Communication-Centric Optimizations |
Dynamically Detecting Collective Operat|

Timo Schneider and Torsten Hoefler
University of lllinois at Urbana-Champaign

1f (thisimage() .eqg. 11mage) then
1buf(l:n) = 11 (1: n)

Performance of different published allreduce
implementations in CAF

Performance benefits of our optimization:
* Runtime of the optimization is linear - building the

call sync all()
else

* The optimized version, where allreduce is

global graph requires a Gatherv operation

detected and replaced by an MPI call is an order

 The optimization overhead is amortized after few

call sync all()

11(1:n) = 1buf(1l:n) [11mage]
endif
call sync_all()

of magnitude faster calls of the optimized collective

Users express collectives with p2p-messages :
* Collective not supported by the language

e Slower than hand-tuned on some machine

lterations until benefit
—*— QOptimization overhead

—*— Optimized (Cray MPI)
CAF linear

—A— CAF Tutorial

—+— CAF NPB

—q— Optimized
—A— Unoptimized

Tuned collectives cannot be leveraged!

call GOAL_Create(qg)
if (thisimage() .eqg. 11mage) then
1buf(l:n) = 11(1:n)
do dst=0, num_procs-1
if (dst .ne. 11mage) then
GOAL_Send(g,1buf,n*8,dst) 1000 2000 3000
endif
end do
else
call GOAL_Recv(g,11,n*8,11mage)
endif
call GOAL_Compile()

Allreduce Runtime [s]
Bcast Runtime [ms]
Number of lterations

Compiler transforms this into GOAL code:

e Pattern expressed as dependency graph

* Vertices: Send- / Recv operations

* Edges: Dependencies between operations
| * Optimization applied in GOAL_Compile()

Number of Processes Number of Processes

‘ Rewrite with optimized Collectives
A collective operation can be described by the set

of SST tuples it consists of
* Can be used to match tuples to collectives

‘ Build Local Graphs bcast K gather < scatter < allgather < alltoall * Collectives have to be matched in the order of
their expressiveness

Detecting Collectives by Pattern Matching

Process 0O —

scatter :=(d,a,l,s,b) 0<d<p,d+s
GOAL_Compile() creates a local
communication graph for each process
 Atruntime, buffer addresses are available
* Note that there are no dependencies in

this example

send 8b at Ox08
to proc 1

recv 8b to Ox14

from proc 0 Global graph is used solve the dataflow

f Detect e Dataflow is expressed in SST Tuples (cf. Single
Collectives Static Assignment)

SST is created by visiting the graph top to bottom
Tuples can be split or merged

Process 2
send 8b at 0x10

to proc 2

recv 8b to Oxc2

from proc O
send 8b at 0x18 Dataflow Solver: Single Static Transfer Tuples

to proc 3

Process 3

recv 8b to 0x42
from proc O

Global Communication Graph

SST-Tuple := (dest, destbuf, size, src, srcbuf)

0: send 8b at Ox10 Split Example with Bruck’s Algorithm

to proc 2

0: send 8b at 0x08
to proc 1

0: send 8b at 0x18

Most optimizations require knowledge to proc 3

of the global communication graph:

* Local graphs are gathered

 Dependencies stay intact as they are
process local

* Send and receive operations are
linked together (green arrows) in a

matching step

process 0

Al [2] [

send 1b at Ox1
to proc O

HEIEE

The two elements
have different
sources!

process 1 process 2

| (3]
| [3]4

after split:
(270111070)1
(2,1,1,1,1)

1: recv 8b to Ox14
from proc O

2: recv 8b to Oxc2
from proc O

3: recv 8b to 0x42
from proc O
0: send 8b at Ox10
to proc 2

0: send 8b at Ox08
to proc 1

0: send 8b at 0x18

to proc 3 (1,0x14,8b,0,0x08)

’ Dataflow

Analysis

(2,0xc2,8b,0,0x10) (2,0xc2,8b,0,0x10)

2] |

send 2b at 0x0
to proc 2

1]2[3]4

~unded by DOE ASCR X-Stack,
orogram manager Sonja Sachs

1: recv 8b to Ox14
from proc O

2: recv 8b to Oxc2
from proc O

3: recv 8b to 0x42
from proc O

Timo Schneider <timos@illinois.edu>
Torsten Hoefler <htor@illinois.edu>

U.S. DEPARTMENT OF OffICe Of

] ILLINGOIS ENERGY Science

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

