
Designing scalable FPGA architectures
using high-level synthesis

Johannes de Fine Licht
ETH Zurich

definelicht@inf.ethz.ch

Michaela Blott
Xilinx Inc.

mblott@xilinx.com

Torsten Hoefler
ETH Zurich

htor@inf.ethz.ch

Abstract
Massive spatial parallelism at low energy gives FPGAs the
potential to be core components in large scale high perfor-
mance computing (HPC) systems. In this paper we present
four major design steps that harness high-level synthesis
(HLS) to implement scalable spatial FPGA algorithms. To aid
productivity, we introduce the open source library hlslib to
complement HLS. We evaluate kernels designed with our
approach on an FPGA accelerator board, demonstrating high
performance and board utilization with enhanced program-
mer productivity. By following our guidelines, programmers
can use HLS to develop efficient parallel algorithms for FPGA,
scaling their implementations with increased resources on
future hardware.

CCS Concepts • Computing methodologies → Paral-
lel programming languages; • Hardware → High-level
and register-transfer level synthesis;
ACM Reference format:
Johannes de Fine Licht, Michaela Blott, and Torsten Hoefler. 2018.
Designing scalable FPGA architectures using high-level synthesis.
In Proceedings of PPoPP ’18: 23nd ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, Vienna, Austria,
February 24–28, 2018 (PPoPP ’18), 2 pages.
https://doi.org/10.1145/3178487.3178527

1 Motivation
Although FPGAs have started to see deployment in cloud
and data center solutions, their use in HPC is still niche,
owing partially to the software background of most HPC
end users, and partially to the rapid development in GPU
and many-core offerings. With exascale on the horizon, the
available power budget will be a significant bottleneck in
constructing large scale HPC systems. This has made energy
efficiency emerge as a first class citizen, triggering a surge of
interest in FPGAs as a way to scale up performance without
a proportional increase in energy consumption.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
PPoPP ’18, February 24–28, 2018, Vienna, Austria
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-4982-6/18/02.
https://doi.org/10.1145/3178487.3178527

Traditionally, FPGA implementations are written in hard-
ware description languages (HDLs) by hardware experts,
who design circuitry solving the application on a register
transfer level. With the increased adoptation of FPGAs in
cloud solutions, vendors and third parties are attempting
to raise the level of abstraction, by developing tools that
allow software engineers to program FPGAs using popular
languages such as OpenCL and C/C++.

1 void StreamingDataflow(Data_t *...) {
2 #pragma HLS PIPELINE DATAFLOW
3 Stream<Data_t> pipes[D+1];
4 ReadMemory(memory_in, pipes[0]); // Writes head
5 for (int d = 0; d < D; ++d) {
6 #pragma HLS UNROLL
7 ProcessingElement(pipes[d], pipes[d+1]);
8 }
9 WriteMemory(pipes[D], memory_out); // Reads tail
10 }

Listing 1. Implementation of streaming dataflow in HLS.

2 Scalable FPGA design in HLS
Wepropose guidelines to implementmassively parallel FPGA
programs using high-level synthesis (HLS) from applications
that exposes a scalable source of parallelism, exploiting fixed
memory access patterns to efficiently pipeline computations
to achieve a compute bound implementation. To achieve true
scalability, we target designs that can fold a dimension of
the target application by a variable factor D, such that D
steps can be evaluated by D processing elements (PEs) in
parallel, reducing the time to solution by a factor ≈1/D. This
is constrained only by the available logic and memory on
the chip. We use the kernel structure shown in Listing 1 to
implement such programs. Components are connected by
FIFO stream (or pipe) objects, moving data between modules
on the chip. To achieve a massively parallel design in HLS,
we follow four major guidelines:
• Pipelining and vectorization: We exploit the immedi-
ately available spatial parallelism by pipelining and un-
rolling, instantiating every arithmetic operations sepa-
rately in hardware, then multiply them by the maximum
vector width supported by the memory bandwidth.

• Buffering: To reduce pressure on bandwidth to external
memory, and to regularize the access pattern, we use on-
chip buffering to maximize spatial reuse. We map variables

403

https://doi.org/10.1145/3178487.3178527
https://doi.org/10.1145/3178487.3178527


PPoPP ’18, February 24–28, 2018, Vienna, Austria Johannes de Fine Licht, Michaela Blott, and Torsten Hoefler

Type Stencil Source Device Performance Frequency Power Power efficiency
TPDS’17 [1] CPU Heat 2D C Xeon E5645 54GOp/s 2400MHz (2 × 80W)a (0.34GOp/J)a
PPoPP’17 [4] GPU Jacobi 2D CUDA Titan X 490GOp/s 1417-1531MHz (250W)a (1.96GOp/J)a
FPT’13 [3] FPGA RTM (3D) Maxeler MaxGenFD 131GOp/s 100MHz 142W 0.92GOp/J
TPDS’14 [5] FPGA Jacobi 2D HDL 9× EP3SL150 260GOp/s 133MHz 201W 1.29GOp/J
TPDS’17 [6] FPGA Jacobi 2D OpenCL 395-D8 238GOp/s 230MHz (75W)a (3.17GOp/J)a
Ours FPGA Jacobi 2D C++ TUL KU115 228GOp/s 160MHz 31W 7.36GOp/J

Table 1. Performance comparison to related work for single precision. aPower not reported: Estimating with TDP.

to either on-chip RAM units or registers depending on the
required access pattern.

• Tiling: To accommodate arbitrary domain sizes, we im-
plement a tiling scheme to make the on-chip memory
requirements independent of the domain size. By max-
imizing the tile size we can minimize the performance
penalty of tiling overhead.

• Streaming dataflow: To overcome the memory bottle-
neck and routing delays, we replicate PEs and connect
them in sequence, instantiated as an asynchronous dataflow
architecture, allowing scaling with logic on the chip.

To demonstrate our approach we evaluate an iterative 4-
point Jacobi 2D stencil algorithm. We can fold the number of
timestepsT toT /D passes through a chain ofD PEs arranged
in a linear array. Each PE evaluates the full spatial dimen-
sion at a separate, consecutive timestep, effectively treating
{t , t +1, ..., t +(D−1)} in parallel (Fu and Clapp [2]). Because
the memory bandwidth requirement is constant in the num-
ber of PEs connected in the deep pipeline (Sano et al. [5]),
the amount of parallelism ≈D can scale with logic and buffer
resources on the chip. For the example presented here, this re-
sults in a ∼36× increase in DSP usage and performance over
a single vectorized PE, for a total of ∼11 400× performance
increase over a naive HLS design.

3 Experimental evaluation
We target the TUL KU115 accelerator board, which hosts a
Xilinx XCKU115-2FLVB2104E FPGA and four DDR4 banks.
We build kernels and interface with the host computer us-
ing the SDx 2017.1 toolflow. The domain size is fixed at
8192× 8192. Power is measured as the difference between to-
tal system power during kernel execution and system power
with no FPGA installed. Figure 1 shows board utilization,

Stencil half
170 MHz

Stencil single
160 MHz

Stencil double
170 MHz

0
10
20
30
40
50
60
70
80
90

100

U
til

iz
at

io
n

[%
] 388 GOp/s

22.2 W

228 GOp/s
31.0 W

83 GOp/s
27.0 W

LUT DSP RAM Fraction of peak

Figure 1. Performance and resource utilization.

frequency, power, and performance results, and Table 1 com-
pares the result of our single precision kernel to related work.
We additionally plot the fraction of the experimental peak
performance measured by building synthetic kernels of the
corresponding set of floating point operations. The proposed
guidelines allow us to reach 80% of the measured synthetic
peak performance in HLS with the stencil kernel, at a 3.8×
increase in energy efficiency over TDP for the best reported
result on GPU.

4 Tool support
We provide the open source library hlslib1 to aid develop-
ment of HPC designs such as the ones described here. This
includes useful primitives and plug-in hardware components
that serve as productivity-enhancing abstractions, and a
hardware emulation flow for designs with cycles in the data
dependency graph. The library consists primarily of C++
header files, with the addition of scripts for CMake inte-
gration and hardware generation, interfacing with the Vi-
vado HLS and SDAccel tools for Xilinx FPGAs, exploiting
OpenCL on the host side to launch C++ kernels.

5 Acknowledgements
We thank Xilinx for donation of software, hardware and
compute hours, and the Swiss National Supercomputing
Centre (CSCS) for access to compute infrastructure.

References
[1] Uday Bondhugula, Vinayaka Bandishti, and Irshad Pananilath. 2017.

Diamond Tiling: Tiling Techniques to Maximize Parallelism for Stencil
Computations. TPDS 28, 5 (May 2017), 1285–1298.

[2] Haohuan Fu and Robert G. Clapp. 2011. Eliminating the Memory
Bottleneck: An FPGA-based Solution for 3D Reverse Time Migration.
Proceedings of FPGA’11, 65–74.

[3] Xinyu Niu, Jose G. F. Coutinho, Yu Wang, and Wayne Luk. 2013. Dy-
namic Stencil: Effective exploitation of run-time resources in reconfig-
urable clusters. Proceedings of FPT’13.

[4] Nirmal Prajapati, Waruna Ranasinghe, Sanjay Rajopadhye, et al. 2017.
Simple, Accurate, Analytical Time Modeling and Optimal Tile Size
Selection for GPGPU Stencils. Proceedings of PPoPP’17 .

[5] Kentaro Sano, Yoshiaki Hatsuda, and Satoru Yamamoto. 2014. Multi-
FPGA Accelerator for Scalable Stencil Computation with Constant
Memory Bandwidth. TPDS 25, 3 (March 2014), 695–705.

[6] Hasitha M. Waidyasooriya, Yasuhiro Takei, et al. 2017. OpenCL-Based
FPGA-Platform for Stencil Computation and Its Optimization Method-
ology. TPDS 28, 5 (May 2017), 1390–1402.

1https://github.com/definelicht/hlslib

404

https://github.com/definelicht/hlslib

	Abstract
	1 Motivation
	2 Scalable FPGA design in HLS
	3 Experimental evaluation
	4 Tool support
	5 Acknowledgements
	References

