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Abstract
Massive spatial parallelism at low energy gives FPGAs the
potential to be core components in large scale high perfor-
mance computing (HPC) systems. In this paper we present
four major design steps that harness high-level synthesis
(HLS) to implement scalable spatial FPGA algorithms. To aid
productivity, we introduce the open source library hlslib to
complement HLS. We evaluate kernels designed with our
approach on an FPGA accelerator board, demonstrating high
performance and board utilization with enhanced program-
mer productivity. By following our guidelines, programmers
can use HLS to develop efficient parallel algorithms for FPGA,
scaling their implementations with increased resources on
future hardware.

CCS Concepts • Computing methodologies → Paral-
lel programming languages; • Hardware → High-level
and register-transfer level synthesis;
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1 Motivation
Although FPGAs have started to see deployment in cloud
and data center solutions, their use in HPC is still niche,
owing partially to the software background of most HPC
end users, and partially to the rapid development in GPU
and many-core offerings. With exascale on the horizon, the
available power budget will be a significant bottleneck in
constructing large scale HPC systems. This has made energy
efficiency emerge as a first class citizen, triggering a surge of
interest in FPGAs as a way to scale up performance without
a proportional increase in energy consumption.
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Traditionally, FPGA implementations are written in hard-
ware description languages (HDLs) by hardware experts,
who design circuitry solving the application on a register
transfer level. With the increased adoptation of FPGAs in
cloud solutions, vendors and third parties are attempting
to raise the level of abstraction, by developing tools that
allow software engineers to program FPGAs using popular
languages such as OpenCL and C/C++.

1 void StreamingDataflow(Data_t *...) {
2 #pragma HLS PIPELINE DATAFLOW
3 Stream<Data_t> pipes[D+1];
4 ReadMemory(memory_in, pipes[0]); // Writes head
5 for (int d = 0; d < D; ++d) {
6 #pragma HLS UNROLL
7 ProcessingElement(pipes[d], pipes[d+1]);
8 }
9 WriteMemory(pipes[D], memory_out); // Reads tail
10 }

Listing 1. Implementation of streaming dataflow in HLS.

2 Scalable FPGA design in HLS
Wepropose guidelines to implementmassively parallel FPGA
programs using high-level synthesis (HLS) from applications
that exposes a scalable source of parallelism, exploiting fixed
memory access patterns to efficiently pipeline computations
to achieve a compute bound implementation. To achieve true
scalability, we target designs that can fold a dimension of
the target application by a variable factor D, such that D
steps can be evaluated by D processing elements (PEs) in
parallel, reducing the time to solution by a factor ≈1/D. This
is constrained only by the available logic and memory on
the chip. We use the kernel structure shown in Listing 1 to
implement such programs. Components are connected by
FIFO stream (or pipe) objects, moving data between modules
on the chip. To achieve a massively parallel design in HLS,
we follow four major guidelines:
• Pipelining and vectorization: We exploit the immedi-
ately available spatial parallelism by pipelining and un-
rolling, instantiating every arithmetic operations sepa-
rately in hardware, then multiply them by the maximum
vector width supported by the memory bandwidth.

• Buffering: To reduce pressure on bandwidth to external
memory, and to regularize the access pattern, we use on-
chip buffering to maximize spatial reuse. We map variables
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Type Stencil Source Device Performance Frequency Power Power efficiency
TPDS’17 [1] CPU Heat 2D C Xeon E5645 54GOp/s 2400MHz (2 × 80W)a (0.34GOp/J)a
PPoPP’17 [4] GPU Jacobi 2D CUDA Titan X 490GOp/s 1417-1531MHz (250W)a (1.96GOp/J)a
FPT’13 [3] FPGA RTM (3D) Maxeler MaxGenFD 131GOp/s 100MHz 142W 0.92GOp/J
TPDS’14 [5] FPGA Jacobi 2D HDL 9× EP3SL150 260GOp/s 133MHz 201W 1.29GOp/J
TPDS’17 [6] FPGA Jacobi 2D OpenCL 395-D8 238GOp/s 230MHz (75W)a (3.17GOp/J)a
Ours FPGA Jacobi 2D C++ TUL KU115 228GOp/s 160MHz 31W 7.36GOp/J

Table 1. Performance comparison to related work for single precision. aPower not reported: Estimating with TDP.

to either on-chip RAM units or registers depending on the
required access pattern.

• Tiling: To accommodate arbitrary domain sizes, we im-
plement a tiling scheme to make the on-chip memory
requirements independent of the domain size. By max-
imizing the tile size we can minimize the performance
penalty of tiling overhead.

• Streaming dataflow: To overcome the memory bottle-
neck and routing delays, we replicate PEs and connect
them in sequence, instantiated as an asynchronous dataflow
architecture, allowing scaling with logic on the chip.

To demonstrate our approach we evaluate an iterative 4-
point Jacobi 2D stencil algorithm. We can fold the number of
timestepsT toT /D passes through a chain ofD PEs arranged
in a linear array. Each PE evaluates the full spatial dimen-
sion at a separate, consecutive timestep, effectively treating
{t , t +1, ..., t +(D−1)} in parallel (Fu and Clapp [2]). Because
the memory bandwidth requirement is constant in the num-
ber of PEs connected in the deep pipeline (Sano et al. [5]),
the amount of parallelism ≈D can scale with logic and buffer
resources on the chip. For the example presented here, this re-
sults in a ∼36× increase in DSP usage and performance over
a single vectorized PE, for a total of ∼11 400× performance
increase over a naive HLS design.

3 Experimental evaluation
We target the TUL KU115 accelerator board, which hosts a
Xilinx XCKU115-2FLVB2104E FPGA and four DDR4 banks.
We build kernels and interface with the host computer us-
ing the SDx 2017.1 toolflow. The domain size is fixed at
8192× 8192. Power is measured as the difference between to-
tal system power during kernel execution and system power
with no FPGA installed. Figure 1 shows board utilization,
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Figure 1. Performance and resource utilization.

frequency, power, and performance results, and Table 1 com-
pares the result of our single precision kernel to related work.
We additionally plot the fraction of the experimental peak
performance measured by building synthetic kernels of the
corresponding set of floating point operations. The proposed
guidelines allow us to reach 80% of the measured synthetic
peak performance in HLS with the stencil kernel, at a 3.8×
increase in energy efficiency over TDP for the best reported
result on GPU.

4 Tool support
We provide the open source library hlslib1 to aid develop-
ment of HPC designs such as the ones described here. This
includes useful primitives and plug-in hardware components
that serve as productivity-enhancing abstractions, and a
hardware emulation flow for designs with cycles in the data
dependency graph. The library consists primarily of C++
header files, with the addition of scripts for CMake inte-
gration and hardware generation, interfacing with the Vi-
vado HLS and SDAccel tools for Xilinx FPGAs, exploiting
OpenCL on the host side to launch C++ kernels.
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