
Communication-Centric Optimizations by
Dynamically Detecting Collective Operations

Timo Schneider and Torsten Hoefler
University of Illinois at Urbana-Champaign

Timo Schneider <timos@illinois.edu>
Torsten Hoefler <htor@illinois.edu>

Funded by DOE ASCR X-Stack,
program manager Sonja Sachs

if (thisimage() .eq. iimage) then

 ibuf(1:n) = ii(1: n)

 call sync all()

else

 call sync all()

 ii(1:n) = ibuf(1:n)[iimage]

endif

call sync_all()

call GOAL_Create(g)

if (thisimage() .eq. iimage) then

 ibuf(1:n) = ii(1:n)

 do dst=0, num_procs-1

 if (dst .ne. iimage) then

 GOAL_Send(g,ibuf,n*8,dst)

 endif

 end do

else

 call GOAL_Recv(g,ii,n*8,iimage)

endif

call GOAL_Compile()

Users express collectives with p2p-messages :
• Collective not supported by the language
• Slower than hand-tuned on some machine

Tuned collectives cannot be leveraged!

Compiler transforms this into GOAL code:
• Pattern expressed as dependency graph
• Vertices: Send- / Recv operations
• Edges: Dependencies between operations
• Optimization applied in GOAL_Compile()

recv 8b to 0x14
 from proc 0

Process 1

recv 8b to 0xc2
from proc 0

Process 2

Process 3

recv 8b to 0x42
 from proc 0

Process 0

send 8b at 0x10
to proc 2

send 8b at 0x18
 to proc 3

send 8b at 0x08
 to proc 1

GOAL_Compile() creates a local
communication graph for each process
• At runtime, buffer addresses are available
• Note that there are no dependencies in

this example

Dataflow Solver: Single Static Transfer Tuples

SST-Tuple := (dest, destbuf, size, src, srcbuf)

(1,0x14,8b,0,0x08) (2,0xc2,8b,0,0x10) (2,0xc2,8b,0,0x10)

Global graph is used solve the dataflow
• Dataflow is expressed in SST Tuples (cf. Single

Static Assignment)
• SST is created by visiting the graph top to bottom
• Tuples can be split or merged

Detecting Collectives by Pattern Matching

 𝑏𝑐𝑎𝑠𝑡 ≪ 𝑔𝑎𝑡ℎ𝑒𝑟 ≪ 𝑠𝑐𝑎𝑡𝑡𝑒𝑟 ≪ 𝑎𝑙𝑙𝑔𝑎𝑡ℎ𝑒𝑟 ≪ 𝑎𝑙𝑙𝑡𝑜𝑎𝑙𝑙

𝑠𝑐𝑎𝑡𝑡𝑒𝑟 ≔ 𝑑, 𝑎, 𝑙, 𝑠, 𝑏 0 ≤ 𝑑 < 𝑝, 𝑑 ≠ 𝑠

A collective operation can be described by the set
of SST tuples it consists of
• Can be used to match tuples to collectives
• Collectives have to be matched in the order of

their expressiveness

Performance of different published allreduce
implementations in CAF
• The optimized version, where allreduce is

detected and replaced by an MPI call is an order
of magnitude faster

Performance benefits of our optimization:
• Runtime of the optimization is linear - building the

global graph requires a Gatherv operation
• The optimization overhead is amortized after few

calls of the optimized collective

Global Communication Graph

0: send 8b at 0x10
 to proc 2

2: recv 8b to 0xc2
 from proc 0

1: recv 8b to 0x14
 from proc 0

0: send 8b at 0x08
 to proc 1

0: send 8b at 0x18
 to proc 3

3: recv 8b to 0x42
from proc 0

Most optimizations require knowledge
of the global communication graph:
• Local graphs are gathered
• Dependencies stay intact as they are

process local
• Send and receive operations are

linked together (green arrows) in a
matching step

0: send 8b at 0x10
 to proc 2

2: recv 8b to 0xc2
 from proc 0

1: recv 8b to 0x14
 from proc 0

0: send 8b at 0x08
 to proc 1

0: send 8b at 0x18
 to proc 3

3: recv 8b to 0x42
from proc 0

Compile

Build Local Graphs

Build Global Graph

Dataflow
Analysis

Detect
Collectives

Rewrite with optimized Collectives

Split Example with Bruck’s Algorithm

