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Abstract

The Open MPI collective framework offers a way to im-

plement hardware-specific collective operations for Open

MPI. We used this framework to develop a Myrinet/GM

collective component by combining common knowledge of

the implementation of collective algorithms with GM pro-

tocol optimized techniques to achieve highest performance.

Our results show that the good performance of the exist-

ing point-to-point based tuned collective implementation in

OpenMPI can be improved with the use of these techniques.

1 Introduction

Cluster systems dominate, due to their excellent price-

performance ratio, today’s high performance computing

(HPC) market1. Especially small and mid-sized cluster

systems are built from commodity components. However,

commodity interconnection networks like Gigabit Ethernet

are often not able to deliver the required communication

performance. Thus, special cluster interconnection net-

works are often used to connect workstations to a cluster

system.

One of those specialized networks is Myrinet [1], dis-

tributed by the company Myricom. It has been analyzed in

detail by Qian et al. in [14]. Myrinet is defined in the ANSI

standard document ANSI/VITA 26-1998 [18]. It offers spe-

cial features, such as low-latency, cut-through switching,

communication offload flow control and continuous link

monitoring, that are not common in commodity Ethernet

networks. Those features are especially beneficial in the

1cf. Top 500 list 06/2007

context of HPC applications. Myrinet also supports large

systems with switches that can connect up to 512 nodes.

Two versions of Myrinet are currently available, Myrinet

2000 and Myrinet 10G. For Myrinet 2000, two main Ap-

plication Programming Interfaces (APIs) are available, the

Glenn’s Messages (GM) API [12] and the Myrinet Express

(MX) [11] API. Both are fundamentally different. The GM

API resembles a Virtual Interface Architecture (VIA) [3]

and the MX API is closer to the Message Passing Interface

(MPI) standard [8, 9]. Myricom decided to discontinue the

support for the GM API, but there are still many systems

that run on this well proven and stabilized API (e.g., Eu-

rope’s currently fastest Supercomputer Mare Nostrum, the

256 CPU “Strider” cluster at the High Performance Com-

puting Center Stuttgart or the 16 CPU “Oscar” cluster at the

Technical University of Chemnitz).

While it seems natural to map MPI point-to-point oper-

ations to the MX API (which offers non-blocking point-to-

point functionality similar to MPI), it is not that obvious

for collective communication. The similarity of MX and

MPI suggests that the potential of a low-level implemen-

tation compared to the existing highly optimized collective

component (based on point-to-point messages) is very low.

Thus, we explore the possibility to implement collective op-

erations directly on top of the low-level GM API to use the

full semantics for collective algorithm design.

Our main theses for optimization potential in GM are:

1. special GM optimized algorithms (e.g., n-ary trees)

2. special handling of memory registration/de-

registration

3. optimized small/large message handling

4. avoiding the overhead of the point-to-point messaging

layer in MPI (PML/BTL, see Section 3)



5. optimized message forwarding (uses pre-registered

buffers to forward messages)

The remaining document is structured as follows. The

GM API is described in detail in Section 2. We sketch our

implementation using the semantic advantages of the GM

API in Section 3 followed by benchmark results in Sec-

tion 4. Conclusions and Future Work are presented in Sec-

tion 5.

2 The Myrinet/GM API

The sole vendor of Myrinet hardware – Myricom – pro-

vides several software stacks for interfacing the network.

As discussed in Section 1, the programmer can choose be-

tween two APIs, GM2 and MX. Each of these alternatives

comprises a user space library, an operating system driver

and a firmware intended to run on the network adapter’s

processing unit. The two versions of GM and MX are in-

compatible since they use different wire–protocols. We are

going to present a short overview about the GM API.

The GM software stack provides the GM Mapper for

automatic network discovery. This entity detects network

switches and hosts and calculates the routing information.

Thus, any user application can assume that the network is

properly configured. Applications usually access the net-

work via the functions of the library. These functions serve

as interface to the operating system driver as well as to the

hardware directly (bypassing the operating system).

Each application has to connect to the hardware by open-

ing a so called “port” to access further services of GM. The

port works as software context and logical root of any other

resources that may be needed to communicate over the net-

work. The logical network port belongs to a specific appli-

cation and is not accessible from other applications. GM–1

provides maximum 8 ports while GM–2 can provide max-

imum 16 ports. Figure 1 shows the organization of GM

ports.

The basic concept behind the GM interface is based on

queues. Each port provides one send queue, one receive

queue and one event queue. The application performs queue

operations to send and receive data. The protocol is connec-

tionless and guarantees lossless reliable in order transmis-

sion of all data. The working principle of Myrinet, mainly

the simple hardware design of the switches, does not per-

mit the native support of multicast and broadcast messages.

However, GM allows zero–copy transmission of data. Thus,

the virtual addresses of the user space has to be translated

into physical addresses before any data transmission can

take place. The DMA engine of the network adapter has

2two versions of GM exist, GM–1 and GM–2, we concentrate on the

more recent GM–2 in this paper
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Figure 1. Communication ports of GM

to issue physical addresses while the user application only

has knowledge of the virtual addresses.

The functions of the GM library reflect the attributes

of the GM protocol described so far. The application

opens and closes a port by calling gm open() or

gm close() respectively. The send and receive buffers

have to be registered with the library before use, which

effectively pins the pages in memory (disables swap-

ping). Memory registration is performed by the functions

gm register memory() or gm dma alloc(). The

latter function allocates and registers memory in one

step. De-registration of memory is done by the functions

gm deregister memory() and gm dma free().

The function gm send with callback() appends one

send request to the send queue and returns immediately.

The real data transfer is done by the network adapter’s

DMA engines while the host CPU is free to do other work.

To prepare the receipt of a message the application

has to post a receive descriptor to the receive queue that

describes a buffer in memory. This is done by a call

to gm provide receive buffer with tag(). On

completion of the receive request a receive event be-

comes available in the event queue. Once the data trans-

fer is complete or some error happened a corresponding

event descriptor is put into the event queue of the re-

lated port. The application calls either gm receive() or

gm blocking receive() to get the next event from the

event queue. Until data transfer completion the application

must not change the contents of a send buffer or must not

make any assumptions on the content of a receive buffer. In



case of successful data transmission the application can ac-

cess the data buffer. The send buffer may be changed in any

way and the receive buffer is guaranteed to contain valid

data. Figure 2 shows the message reception process.
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Figure 2. Reception of a message in GM

The Myrinet GM user interface supports Remote Direct

Memory Access (RDMA) as well. Using RDMA the ap-

plication can directly write to remote memory or read from

remote memory. The receive queue of the remote applica-

tion is not involved in any way. Thus, the only way for the

remote application to notice an RDMA write operation is

reading the memory where it expects the data. Myrinet does

not support any access restrictions for RDMA operations.

Thus any process is able to read and write the registered

memory of all other processes with open Myrinet ports.

A comparison between Myrinet GM and the more re-

cent technology InfiniBand [17] shows, that both network

technologies use fairly similar concepts. The user inter-

faces of both, Myrinet GM and InfiniBand, are based on

queues. The application has to post requests to the send

queue or receive queue respectively. The completion of

requests is signaled via a completion queue. The differ-

ence between Myrinet GM and InfiniBand is the address-

ing scheme. Myrinet GM uses a connectionless mecha-

nism while InfiniBand provides both, end–to–end connec-

tions and connectionless datagrams. One should note that

the connectionless datagram service of InfiniBand works

differently from the mechanism of Myrinet GM. Finally

both network technologies require registered memory for

data transfers. The process of memory registration and de-

registration in InfiniBand [10] and Myrinet GM is very sim-

ilar.

3 Implementation of CollGM

This section describes the implementation of the collgm

component.

3.1 Open MPI Structure

Open MPI [5] founds on the Modular Component Ar-

chitecture (MCA), that provides a flexible way for defining

frameworks [16]. For instance there are frameworks han-

dling point–to–point messages, datatype conversion, col-

lective communication and many other tasks. One single

framework defines an interface that may be implemented by

several components. In this work, The collective framework

serves as target for the implementation of a component

that handles the MPI functions MPI Barrier, MPI Bcast,

MPI Scatter[v], MPI Gather[v] and MPI MPI Alltoall[v]
over Myrinet GM in an optimized way. We refer to this

component as the collgm component in the following dis-

cussion.

3.2 The collective GM component

The collgm component is divided into two parts which

are explained in the following.

The MPI level The MPI level handles the entire semantic

of the collective operation. This part is responsible for:

• Copying (packing) the actual data of complex data
types into consistent memory areas

• Selecting the appropriate protocol for sending data

• Handling the protocol transactions, such as message
segmentation

• Selecting an appropriate algorithm that is considered
optimal

• Management of memory registration and de-

registration

In contrast the GM level of the collgm module provides

basic communication services that encapsulate the underly-

ing GM user interface:

• Provide reliable data transfer functions either blocking
or non–blocking

• Encapsulate the underlying protocol

• Save messages that can not be processed at time of re-
ception for later processing



The GM level The GM level hides the upper layer from

several implementation details of the GM protocol. There

is a hard limitation of the number of ports the applications

can use. Thus, we decided to use only one port. Conse-

quently there is only one send queue, one receive queue and

one event queue. Any incoming message results in an entry

to this event queue. Since the precise ordering of incoming

messages can not be controlled by the application, some of

these events have to be saved for later processing. An ex-

ample situation occurs while performing a blocking send

operation. The completion of the send operation is reported

through the event queue. Thus, the GM level of the collgm

module polls this queue. It may happen that an unexpected

receive event is reported first. This event has to be saved for

further processing during an impending receive operation.

Moreover the GM interface maintains a pool of tokens to

provide some basic flow control. It is the application’s re-

sponsibility to acquire a token before every send or receive

request. The GM level of the collgm module checks the

availability of tokens before the actual send or receive op-

eration starts. In case of a lack of tokens any blocking send

or receive operation blocks until a token becomes available.

The non–blocking functions report an appropriate error.

3.3 Communication Protocols

The MPI level of the collgm module implements two

types of protocols. The eager protocol avoids synchroniza-

tion between sender and receiver and the rendezvous pro-

tocol performs a handshake before the actual data trans-

mission starts. The eager protocol works with preregis-
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Figure 3. Optimal eager segment size

tered memory and the MPI level of the collgm module is

in charge of copying the data from the source location into

a buffer of registered memory. This memory consists of

segments of 64 kByte size and larger data blocks have to

be segmented. This helps to improve performance because

the first segment can be processed by the network adapter

while the remaining data is copied into subsequent seg-

ments. Figure 3 shows the measurements with Netgauge

[7] of a transmission of 32 MByte data with different seg-

ment sizes. The best performance is reached with a segment

size of 64 kByte.

A limit on the number of segments to be transmitted pre-

vents the sender from flooding another node. If a large mes-

sage needs more segments to be transmitted, the sender has

to send a request and has to wait for a positive response.

This request is sent at the beginning of the data transfer

increasing the probability that a positive acknowledgment

arrives before the data transfer has to be interrupted. The

scheme is shown in Figure 4. The rendezvous protocol does

Ack1st Segment

Request More Segments

TimeSender

Receiver

Figure 4. Flow control of large messages

not copy the data into local memory. Instead the original

memory area is registered on the fly at the sender. Also the

receiver has to register the appropriate memory area. Thus,

two messages are needed to announce the pending data

transfer and to report the receiver’s memory address back

to the sender. In order to avoid any confusion with entries

in the receive queue belonging to eager protocol messages,

the rendezvous protocol makes use of the RDMA feature of

GM. The initiator of the RDMA transaction directly writes

into the remote memory. Moreover the protocol does not

register the entire memory area at once. Blocks of 128

kByte size are registered in a pipeline fashion (cf. [15]). The

data transfer starts as soon as registration finished. While

the data transfer progresses the collgm module is able to

start the next memory registration. Due to the time con-

suming nature of memory registration this helps to partially

hide the registration process behind the data transfer. The

principle is shown in Figure 5.
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Figure 5. RDMA transfer of large messages in
a pipeline fashion

3.4 The Algorithms of the MPI level

The Myrinet GM interface does not provide native

broadcast or multicast features. Thus the collgm module

relies completely on point–to–point messages to implement

the collective communication. Many algorithms are avail-

able in this area. Thus, we performed measurements in or-

der to decide which algorithm is beneficial for Myrinet/GM

and which algorithms are suitable for different data sizes

and communicator sizes. The barrier implementation relies

on recursive doubling and the algorithm of Bruck [2]. The

benchmark section shows that the results are very close to

the [4] module of Open MPI.

The options for implementing the broadcast operation

are a flat tree (linear), binomial tree, a binary tree, a splitted

binary tree [13] and a pipeline. Measurements show that

very small messages benefit from a binomial tree. Small

to standard size messages should use the splitted binary

tree and large messages show the best performance with the

pipeline scheme.

The operations scatter and gather may be accomplished

by a flat tree or a binomial tree. In a flat tree scheme the

root node of the scatter operation sends the messages di-

rectly to each of the receivers. Accordingly during a gather

operation the root node receives all messages directly from

the source node. The binomial tree algorithm applies some

message aggregation at nodes in the middle of the binomial

tree. Measurements show that for small messages the bi-

nomial tree works best and for large messages (1 kByte or

larger) the flat tree performs best.

Message forwarding Collective operations are often im-

plemented on top of MPI point-to-point functions as in

the tuned module of Open MPI. Network technologies like

Myrinet or InfiniBand require registered memory for data

transfers. Thus, each MPI point-to-point function has to

copy the user data into a preregistered memory area or

register/de-register the user buffer on the fly. This design

can lead to performance loss when nodes have to forward

messages as in the pipeline broadcast algorithm. The mes-

sage forwarding works as follows: First, MPI Recv copies

the received message into the specified user buffer. The fol-

lowing MPI Send function must copy the message again,
this time from the user buffer to a preregistered memory

area3. The collective functions of the collgm module have

direct access to the transfer buffers. This has several advan-

tages. A received message can be forwarded immediately

by performing a send request using the preregistered receive

buffer. Further on the message is copied only once (into

the user buffer) while the network adapter already sends

the data to other node(s). The broadcast algorithms of the

collgm module make extensive use of this technique.

4 Microbenchmark Results

We benchmarked our implementation on the strider sys-

tem at the High Performance Computing Center Stuttgart

(HLRS). This cluster system consists of 125 dual 2Ghz

Opteron compute nodes connected by Myrinet 2000 run-

ning the GM-2 API. We analyze alltoall, broadcast and scat-

ter/gather operations for small (16) and large node counts

(64) running with a single process per node. All bench-

marks have been conducted with NBCBench [6].

4.1 Small node counts

Figure 6 shows theMPI ALLTOALL performance on 16

nodes. Both the Open MPI tuned implementation used a

hard-coded hand-tuned map of algorithms to use for every

combination of communicator and data size. The map of

the fastest algorithms (also comparing to OMPI/tuned and

MPICH-GM) for alltoall is displayed in Figure 7. This map

was used to hard-code the algorithm selection in the collgm

collective component.

Figure 8 shows MPI Broadcast performance measure-

ment results. A similar map as for alltoall has been bench-

marked for broadcast and is shown in Figure 9.

MPI SCATTER results are shown in Figure 10. Results

forMPI Gather are due to the similar implementation com-
pletely identical and omitted here. The algorithm selection

map in Figure 11 shows the optimal algorithm for every

node-count/data size combination.

Results for 64 nodes of the strider system for alltoall and

Scatter/Gather are shown in Figure 12 and 13 respectively.

3assuming no zero-copy implementation
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Figure 6. Alltoall results on 16 nodes

Figure 7. Alltoall algorithm selection map
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Figure 8. Bcast results on 16 nodes

Figure 9. Broadcast algorithm selection map
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Figure 10. Scatter results on 16 nodes

The alltoall Benchmark aborted with GM errors with all

three implementations when run on 64 nodes.

5 Conclusions and Future Work

Our work is the first extensive collective implementation

that uses the advantages of the Open MPI MCA structure to

optimize collective communication for a specific network-

ing hardware. We showed with the Myrinet/GM interface

that a performance benefit can be achieved with this ap-

proach. We combine common knowledge of the imple-

mentation of collective communication operations with GM

protocol specific techniques to achieve the best performance

on Myrinet/GM cluster systems. However, we are not sure



Figure 11. Scatter algorithm selection map
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Figure 12. Bcast results on 64 nodes
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Figure 13. Scatter results on 64 nodes

if the software-technological effort and the implementation

costs outweigh the relatively high effort of designing, im-

plementing and maintaining the collgm component.
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