in a child
in the parent is matched in exactly one of the children. A partial

match𝑀𝑋 of node 𝑋 is compatible with a partial match𝑀𝐿 of the

left child 𝐿 of 𝑋 and partial match 𝑀𝑅 of the right child 𝑅 of 𝑁 if

the following conditions hold:



• The partial matches 𝑀𝐿 and 𝑀𝑅 are both consistent with

the partial match𝑀𝑋 .

• If a vertex is marked as matched in a child by𝑀𝑋 , then it is

marked as unmatched in exactly one of the child matches

𝑀𝐿 and𝑀𝑅 .

A partial match is valid, if it is compatible with two partial

matches of its children, or if it does notmark any vertices asmatched
in a child. Note that the trivial partial match that marks everything

as unmatched is always valid. A valid partial match of the root node

that does not mark any vertex as unmatched certifies the existence

of a subgraph isomorphism.

The sequential algorithm traverses the decomposition tree bottom-

up and enumerates all possible partial matches for the current node,

then checks which are valid (given the valid matches for the chil-

dren). For a tree decomposition of width 𝜏 and a pattern of size 𝑘 ,

there are at most (𝜏 + 3)𝑘 possible partial matches per node. There

are at most (𝜏 + 3)3𝑘 combinations of partial matches of the parent

and its two children and validating a combination takes 𝑂 (𝜏) time.

Hence, the overall runtime is 𝑂 ((𝜏 + 3)3𝑘+1𝑚).

3.3 Parallel Algorithm
The issue is that even a low-diameter planar graph might have

a decomposition tree that has a large height of Ω(𝑛). Therefore,
parallelizing the computation at each node of the decomposition

tree is not enough. It is possible to transform any tree decomposi-

tion into a decomposition of height 𝑂 (log𝑛) with three times the
treewidth [10], which increases the work by a factor of Ω(9𝑘 ).

To avoid this, we parallelize across the height of the decompo-

sition tree. In order to obtain a simpler problem, we partition the

tree into paths. Then, we solve the problem on each of the paths. A

path can be solved once all paths that start at a child of a node in

the path have been solved. We avoid the sequential bottleneck by

transforming the problem of finding valid partial matches in these

subpaths of the tree decomposition into a reachability question in

an acyclic directed graph with special structure. The reachability

question can be solved work-efficiently with a low depth on this

acyclic graph by introducing shortcuts of exponentially increasing

distance to a carefully selected subset of the vertices.

3.3.1 Decomposition into Paths. Let us start by discussing how to

decompose the tree into suitable subpaths. Walk from every leaf

towards the root until reaching a branching node (i.e., a node with

at least 2 children). Remove the visited paths from the tree, and pro-

ceed recursively. This decomposition can be implemented efficiently

using parallel expression tree evaluation (tree contraction) [39, 47]:

Lemma 3.2 (Appendix A). A tree 𝑇 can be decomposed into
a set of paths 𝑃 where the paths are grouped into 𝑂 (log𝑛) layers
with the property that vertices in the 𝑖-th layer have no children in a
layer larger than 𝑖 . This decomposition takes𝑂 (𝑛) work and𝑂 (log𝑛)
depth.

3.3.2 The Graph of Partial Matches. We can reason about how

to construct the valid partial matches for a subpath P of the tree

decomposition, assuming we already solved all paths descending

from a child of P. Specifically, we derive locally at each node in the

subpath P a set of partial matches that are valid partial matches

if at least one of the partial matches of a child node of P is also a

valid partial match. At the leaf of the path, we know which partial

matches are valid (because both children have already been solved).

This observation leads to the idea to construct a directed acyclic

graph of partial matches where reachability models the validity of

the partial matches, as follows.

Let P be a subpath of the tree decomposition T . Consider a

node 𝑋 in the path P and assume we already computed the partial

matches for the left child 𝐿 of 𝑋 (the other child is the right child 𝑅,

where 𝑅 ∈ P). Then, we can check which partial matches of 𝑋 and

the right child of 𝑋 are compatible with a partial match of 𝐿. This

yields for every partial match𝑀𝑋 of 𝑋 a set of partial matches of 𝑅

that would validate the partial match𝑀𝑋 .

We construct a directed acyclic graph 𝐺 ′
based on this idea. For

the leaf node of P, there is a vertex in 𝐺 ′
for every valid partial

match. For every other node 𝑋 in P, there is a vertex for every

partial match of that node 𝑋 . Then, there is an edge from a partial

match 𝑀𝑅 of the child 𝑅 of 𝑋 to a partial match 𝑀𝑋 if there is a

valid partial match 𝑀𝐿 of the other child 𝐿 of 𝑋 such that 𝑀𝑋 is

compatible with𝑀𝐿 and𝑀𝑅 .

Reachability in the graph 𝐺 ′
can model which partial matches

are valid: A partial match is tagged as valid if it does not mark any

vertices as mapped by a child. The partial matches from the leaf

node of P are also tagged as valid. Then, the valid partial matches

are those that are reachable from a partial match tagged as valid in

the directed acyclic graph 𝐺 ′
.

3.3.3 Finding Valid Partial Matches Via Reachability. Next, we dis-
cuss how to compute all the valid partial matches using the directed

acyclic graph𝐺 ′
. Note that this graph𝐺 ′

still has a diameter equal

to the length of the path P, so we cannot directly use BFS. Hence,

we introduce shortcuts of exponentially increasing distance to re-

duce the diameter to 𝑂 (𝑘 log𝑛). After introducing the shortcuts,

we use naive parallel BFS to determine all the reachable vertices.

The details follow.

A simple (but a factor log𝑛 work-inefficient) way to solve reach-

ability is to introduce shortcuts for every vertex (similarly to some

list ranking and connected components algorithms [47]):

(1) Introduce shortcuts in log𝑛 rounds 0, 1, . . . , log𝑛.

(2) Round 𝑖 creates shortcuts of length 2
𝑖
. The edges of the

graph are shortcuts of length 1.

(3) For round 𝑖 > 0, for every vertex 𝑢, look at all its outgoing

edges of length 2
𝑖−1

. For each such edge (𝑢, 𝑣), look at all

edges (𝑣,𝑤) of equal length 2
𝑖−1

and add an edge (𝑢,𝑤) of
length 2

𝑖
to 𝑢.

This would result in 𝑂 (log𝑛) depth, but also be work inefficient

by up to a factor Θ(log𝑛) (when 𝑘 = 𝑂 (1)) because every vertex in

the graph 𝐺 ′
does Ω(log𝑛) work.

The crucial observation to overcome this limitation is that any

valid partial match is constructed by matching a “new” vertex at

most 𝑘 times. Thus, there are at most 𝑘 edges in𝐺 ′
that match new

vertices along any path in𝐺 ′
towards a valid partial match. The rest

of the edges in 𝐺 ′
do not introduce any new matches, but instead,

translate from the partial match of a child to an equivalent partial

match of the root. Since there is only one way not to introduce

any new matches (see Figure 5), the subgraph of edges that do not

introduce new edges is a directed forest (where edges are directed



{c, e, f}

{c, d, e} {a, c, f}

{a, b, c} {a, f, g}

Figure 5: The valid partial match (𝜙1,𝐶1,𝑈1) at node {𝑎, 𝑓 , 𝑔}
in the decomposition tree T can be turned into a valid partial
match (𝜙2,𝐶2,𝑈2) of the parent {𝑎, 𝑐, 𝑓 } without matching a
new vertex in exactly one way: The partial match has the
same set of unmatched vertices 𝑈2 = 𝑈1. The set of children
vertices contains the vertex that was matched to 𝑔, because 𝑔
is not in {𝑎, 𝑐, 𝑓 }. The isomorphism function 𝜙2 is the same as
𝜙1 on all the vertices in {𝑎, 𝑓 , 𝑔} ∩ {𝑎, 𝑐, 𝑓 } and undefined else-
where. The partial match (𝜙2,𝐶2,𝑈2) is turned into (𝜙3,𝐶3,𝑈3)
similarly, except that now the set 𝐶3 of vertices matched in a
child also includes those in 𝐶2

towards the roots). Hence, it suffices to introduce shortcuts in this

forest 𝐹 .

Because the subgraph 𝐹 is a forest, shortcuts can be introduced

work-efficiently in parallel: In each tree of 𝐹 , decompose the tree

into paths using Lemma 3.2. In each path, choose every log𝑛-th ver-
tex as a vertex where shortcuts are introduced. Add a shortcut from

every such vertex to the next, then add shortcuts of exponentially

increasing distance between them (within the path). Moreover, add

a shortcut from every vertex to the first vertex in a lower layer.

Lemma 3.3. Computing the valid partial matches of the graph
pattern 𝐻 in a subpath P of a decomposition tree T of width 𝜏 takes
𝑂 ( |P|((𝜏 + 3)3𝑘+1)) work and 𝑂 (𝑘 log𝑛) depth.

Proof. The work is linear in the number of vertices because we

add the edges of exponentially increasing distances to a forest 𝐹 of

𝑂 ( |P|/log𝑛) vertices.
After introducing the shortcuts, the distance from a valid leaf

node to any other valid node is 𝑂 (𝑘 log𝑛): Consider any path 𝑝 in

the original graph 𝐺 ′
. It contains at most 𝑘 edges that are not in

the forest 𝐹 . Therefore, it consists of at most 𝑘 subpaths 𝑝1, . . . , 𝑝𝑘
where each 𝑝𝑖 is a subgraph of the forest 𝐹 . Each subpath 𝑝𝑖 is

contained in a maximal tree 𝐹𝑖 of 𝐹 . By Lemma 3.2, 𝑝𝑖 intersects

at most 𝑂 (log𝑛) subpaths of 𝐹𝑖 . It takes 𝑂 (log𝑛) hops to move

from the first such subpath to the last (because of the shortcuts to a

vertex in a lower layer). Then, it takes an additional 𝑂 (log𝑛) hops
to traverse the first and last subpath using the shortcuts within each

subpath. We conclude that the overall number of hops to traverse

the path 𝑝 is 𝑂 (𝑘 log𝑛).
Together with the depth of constructing the shortcut graph, this

means that the depth of the algorithm is 𝑂 (𝑘 log𝑛). □

4 EXTENSIONS
We generalize our algorithm to disconnected patterns, show how to

list all occurrences of a graph pattern, and characterize the family

of graphs for which the algorithm is still FPT.

4.1 Disconnected Patterns
We extend our algorithm so that it can handle arbitrary discon-

nected patterns. These patterns are challenging because (in partic-

ular) the algorithm for treewidth 𝑘-cover cannot guarantee that

every component of the pattern graph is in the same cluster.

Consider a pattern graph 𝐻 consisting of 𝑙 connected compo-

nents. Number the components arbitrarily from 1 to 𝑙 . A naive

approach is to try out all 𝑙𝑛 possible ways to split the target graph

into 𝑙 components. A randomized approach (inspired by color cod-
ing [2]) allows us to remove the exponential dependency on the

number of vertices 𝑛. It works as follows:

(1) Color each vertex in 𝐺 independently and uniformly at

random with a number between 1 and 𝑐 .

(2) For each color 𝑖 , let 𝐺𝑖
be the subgraph induced by the

vertices that have color 𝑖 .

(3) Search for occurrences of the 𝑖-th component of 𝐻 in the

subgraph 𝐺𝑖
of color 𝑖 vertices.

(4) Return true if and only if each search is successful.

Lemma 4.1. Finding (with high probability) an occurrence of a dis-
connected pattern with 𝑙 components and 𝑘 vertices takes 𝑂 (𝑙𝑘 log𝑛)
more work than finding an occurrence of a connected pattern.

Proof. Consider a fixed occurrence of the pattern 𝐻 . The prob-

ability that all of its vertices are assigned to the correct component

of 𝐻 is 𝑙−𝑘 . Hence, 𝑂 (𝑙𝑘 ) repetitions suffice to find a particular oc-

currence of𝐻 with constant probability, and𝑂 (𝑙𝑘 log𝑛) repetitions
suffice to certify that no occurrence exists with high probability. □

Note that this technique of finding disconnected patterns by

reduction to the connected case is completely general and can be

used in conjunction with any subgraph isomorphism algorithm.

4.2 Listing all Occurrences
We describe the modifications necessary to make our algorithm

list all occurrences of a pattern. The first step is to modify the

algorithm such that it returns a particular occurrence of a pattern

with probability at least 1/2. Then, we can repeatedly generate a

new set of occurrences, remove duplicates (by hashing), until we

are confident enough that we have found all occurrences. The main

difficulty is that the number of iterations necessary to find all the

occurrences depends on the number of occurrences, which we do

not know in advance.

However, since every particular occurrence is found with prob-

ability at least 1/2 in each iteration, if there is an occurrence that

has not yet been found, at least one new occurrence is found with

probability at least 1/2. This argument shows that the process is



related to getting many heads in a row when flipping coins: it is

unlikely that many iterations in a row do not find a new occurrence.

Observation 2. For all 𝑗 ≤ 𝑖 , the probability that in a sequence
of 𝑗 independent coin flips 𝑖 heads occur in a row is at most 𝑗2−𝑖 .

Proof. The probability that 𝑖 heads occur in a row starting from

the𝑦-th coin flip is at most 2
−𝑖
. By a union bound over the 𝑗 possible

start positions, the bound follows. □

This observation still holds even for biased coins, as long as the

probability that heads comes up is at most 1/2.
Therefore, we iterate until after 𝑗 iterations we have seen no new

occurrence for log
2
𝑗 + Θ(log𝑛) iterations in a row to guarantee

that we have found all occurrences with high probability in 𝑛.

Theorem 4.2. Listing w.h.p. all 𝑥 occurrences of a connected pat-
tern graph in a planar target graph takes𝑂 (𝑘 log2 𝑛 (log(𝑥)+log𝑛)))
depth and 𝑂 ((𝑥𝑘 + (3𝑘 + 3)3𝑘+1𝑛) (log𝑛 + log𝑥)) work.

Proof. Every iteration finds a specific occurrence with prob-

ability at least 1/2. Hence, after log
2
𝑥 + Θ(log𝑛) iterations, the

probability that we have not found a specific occurrence is at most

𝑥−1𝑛−Ω (1)
. By a union bound over the 𝑥 occurrences, the probabil-

ity that we have not found all occurrences is at most 𝑛−Ω (1)
. Hence,

after 𝑖 = log
2
𝑥 + Θ(log𝑛) iterations, the algorithm will, with high

probability, not find any new occurrences (because there are none)

and by construction terminate after an additional 𝑂 (log 𝑖 + log𝑛)
iterations. Overall, the algorithm takes at most 𝑂 (log𝑥 + log𝑛)
iterations to terminate with high probability. Together with the

bounds from Section 4.2.1 this implies the work and depth bounds.

We show that the probability that the algorithm terminates be-

fore all occurrences have been found is at most 𝑛−Ω (1)
. Consider

the longest prefix of iterations of the algorithm where it has not

found all occurrences. Model these iterations as coin flips, where

the coin of an iteration turns up heads if this iteration finds no new

occurrence. Heads comes up with probability at most 1/2 because
each such iteration finds a new occurrence with probability at least

1/2. By Observation 2, the probability that (for any 𝑗 in this se-

quence) after 𝑗 coin flips heads comes up log
2
𝑗 +Θ(log𝑛) times in

a row is at most 𝑛−Ω (1)
. This situation is the only one in which the

algorithm terminates before finding all occurrences.

□

Hence, if we can find every occurrence that does not cross a

cluster, we can find all occurrences with high probability. It remains

to describe how to find these occurrences.

4.2.1 Recovering All Occurrences for a Cluster. Every valid partial

match of the root of the tree decomposition that does not map any

vertex as unmatched can be attributed to one or more subgraph iso-

morphisms. We construct these subgraph isomorphisms top down
while traversing the shortcut graph of valid partial matches in re-

verse order (only following edges that lead to a valid partial match).

The algorithm keeps a set of current subgraph isomorphisms at

every vertex in the graph and does a parallel BFS of limited depth.

When visiting a new vertex of the shortcut graph (which contains

a partial mapping 𝜙), every subgraph isomorphism in the list from

the predecessor node is extended by 𝜙 and stored in the new vertex.

As for the decision problem, we observe that only 𝑘 edges intro-

duce a new vertex to the mapping. The other edges are shortcut so

that overall at most𝑂 (log𝑛) edges need to be traversed in between

those 𝑘 edges. However, we now need to construct the possible

subgraph isomorphism even through those shortcuts explicitly.

Fortunately, as illustrated in Figure 5, there is a unique way to

extend a partial match through these shortcut edges, namely, do

not change the current mapping at all. Hence, the overall depth of

the reconstruction is 𝑂 (𝑘 log2 𝑛).
By considering only occurrences that contain at least one vertex

that is closest to the root of the BFS tree of the 𝑘-𝑑 cover, every

traversed path leads to at least one subgraph isomorphism, and the

work is bounded by the size of all the subgraph isomorphisms.

4.3 Bounded Genus & Apex-Minor-Free Graphs
Our results generalize to all (minor-closed) families of graphs where

a bounded diameter graph has bounded treewidth. Observe that

our treewidth 𝑘-cover algorithm from Section 2.1 does not use

anything specific to planar graphs. It outputs subgraphs of diameter

𝑑 that cover all occurrences of the pattern with constant probability.

Moreover, our algorithm for bounded treewidth in Section 3 only

requires a treewidth decomposition of lowwidth.We start by giving

the characterization of the graphs where our results hold and then

discuss the few necessary changes.

4.3.1 Locally Bounded Treewidth. A family of graphs has locally
bounded treewidth [20] if every graph of diameter 𝐷 has treewidth

at most 𝑓 (𝐷), for some function 𝑓 . Surprisingly, all minor-closed

families of graphs that have locally bounded treewidth have lo-
cally linear treewidth [16], meaning that a graph of diameter 𝐷 has

treewidth 𝑂 (𝐷).
The graphs of locally bounded treewidth have been characterized

with respect to having certain excluded minors. A graph 𝐺 that has

a vertex 𝑣 that is connected to all other vertices in 𝐺 that becomes

planar after removing 𝑣 is an apex-graph. Such graphs do not have

locally bounded treewidth. For example, consider the 𝑛 × 𝑛 grid

with an additional vertex connected to all other vertices. This graph

has diameter 2, but because the grid has treewidth 𝑛 [48] this apex

graph has treewidth at least 𝑛. Note that some apex graphs are

planar (like the clique 𝐾4) while others are not (like the clique 𝐾5).

Interestingly, a minor-closed family of graphs of locally bounded

treewidth must have an apex graph as an excluded minor [20] . For
example, planar graphs exclude the apex graph 𝐾5 as a minor (by

Kuratowski’s theorem [52]). Examples of apex-minor-free graphs

include bounded-genus-graphs.

4.3.2 Parallel Tree Decomposition. The missing piece to our paral-

lel subgraph isomorphism algorithm on apex-minor-free graphs is

a parallel tree decomposition algorithm. The algorithm from Lager-

gren [34] achieves poly-logarithmic depth for constant treewidth,

but the depth of the algorithm is not polynomial in 𝜏 . It becomes

the bottleneck in our subgraph isomorphism algorithm.

Theorem 4.3 (Lagergren [34]). For a graph with treewidth 𝜏 ,
computing a tree decomposition of width 8𝜏 + 7 takes 𝜏𝑂 (𝜏)𝑚 work
and 𝜏𝑂 (𝜏)

log
3 𝑛 depth.



Together with the results from Section 2.1 and Section 3 this

proves the generalized bounds. Similar results hold for disconnected

patterns and listing all occurrences of the pattern.

Theorem 4.4. Deciding (with high probability) if a connected
pattern graph 𝐻 occurs as a subgraph of an apex-minor-free graph𝐺
takes 𝑘𝑂 (𝑘)𝑛 log3 𝑛 work and 𝑘𝑂 (𝑘)

log
3 𝑛 depth.

5 PLANAR VERTEX CONNECTIVITY
Vertex connectivity is a classic graph problem with applications in

networking [12] and operations research [41]. Sequentially, 𝑐-vertex

connectivity can be solved in linear time for planar graphs [19]

and, more generally, in 𝑂 (𝑐2𝑛2 log𝑛) time deterministically [30]

and 𝑂 (𝑚 + 𝑐7/3𝑛4/3) time with high probability [42]. Recently, a

sub-quadratic time deterministic algorithm [24] and a near-linear

work [43] algorithm have been announced.

Two-connectivity and 3-connectivity have long been solved

(optimally) for general graphs with linear work and logarithmic

depth [38, 50]. In contrast, no sub-quadratic work poly-logarithmic

depth 4-connectivity algorithmwas available even for planar graphs

prior to our work.

We show that vertex connectivity can be solved with 𝑂 (𝑛 log𝑛)
work and 𝑂 (log2 𝑛) depth in planar graphs. This result is possible

because the vertex connectivity is closely related to certain separat-

ing cycles in a target graph that is constructed based on a planar

embedding of the original graph (details below). Moreover, we use

that the work of our subgraph isomorphism algorithm is𝑂 (𝑛 log𝑛)
for any constant size pattern. Eppstein [19] uses this idea (attributed

to Nishizeki) for his sequential linear work vertex connectivity al-

gorithm. We describe the approach and the necessary changes to

our parallel algorithm.

5.1 From Connectivity to Separating Cycles
We show how to construct the target graph that we use to solve

vertex connectivity, based on an idea attributed to Nishizeki [19].

See Figure 6 for an illustration.

Embed the graph𝐺 in the plane. Use the embedding to construct

a bipartite target graph 𝐺 ′
from 𝐺 as follows. One side of the bi-

partite graph consists of the vertices from 𝐺 . The vertices on this

side are the original vertices. The other side has a vertex 𝑓 for each
face 𝑓 in the original graph𝐺 . The vertices on this side are the face
vertices. A face vertex 𝑓 of 𝐺 ′

and an original vertex 𝑣 of 𝐺 ′
are

connected if and only if the face 𝑓 contains the vertex 𝑣 in the graph

𝐺 . Observe that because the graph𝐺 ′
is bipartite, all its cycles have

even length.

Separating Subgraphs. A subgraph 𝐻 ′
of a graph 𝐺 separates

the vertex set 𝑆 ⊆ 𝑉 (𝐺) if the graph 𝐺 [𝑉 (𝐺)\𝑉 (𝐻 ′)] we get from
removing all vertices of 𝐻 ′

from 𝐺 contains at least two vertices

from 𝑆 in two different connected components.

Lemma 5.1 (Nishizeki / Eppstein [19]). If 𝐺 is 2-connected and
the shortest cycle in the bipartite graph 𝐺 ′ that separates the set of
original vertices has length 2𝑐 , then 𝐺 has vertex connectivity 𝑐 .

This leads us to our algorithm to decide planar vertex connec-

tivity in parallel. First, check if the graph is 2-connected and if it

is 3-connected using existing algorithms [38, 50]. If the graph is

Figure 6: To construct the target graph 𝐺 ′ from the embed-
ding of the graph 𝐺 , place a vertex 𝑣 inside every face 𝑓 of 𝐺
and connect this vertex 𝑣 to all the vertices of the face 𝑓 (re-
move the original edges). Since there is a 6-cycle (highlighted
and bold) in 𝐺 ′ that separates the original vertices (black),
but no smaller such cycle, the graph 𝐺 is 3-connected. This
cycle contains three original vertices (highlighted) whose
removal disconnects the graph 𝐺 .

3-connected, check if there is a cycle of length 8 in𝐺 ′
that separates

the original vertices of𝐺 ′
. If so, the graph𝐺 has vertex connectivity

4. Otherwise, the graph 𝐺 has vertex connectivity 5.

Lemma 5.2. Deciding Planar Vertex Connectivity (w.h.p) takes
𝑂 (𝑛 log𝑛) work and 𝑂 (log2 𝑛) depth.

Proof. The algorithm is correct by Lemma 5.1 and the fact that

the vertex connectivity of a planar graph is at most 5. This follows

from Euler’s formula, which implies that every planar graph has

a vertex of degree at most 5 [52]. Removing the neighbors of this

vertex disconnects the graph, hence the graph is not 6-connected.

Constructing a planar embedding takes𝑂 (𝑛) work and𝑂 (log2 𝑛)
depth [31]. Together with the modifications described in Section 5.2

(Lemma 5.3) this implies the work and depth bounds. □

Hence, we need to augment our subgraph isomorphism algo-

rithm so that it can find a subgraph that separates a set of vertices
(the original vertices in the case of the graph 𝐺 ′

).

A simple approach to find all separating cycles of a given length

would be to enumerate all cycles of a given length using the algo-

rithm from Section 4.2.1 and check which are separating. However,

there can be Θ(𝑛4) many length 8 cycles in a planar graph [29], so

this would be too much work.

5.2 Separating Subgraph Isomorphism
We generalize our parallel subgraph isomorphism algorithm so that

it can find subgraphs that separate a given set of vertices. Two mod-

ifications are necessary. These are similar to what was necessary

for the sequential algorithm [19] for cycles. The first modification

is to the parallel treewidth cover algorithm from Section 2.1. This

modification ensures that a subgraph that is separating in the origi-

nal graph is also separating in each of the graphs in the cover. The
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Figure 7: In addition to the vertices from the 𝑘-𝑑 cover, some
vertices correspond to merged subgraphs (these are drawn
larger in the picture). A subgraph of diameter 𝑑 (here 𝑑 = 2)
that is separating in 𝐺 ′ is separating in at least one of the
minors 𝐺0, 𝐺1, 𝐺2 using only the original (small) vertices.

second modification concerns the algorithm for bounded treewidth

subgraph isomorphism from Section 3. It extends the state space of

the recursion to keep track of which vertices are separated by the

subgraph and which can be in the same component after removing

the subgraph.

𝑆-Separating Subgraph Isomorphism asks if there exists an occur-

rence𝐻 ′
of the pattern graph𝐻 in the target graph𝐺 that separates

the vertex set 𝑆 ⊆ 𝑉 (𝐺). If the pattern graph is a cycle, the problem

is called 𝑆-Separating Cycle.

5.2.1 How to Modify the 𝑘-𝑑-Cover. Start by clustering the graph

𝐺 as usual. Then, for each cluster, merge all neighboring clusters

into a single vertex each (do not choose these as the source for

the BFS). Then, in each cluster, instead of returning the graph 𝐺𝑖

(which is an induced subgraph of the cluster), merge all connected

components of the cluster that result after removing 𝑉 (𝐺𝑖 ) into
a single vertex each. This produces a set of minors of the graph

(instead of a set of induced subgraphs), as shown in Figure 7.

When proceeding to find an 𝑆-separating subgraph in these

minors, consider each merged vertex that contains at least one

vertex of the set 𝑆 to be in the set 𝑆 . Moreover, do not allow the

occurrence of the pattern to contain any of the merged vertices (the

other vertices are in a set of allowed vertices 𝐴).

5.2.2 How to Modify the Bounded Treewidth Algorithm. The gen-
eralized algorithm must separate 𝑆 and only contain vertices from

the set of allowed vertices 𝐴. To restrict the found occurrences to

only contain vertices from the set of allowed vertices, it suffices to

restrict the mapping at each tree decomposition node to 𝐴.

The idea to find an occurrence that separates 𝑆 is that we record

which vertices are separated by the occurrence. Removing such an

occurrence creates at least two connected components. We call one

of these components the inside vertices and the rest of the vertices

the outside vertices. Observe that after removing a separating occur-

rence from the graph, every resulting connected component must

either consist of only inside or consist of only outside vertices.

We extend the construction of partial matches. A partial match

for node 𝑋 has an additional set 𝐼𝑋 ⊆ 𝑋 of on the inside vertices
and a set 𝑂𝑋 ⊆ 𝑋 of on the outside vertices. Moreover, it has a

boolean 𝑖𝑥 to keep track if any of the vertices in 𝑆 that occur in the

subgraph induced by the current tree decomposition node are on

the inside (and a boolean 𝑜𝑥 to store if any of those vertices are on

the outside). This bookkeeping ensures that at least one vertex is

on both sides – otherwise, the subgraph would not be separating.

We adapt the semantics of the combination rules accordingly to

reflect the intuition that partial matches keep track of which vertices

are on the inside or outside. Consider a node 𝑋 of the decomposi-

tion tree, one of its children 𝑌 , and the (extended) partial matches

(𝜙𝑋 ,𝐶𝑋 ,𝑈𝑋 , 𝐼𝑋 ,𝑂𝑋 , 𝑖𝑥 , 𝑜𝑥 ) of 𝑋 and (𝜙𝑌 ,𝐶𝑌 ,𝑈𝑌 , 𝐼𝑌 ,𝑂𝑌 , 𝑖𝑦, 𝑜𝑦) of
𝑌 . Then, for the partial matches to be valid, ensure the following:

• Every connected component of the subgraph of 𝐺 induced

by the vertices in 𝑋 that are not mapped onto by the func-

tion 𝜙𝑋 is either fully in 𝑂𝑋 or fully in 𝐼𝑋 . Similarly for

𝑌 .

• The inside and outside of 𝑋 and 𝑌 have to be consistent:

For any vertex 𝑢, if 𝑢 ∈ 𝑋 ∩ 𝑌 then 𝑢 ∈ 𝐼𝑋 if and only if

𝑢 ∈ 𝐼𝑌 and 𝑢 ∈ 𝑂𝑌 if and only if 𝑢 ∈ 𝑂𝑋 .

• The parent match has to ‘remember’ if any vertex is in 𝑆

and on the inside or outside. Specifically, for a vertex 𝑢 ∈ 𝑆 ,
𝑢 ∈ 𝐼𝑋 implies 𝑖𝑥 and 𝑢 ∈ 𝑂𝑋 implies 𝑜𝑥 . Moreover, 𝑖𝑦
implies 𝑖𝑥 and 𝑜𝑦 implies 𝑜𝑥 .

Finally, a valid partial match at the root must separate 𝑆 (which

means 𝑖𝑥 and 𝑜𝑥 are both true at the root).

Lemma 5.3. Deciding Planar 𝑆-Separating Subgraph Isomorphism

(w.h.p.) for a connected pattern graph with𝑘 vertices takes𝑂 (𝑘 log2 𝑛)
depth and 𝑂 (29𝑘 (3𝑘 + 1)3𝑘+1𝑛 log𝑛) work.

Proof. Computing connected components and contracting the

edges takes 𝑂 (𝑛) work and 𝑂 (log𝑛) depth [27]. The number of

states for the recursion increases by at most 2
3𝑘+3

. Hence, the

number of considered combinations with the children increases by

at most 𝑂 (29𝑘 ) at every node. □

When 𝑘 is a constant, the algorithm takes 𝑂 (𝑛 log𝑛) work and

𝑂 (log2 𝑛) depth. In Section 5.1, the only missing piece to solve

planar vertex connectivity in 𝑂 (𝑛 log𝑛) work and 𝑂 (log2 𝑛) depth
is to find 𝑆-Separating 8-cycles, which we have just described how

to solve in the stated bounds.

6 CONCLUSION AND FUTUREWORK
We presented a randomized algorithm to decide planar subgraph

isomorphism in 𝑂 (𝑛 log𝑛) work and 𝑂 (log2 𝑛) depth for constant

size patterns. We used this result for deciding planar vertex con-

nectivity in the same parallel bounds.

There are many interesting avenues for future work. Although

we could use our subgraph listing algorithm to count the number

of occurrences, this is not work-efficient as the runtime grows

with the number of occurrences. The difficulty comes from the

randomized way in which we cluster the graph to construct a 𝑘-𝑑

cover. A deterministic parallel 𝑘-𝑑 cover would solve this issue and

yield a deterministic algorithm overall.

Reducing the work dependency on the size of the pattern 𝑘 could

be an essential step in improving the practicality of the approach.

There are indications that 2
Ω (𝑘/log𝑘)

is a lower bound for the depen-

dency on 𝑘 for any planar subgraph isomorphism algorithm with

polynomial dependency in 𝑛 [22], but there remains room for im-

provement regarding the exponential dependency on 𝑘 . Moreover,



faster parallel algorithms for tree decomposition would directly

improve our bounds for apex-minor-free graphs.

For planar vertex connectivity, we reduced the gap between the

work of our algorithm and the best sequential algorithm to𝑂 (log𝑛).
It is natural to ask if it is possible to solve planar vertex connectiv-

ity in 𝑂 (𝑛) work and poly-logarithmic depth. More generally, in

light of the recently announced sequential near-linear time vertex

connectivity algorithm for sparse graphs [43], it might be interest-

ing to see if we can solve vertex connectivity in sparse graphs in

near-linear work and low depth.
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A DECOMPOSING A TREE INTO PATHS
We prove Lemma 3.2 using expression tree evaluation techniques.

This means that we transform the problem into a problem of eval-

uating an expression tree of suitable operations. To evaluate this

expression tree efficiently, we need to decompose the operations

into unary functions satisfying certain properties, as described

below.

Recall that the Lemma requires the tree to be split into 𝑂 (log𝑛)
layers each consisting of disjoint paths. The idea is to compute for

each vertex in the tree the layer in which the vertex occurs. This

computes for each node a layer number, where the layer number of

the leafs is zero and the layer number of nodes closer to the root is

monotonically increasing (as detailed below).

Each layer (i.e. subgraph induced by vertices with the same layer

number) consists of a forest where each connected component is

a path. Hence, it is easy to find and order these paths (using list

ranking) once we have the layer numbers.

Next, we describe the recursive function 𝐿 that computes the

layer numbers. In a general rooted tree, the parent 𝑏 has the same

layer number 𝑙 (𝑏) as the maximum layer number of any of its

children 𝑎1, . . . 𝑎𝑘 if this maximum is unique (i.e., only one child

has this layer number). Otherwise, the layer number of the parent

is one larger than that maximum. In summary, the layer number

𝑙 (𝑏) of node 𝑏 with children 𝑎1, . . . 𝑎𝑘 with layer numbers 𝑙1, . . . 𝑙𝑘
is given recursively:

𝐿(𝑙1, . . . 𝑙𝑘 ) =
{
max(𝑙1, . . . 𝑙𝑘 ) if the maximum is unique ;

max(𝑙1, . . . 𝑙𝑘 ) + 1 otherwise .

The layer number of a leaf is 0. This recursive description works

because the case where the maximum is unique corresponds to

when the parent is part of the same path as the child that obtains

this maximum. If two children have the same layer number, the

parent must start its own path and a new layer.

Moreover, observe that it becomes clear why there are 𝑂 (log𝑛)
layers: For a parent to have a larger layer number than one of its

children, there need to be at least two children of the same maximal

layer number. This means that the number of nodes in a layer

decreases by at least a factor 2 when going to a higher layer.

We proceed to describe the conditions for applying the efficient

tree contraction based expression tree evaluation techniques, as

summarized in Lemma A.1. A family of unary functions is closed

under composition if the composition of any two functions in the

family is also in the family. A family of unary functions F over the

domainD is closed under projectionwith respect to a 𝑘-ary function

ℎ : D𝑘 → D if for all tuples 𝑎1, . . . , 𝑎𝑘−1 ∈ D𝑘−1
and all indexes

𝑖 (between 1 and 𝑘) the function ℎ(𝑎1, . . . , 𝑎𝑖−1, 𝑥, 𝑎𝑖+𝑖 . . . , 𝑎𝑘−1) :
D → D (a unary function of 𝑥 ) is in the family F .

Lemma A.1. If there is a family of𝑂 (1)-computable functions that
is closed under composition and closed under projection with respect
to all the operations in an expression tree of 𝑛 nodes, then evaluating
the expression tree takes 𝑂 (𝑛) work and 𝑂 (log𝑛) depth [47].

The intuition is that the expression tree evaluation repeatedly

contracts the expression tree. For this procedure to be well-defined,

the algorithm needs to express partially evaluated subtrees using

these unary functions. Next, we exhibit such a suitable family of

unary functions for the function 𝐿 that maps the layer number of

the children to the layer number of the parent.

We define a set of unary functions over the domain of natural

numbers, where for each natural number 𝑖 , there are two functions:

a function 𝑓 ≠
𝑖
(𝑥) and a function 𝑔=

𝑖
(𝑥). Intuitively, the functions

𝑓 ≠
𝑖
(𝑥) record a state where the maximum (so far) is unique and

equal to 𝑖 . The functions𝑔=
𝑖
(𝑥) record the state where the maximum

is not unique and equal to 𝑖 . Formally, we set:

𝑓 ≠𝑖 (𝑥) =
{
𝑖 + 1 if 𝑖 = 𝑥 ,

max(𝑖, 𝑥) otherwise .

𝑔=𝑖 (𝑥) =
{
𝑖 + 1 if 𝑖 ≥ 𝑥 ,

𝑥 if 𝑖 < 𝑥 .

We check that the function class is closed under composition. For

any natural numbers 𝑖 and 𝑗 , the following holds:

𝑔=𝑗 ( 𝑓
≠
𝑖 (𝑥) ) = 𝑓 ≠𝑖 ( 𝑔=𝑗 (𝑥) ) =


𝑔=
𝑖
(𝑥) if 𝑖 = 𝑗 ,

𝑓 ≠
𝑖
(𝑥) if 𝑖 > 𝑗 ,

𝑔=
𝑗
(𝑥) if 𝑗 > 𝑖 .

𝑓 ≠𝑖 ( 𝑓 ≠𝑗 (𝑥) ) =
{
𝑔=
𝑖
(𝑥) if 𝑖 = 𝑗 ,

𝑓 ≠
max(𝑖, 𝑗) (𝑥) otherwise .

𝑔=𝑖 ( 𝑔
=
𝑗 (𝑥) ) = 𝑔=

max(𝑖, 𝑗) (𝑥)

To check that the function class is closed under projection with

respect to 𝐿, consider a sequence of layer values L = 𝑙1, . . . , 𝑙𝑘−1.
Let 𝑙max be the maximum of L. For any valid index 𝑖 we have that:

𝐿(𝑙1, . . . , 𝑙𝑖−1, 𝑥, 𝑙𝑖+1, . . . , 𝑙𝑘−1) =
{
𝑓 ≠
𝑙max

(𝑥) if 𝑙max is unique in L,

𝑔=
𝑙max

(𝑥) otherwise.
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