
Datacenter Ethernet and
RDMA: Issues at Hyperscale

Torsten Hoefler
ETH Zürich and Microsoft

Duncan Roweth, Keith Underwood, Bob Alverson
Hewlett Packard Enterprise

Mark Griswold, Vahid Tabatabaee, Mohan Kalkunte, Surendra Anubolu
Broadcom

Siyuan Shen
ETH Zürich

Moray McLaren
Google

Abdul Kabbani, Steve Scott
Microsoft

Abstract—We observe that emerging artificial intelligence, high-performance computing, and
storage workloads pose new challenges for large-scale datacenter networking. RDMA over
Converged Ethernet (RoCE) was an attempt to adopt modern Remote Direct Memory Access
(RDMA) features into existing Ethernet installations. Now, a decade later, we revisit RoCE’s
design points and conclude that several of its shortcomings must be addressed to fulfill the
demands of hyperscale datacenters. We predict that both the datacenter and high-performance
computing markets will converge and adopt modernized Ethernet-based high-performance
networking solutions that will replace TCP and RoCE within a decade.

Datacenter Ethernet’s new Environment
Ethernet has dominated the wired local-area

networking (LAN) space for decades ranging
from deployments in private homes to the largest
datacenters. Datacenters have experienced a mas-
sive growth during the last decade and the number
of connected machines exceeds the size of the
largest supercomputers today. While there remain
some differences, the networking requirements of
such hyperscale mega-datacenters and supercom-
puters are quite similar [1]. Yet, supercomputers
are traditionally connected using special-purpose
interconnects while datacenters build on Ethernet.
Due to similar requirements and economies of
scale, both continue to grow closer together with

each new technology generation. We believe now
is the right time to re-think the basic assumptions
and architecture for a converged interconnect.

Multiple technological trends are accelerating
this convergence of high-performance intercon-
nects. Primarily, the increasing network perfor-
mance requirements push towards more efficient
host stacks that can support the terabit band-
widths, hundreds of millions of transactions per
second, and single-digit microsecond latencies
that are required by emerging data-intensive ap-
plications such as Artificial Intelligence (AI) [2].
These extreme requirements force all protocols
and hardware to be as efficient as possible, ruling
out many of the TCP/IP-like stacks that tra-

1

ar
X

iv
:2

30
2.

03
33

7v
2

 [
cs

.N
I]

 1
5

A
pr

 2
02

3

IEEE Computer

ditionally drove datacenter networking. Remote
Direct Memory Access (RDMA) was developed
nearly three decades ago for high-performance
computing (HPC) workloads and was later ex-
panded to target storage with InfiniBand (IB)
Verbs RDMA. RDMA enables CPU-offloaded,
hardware-accelerated direct memory access over
the network. During the last 10 years, it became
the de-facto standard for low-overhead and high-
speed networking. Nearly all supercomputer ar-
chitectures as well as leading datacenter providers
utilize RDMA in production today.

The simple assumptions on load balancing,
congestion control, and error handling made
decades ago do not hold for today’s networks
that have more than 100x higher bandwidth and
10x higher message rates. Furthermore, sim-
ple RDMA network interface cards (NICs) are
often enhanced with additional functionalities.
The resulting “Smart NICs” often offload sig-
nificant services and implement specialized net-
work protocols. Modern network switches also
have improved capabilities ranging from ad-
vanced in-network telemetry, in-network compu-
tation capabilities, and in-network load-balancing
or congestion-control [3]. We argue that the cur-
rently existing standards and deployed infras-
tructure has fundamental gaps that must be ad-
dressed in the near future to support efficient
high-performance networking.

A brief history of RDMA for Ethernet
RDMA was originally developed for HPC in

systems as early as the Paragon, Cray’s T3D/T3E,
and ASCI Red. Later, InfiniBand Verbs RDMA
became wide-spread in the supercomputing field
as a standardized solution. It was then adopted
as “RDMA over Converged Ethernet” (RoCE) in
the datacenter context to provide RDMA’s bene-
fits in a backwards-compatible Ethernet context.
Another protocol, iWARP (cf. IETF 2007, RFCs
5040-5044, 6580, 6581, 7306), layers RDMA
semantics over TCP or SCTCP. Both iWARP and
RoCE use InfiniBand’s Verbs to interface with the
user software stacks and are thus mostly trans-
parent to the user. Even though iWARP allowed
Internet-compatible routing from the beginning,
it did not find widespread adoption. This may
be due to the fact that a full TCP/IP stack is
complex and expensive to offload to hardware,

compared to the very simple protocol that under-
lies RoCE. Indeed, RoCEv1 was simply adopting
an InfiniBand-like transport layer (i.e., the Base
Transport Header, BTH) on top of Ethernet’s
L2 headers. Later, RoCEv2 added IP/UDP L3
headers to support routing within and across
datacenters. Today, there are more RoCEv2 NICs
than InfiniBand NICs deployed.

RoCE – convergence or duct tape?
RoCE’s core design is inherited from a

technology developed for simple hardware two
decades ago and are suboptimal in today’s Eth-
ernet environments. For example, RoCE uses
InfiniBand’s simple transport layer that heavily
builds on in-order delivery as well as go-back-n
retransmission semantics that essentially require
a highly reliable in-order fabric for efficient op-
eration. Thus, RoCE runs best over a lossless in-
order fabric, like InfiniBand. Traditionally, Eth-
ernet drops packets when switch buffers are full
and relies on end-to-end retransmission. To sup-
port RoCE, “converged Ethernet” (CE) introduces
Priority Flow Control (PFC) to implement link-
level lossless operation. PFC repurposes Ethernet
PAUSE frames that existed in Ethernet to support
networks with different link transmission rates.
PFC enhances PAUSE frames to stop (or throt-
tle) traffic on a specific priority class to avoid
packet drops. Unfortunately, this complex set of
protocols interferes across the different layers in
the network and reduces efficiency for some of
today’s most important workloads.

RoCE’s semantics, load balancing, and con-
gestion control mechanisms are inherited from
InfiniBand. This implies that all messages should
appear at the destination in order as if they were
transmitted over a static route, essentially disal-
lowing many packet-level load balancing mech-
anisms. For AI training workloads which are
long-lived flows, multi-pathing mechanisms can
greatly improve the job completion time. Further-
more, RoCEv2 uses a simplistic congestion con-
trol mechanism based on IP’s Explicit Congestion
Notification (ECN). ECN-compatible switches
mark packets when congestion is detected and re-
ceivers relay that information back to the senders,
which in turn reduce their injection rate guided
with a single parameter. After a congestion-free
period, the rate is automatically increased again

2

using a second configuration parameter. ECN uses
a binary flag for congestion experienced and the
lack of fine grained indication results in many
Round Trip Times (RTTs) to determine the cor-
rect rate. This simple mechanism is very similar
to InfiniBand’s original Forward and Backward
Explicit Congestion Notification (FECN/BECN).
It promises to coexist with other traffic but is hard
to configure in practice [4], [5], [6].

We now briefly discuss some important traffic
motifs in HPC and datacenter traffic and then
discuss RoCE’s shortcomings in detail.

Guiding Traffic Motifs
For the sake of the discussion, we shall iden-

tify three traffic motifs representing a large frac-
tion of RDMA workloads today. Unfortunately,
those motifs also highlight RoCE’s shortcomings.
Here, we focus on East-West (intra-) datacenter
traffic as used in HPC, AI training and distributed
inference, storage, as well as general microservice
or Function as a Service (Faas) traffic.

Incast (IN)
An incast traffic pattern happens when mul-

tiple sources target the same destination process
in a potentially uncoordinated but simultaneous
traffic pattern. It is characterized by a number of
source processes and a transaction size. It often
appears stochastically in practice when a service
is, by chance, requested by many uncoordinated
clients at the same time. For example, imagine
that 100 clients want to commit a 10 kiB write
transaction to the same storage server. All clients
may send at full bandwidth because they do
not know about the upcoming congestion. The
packets will quickly fill network buffers that can
hinder other flows and eventually violate service
level agreements (SLAs). The most challenging
incast patterns are caused by transactions that are
smaller than the bandwidth-delay product such
that the congestion control mechanism cannot get
a reliable signal before the transaction should be
completed. We remark that growing bandwidths
push more and more workloads into this critical
region.

Oblivious bulk synchronous (OBS)
Many HPC and AI training workloads can

be expressed in the oblivious bulk synchronous

model (OBS) where computation steps are inter-
leaved with global communication steps that often
synchronize processes. Oblivious means that the
communication pattern for an application depends
on a small number of parameters (such as size
or process count) and does not depend on the
data that is processed. It can often be determined
statically before the application is started. For
example, all collective operations in the Message
Passing Interface (MPI) standard [7] are obliv-
ious. Thus, OBS workloads can algorithmically
avoid incast! The three-dimensional parallelism
in deep learning training [2] is a typical example.
OBS can be modeled by the number of processes,
the duration of the computation, and the size
of the communication (per endpoint). If both
computation and communication are small, the
overall workload is latency sensitive, a pattern
that often appears in HPC and AI inference.
Large communications that can often be found
in AI training workloads are typically bandwidth-
sensitive.

Latency-sensitive (LS)
For some workloads, message latency (and

sometimes message rate) plays a central role.
Some of those fall into the OBS category but
others have complex, data-dependent, message
chains that form critical performance paths in
the application. Those are typically strong scaling
workloads where the time to solution matters and
inefficient execution must be tolerated. Large-
scale simulations with strict deadlines such as
weather forecasting and oil exploration fall into
this category, but also some transaction process-
ing or search/inference workloads. Here, one has
typically stringent (single-digit microsecond) la-
tency requirements.

Deployment characteristics
In addition to the traffic types, the deployment

environment is also shifting. Newly emerging
confidential compute ideas require all traffic to be
encrypted on the wire. Ideally, traffic is encrypted
and decrypted end-to-end in secure enclaves and
no network equipment (NIC or switch) is to be
trusted. Furthermore, and related, emerging multi-
tenancy scenarios require managing tens of thou-
sands of connections from a single host. Those
are often supported by Smart NICs managing the

3

IEEE Computer

resources such as bandwidth and security through
rate limiting and filtering. Also, new, cost effec-
tive low-diameter and specialized topologies that
require more advanced load balancing and rout-
ing become a necessity for extreme-bandwidth
deployments [8], [2]. Many combinations of those
requirements pose significant challenges on next-
generation high-performance networks.

Where RoCE needs improvement
Many of RoCE’s issues have been discussed

in the past [9] and many research works exist to
propose various solutions [10]. Here, we outline
potential improvements that we see and we relate
them to the key workloads and deployment use-
cases outlined above. We now provide an item-
ized list of issues that could be improved for
more efficient operation in Ethernet-based high-
performance RDMA or Smart NIC systems.

1) PFC requires excessive buffering for lossless
transport

Priority Flow Control (PFC) lies at the very
heart of converged Ethernet to enable lossless
transport on each link. With PFC, the receiver
monitors the available input buffer space. Once
this buffer space falls below some threshold re-
lated to the bandwidth-delay product BW*RTT, it
sends a PAUSE frame to the sender. At this time,
BW*RTT/2 Bytes are already on the incoming
wire but before the sender will receive the PAUSE
frame, it will send another BW*RTT/2 Bytes.
The minimal buffer requirement for fully lossless
transfers would thus be BW*RTT + MTU1, where
MTU is the maximum size of a packet. Yet, this
would only support the case where packets are
immediately drained at the receiver. Even the
slightest delay in the forwarding may significantly
reduce link utilization.

The BW*RTT buffer space that covers the
travel latency of the PAUSE message is often
called “headroom buffer” and it is similar to
the buffer required for credit-based flow control
schemes such as those used in InfiniBand or
Fibre Channel. In those, the receiver proactively
sends credits (buffer allocations) to the sender
keeping the input buffer space at an equilibrium,
instead of reacting once it runs too full with

1Maximum Transfer Unit

PFC. Both schemes have their merits—a credit
can travel proactively towards the source while a
PFC scheme can be more reactive (late binding)
when allocating shared buffer space to different
source links. Both schemes need to essentially
reserve BW*RTT space per link to just cover the
round-trip control delay of the link, space that is
lost for efficient forwarding.

In practice, buffer space is extremely valuable
to ingest varying traffic peaks for temporal and
spatial load balancing. Furthermore, just the re-
quired headroom buffer, that cannot be used for
anything else without risking packet drops, puts
a significant challenge for the scaling of next-
generation switches. Figure 1a shows the required
headroom space (excluding other buffering!) for
various switch generations assuming a 600 ns
average latency (including arbitration, forward
error correction (FEC), and wire delay) for 9 kB
packets and 8 traffic priority classes with separate
buffers on a three-tier fat tree. Covering longer
distances (and thus latencies) is also challenging
as high-performance geo-replicated datacenters
become common. Figure 1b shows the needed
per-port headroom buffer for the same configu-
ration assuming 800G ports, a 5ns/m wire delay,
and various deployment types.

Tomahawk 2
(2016)

Tomahawk
(2014)

Tomahawk 3
(2018)

Tomahawk 4
(2020)

Tomahawk 5
(2022)

Switch bandwidth doubles
every two years!

(a) Intra-datacenter per-switch headroom buffer.
Cluster

< 150 m
< 0.75 us

Datacenter Site
< 100 m
< 5 us

Region
< 400 km
< 2 ms

Global
< 6000 km
< 30 ms

1 MB

10 MB

100 MB

1 GB

(b) Varying distance per-port headroom buffer.

Figure 1: Headroom Buffer Requirements.

One may consider a lossy link-level proto-
col to repurpose these buffers for forwarding
functions. Yet, this interacts with error handling

4

protocols as we shall see soon. In any case,
wasted buffer space is a general issue affecting all
workloads that could benefit from the additional
buffer if it was available for packet forwarding.

2) Victim flows, congestion trees, PFC storms,
and deadlocks

Another issue stems from the fact that PFC
stops a whole traffic class (encoded as only three
bits) and all flows in it. This can lead to blocked
victim flows: assume that we have two flows A
and B sharing a link L. Flow A is not congested
and could send at full bandwidth. However, flow
B is blocked at some downstream port and fills
up the input buffer of L. Eventually, L’s allocated
buffer will be full with B’s packets and L sends
a PAUSE frame. This frame also stops flow A,
which could proceed independently—now, flow
A is victimized by the PAUSE of flow B. Thus,
flows that are not congested may be affected by
other flows that are congested. This phenomenon
is also known as Head of Line blocking.

Since any congestion of a downstream port
will fill buffers upstream unless the endpoint
congestion control protocol reacts, PFC events
can quickly grow a “congestion tree” inversely
following victimized flows in the network. Con-
gestion trees are a general problem in lossless
networks and are sometimes called PFC storms.
It could be addressed by an even more fine-
grained tracking of congestion, e.g., at the basis
of individual flows instead of priorities. Yet, this
requires the network switches to maintain flow
state to identify individual flows [11], [3]. One
could also attempt to move congested flows into
congested priorities dynamically, to avoid vic-
tims (cf. congestion isolation, P802.1Qcz). An-
other problem is that lossless lanes now consume
already scarce traffic classes (separate buffer
space). This takes an important resource from
datacenter providers that already use such traf-
fic classes for differentiated services such as
elephant-flow backups, low-latency video confer-
encing, and others. Any traffic class used for
RoCE (or other lossless) traffic is lost network-
wide.

Such congestion trees are particularly prob-
lematic for incast workloads where they can jam
the whole network, especially in the context of
packet-level adaptive or oblivious routing. Yet,

the very low bandwidth per flow at the incast
link means that, in theory, these flows would need
very little network buffering to saturate the link.
The purely rate-based nature of RoCE’s conges-
tion control allows sources to inject (too) many
packets that quickly fill network buffers. For
example, a window-based scheme would allow
the administrators to directly control the network-
wide buffer occupancy of each flow.

Any lossless scheme with limited buffering
suffers from deadlocks if the routing allows
for cycles to form. This can be avoided with
cycle-free routing schemes or special buffering
strategies—both come at a (small) cost. Even
if routes are generally deadlock free, transient
states occurring after link failures can lead to
deadlocks. Avoiding those is harder, however,
one can configure packet timeouts in switches to
resolve this problem dynamically.

3) Go-back-N retransmission
RoCE was designed for very simple hardware

following InfiniBand’s in-order and credit-based
lossless transport. This implies that packets can
only be dropped if they are corrupted by bit
errors, a very rare event. Thus, retransmission
logic can be simple: if the receiver detects a gap
in the packet stream (i.e., a skipped sequence
number), it sends a negative acknowledgement
(NACK) to the sender and drops all later packets.
The sender then retransmits all packets beginning
with the lost one. This scheme essentially dis-
cards and retransmits a full end-to-end BW*RTT
(bandwidth-delay product) worth of data.

Let us assume a three-tier fat tree network
with 800 Gb/s link speed and a worst-case per-
hop latency of 600 ns. The total RTT as observed
by an endpoint would be 3.6 us2. The effective bit
error rate on each link can be as high as 1e-12 (as
proposed by the Ethernet specification [12]) and
we assume 9 kiB frames, the probability of losing
a single frame is 3.3e-8 (see Appendix A for
derivation). Thus, the total expected bandwidth
loss due to go-back-n would be a negligible
0.00013%.

A bigger issue with the simple go-back-n
scheme is that it does not support multi-pathing
or out-of-order delivery. Any two packets passing

2we roughly approximate end-to-end latency as six hops

5

IEEE Computer

would trigger an expensive retransmission event
losing a full BW*RTT transmission. Latest gener-
ations of RoCE NICs introduce selective retrans-
mission to mitigate this problem. Yet, those are
often limited. For example NVIDIA’s ConnectX-
6 adapter does not support adaptive routing of tag
matching with selective retransmission enabled.3

Go-back-n has one interesting advantage though:
if a bit error happens and the packet is dropped
(silently) by the lower layers, the error is detected
immediately once the next packet arrives. Other
schemes that support out-of-order delivery would
need to wait for a timeout to expire at the sender,
potentially leading to much higher recovery times
and jitter. Thus, when designing new transport
protocols, one needs to consider all these trade-
offs carefully!

4) Congestion control and colocation with other
traffic

RoCE’s default congestion control relies on a
very simple rate control that is intimately linked
to the lossless transport assumption. Many re-
searchers have recognized that this simple mech-
anism does not integrate well with other traffic
such as TCP/IP and generally can be improved
in the datacenter environment. Mechanisms such
as DCQCN [5], TIMELY [6], and HPCC [4]
build on RoCE to improve the transport of flows.
Most RoCE deployments today use non-standard
congestion control mechanisms which makes in-
teroperability between vendors, or even different
hardware generations of the same vendor, hard.
This is due to the fact that congestion control
remains a tough problem and it is likely that dif-
ferent workloads require different tuned versions
of the protocol.

For example, the typically repetitive endpoint-
congestion-free bulk data transfers in oblivious
synchronous workloads could quickly be learned
or even be statically configured based on the
expected traffic pattern [2], [13]. Highly-dynamic
incast scenarios require coordinating multiple
senders either through the receiver or network
signals. Latency-sensitive workloads with small
messages that are smaller than the bandwidth-
delay product can be most problematic, espe-
cially if they appear in an unpredictable data-

3ConnectX-6 DX firmware release notes v22.27.1016

driven communication pattern. Those may need
to rely on switch buffering to ingest temporary
load-imbalance at the network level. In general,
congestion control schemes are and will remain a
research focus with constant tuning even after de-
ployment. Co-existing with different traffic types
such as TCP or QUIC will also require constant
adoption. Thus, such schemes should not only be
fast and cheap in hardware but also be flexible
and support a wide range of parametrizations.

Another line of argument considers switch
queue size and occupancy. Datacenter switches
traditionally have large (deep) buffers to accom-
modate traffic bursts without dropping to accom-
modate the slow end-to-end rate adjustment. On
the other hand, switches used in HPC usually
operate lossless with very shallow buffers and
stiff back-pressure due to their reliable link-level
flow control mechanisms [3]. Also, HPC network
topologies have usually lower diameter than data-
center deployments [14]. Thus, HPC deployments
support lower-latency operations because small
packets are less likely to wait in buffers behind
longer flows. Datacenter networks with RoCE are
often combining both inefficiently: they use a
lossless transport with all its issues with relatively
large-buffered switches. Many modern conges-
tion control mechanisms thus aim at keeping the
buffer occupancy generally low, leaving this very
expensive resource unused!

5) Header sizes, packet rates, scalability
RoCEv2 uses full Ethernet L2 and UDP/IP

headers in addition to InfiniBand’s Base Transport
Header (BTH). Thus, the header overhead per
packet is substantial: 22 Bytes L2, 20 Bytes IP, 8
Bytes UDP, and 12 Bytes BTH and 4 Bytes ICRC
make a total of 66 Bytes per packet. Locally-
routed InfiniBand, for example, has only a total
header size of 20 Bytes: 8 Bytes for the Local
Routing Header, and 12 Bytes for the BTH. Other
HPC protocols have headers with less than 40
Bytes.

This impacts both the raw packet rate as
well as processing overhead and cost as more
complex headers require more header processing.
Just the packet rate for small payloads could
be problematic. Let us assume 8 Byte messages
as an example for a single-element reduction
operation for conjugate gradient solvers or fine-

6

grained global graph updates. The maximum rate
(without headers) on an 800 Gb/s link would be
12.5 Giga-packets per second (Gpps). With IB
headers, that rate would decrease to 3.5 Gpps
and with RoCEv2 headers to 1.4 Gpps. The
packet would be nearly 90% header overhead!
And we are ignoring additional protocol headers
for MPI or RDMA endoints. Yet, given that NIC
packet processing is currently slower (<1 Gpps
per NIC), the header size may not be the biggest
issue. Furthermore, NICs need to process ac-
knowledgment packets, which could be especially
challenging for selective acknowledgment and
retransmission protocols. The high user-level and
protocol message rates require parallel processing
in the NIC given the mostly stagnant clock rates.

RoCE’s packet format is closely linked to In-
finiBand’s verbs which has connections between
queue pairs (QPs) as its basic concept. The size of
the context state for a single connection depends
on the implementation details but large-cluster
all-to-all connectivity may be problematic. Each
queue pair at least needs to keep connection
information and state such as sequence number
and destination address and queue pair number.
Connection state can be relatively large, up to 1
kB per connection in some implementations.

Small packets are often important in latency-
sensitive workloads, some of which are bound by
the rate at which the NIC can issue new messages.
Slimmer headers would potentially decrease la-
tencies and increase message rates while allowing
for a more efficient bandwidth utilization.

6) No support for smart stacks
As network overheads become more impor-

tant in datacenter workloads, more intelligent
stacks are designed. For example, the QUIC pro-
tocol allows to push transport processing to the
application which can define application-specific
protocols. This enables running different proto-
cols for different service requirements, such as
latency-insensitive video streaming, latency sen-
sitive audio-conferencing, or generally resilient
but large backup traffic. RoCE’s philosophy of
hardware acceleration does not support different
transport protocols, even if the user-level stack
would be able to specify additional properties of
the traffic (e.g., mark messages as resilient to out-
of-order delivery).

Emerging Smart NICs lead to new opportuni-
ties in this area where user-configurable kernels
could perform packet and protocol processing on
the NIC [15]. Additionally, in-network telemetry
(INT) can provide additional signals for these
protocols to react accordingly. Thus, even if the
stack has additional knowledge about the traffic
types, today’s RoCE forces it into a relatively
simple and inflexible protocol that cannot take
full advantage of this knowledge.

7) Security
RoCE is known to have several security is-

sues [16], [17], especially in multi-tenant con-
texts. Many of those issues stem from the fact that
protocol security, authentication, and encryption
have played a minor role at the design time. Yet,
today, such properties are much more important.

IPSEC can be used to protect L3 headers
and payload but would need to be enabled on
a per-queue-pair basis such that no two tenants
share a set of keys. This can be quite costly in
terms of connection context overhead and per-
formance. Furthermore, RoCE does not support
sub-delegation of memory regions to other nodes.
Both issues can be addressed with modern key-
derivation protocols [16].

8) Link-level reliability
The move towards higher transceiver speeds

leads to more complex encoding and modulation
schemes running at growing frequencies. With
50G lanes, Ethernet moved from the simple two-
voltage level NRZ to four-voltage level PAM4
encoding. Today’s 100G lanes run at 25 GHz,
requiring the receiver to distinguish four levels
within a fraction of a nanosecond. The signal
degradation in cables and connectors as well as
the increasingly complex analog circuitry lead
to higher bit-error rates going to a bit-error rate
(BER) as high as 1e-4 soon.

Forward-error correction (FEC) has been in-
troduced to avoid excessive end-to-end retrans-
missions due to dropping of corrupted packets in
the network. Ethernet aims at a 1e-12 BER at the
link level and currently employs a Reed-Solomon
code on 10-bit symbols using a block of 514 such
symbols with 30 additional encoding symbols
(RS544). This enables the receiver to correct 15
random bit errors and up to 150 consecutive

7

IEEE Computer

(burst) bit errors. Other FEC codes such as LL-
FEC (RS272, half size as RS544) and Firecode
provide lower latency but also lower protection
against bit errors.

Generally, FEC comes at a latency and energy
cost that falls into two categories: (1) accumulat-
ing the 5,140 bits of data and (2) encoding and
decoding the code symbols. The former decreases
with the link bandwidth and the latter depends on
the implementation, varying from 20 to 100 ns
in practice. Figure 2 shows the projected RS544
FEC for different link bandwidths.

FEC decoding time (30 ns)

12% 22% 36% 52% 69% 82%

Figure 2: RS544 FEC latency breakdown.

For a constant RS544 FEC, the latency re-
duces for faster link bandwidths but will not go
below the FEC computation overhead. However,
faster lanes may lead to significantly higher bit
error rates. In fact, RS544 may not be able to
correct the projected 1e-4 BER to the desired 1e-
12. Thus, future Ethernet standards may move
to more complex FEC mechanisms that may
increase the latency significantly.

An alternative approach is used in PCIe,
which also deals with relatively high BER due
to complex connectors but is designed as a low-
latency local interconnect targeting around 5 ns.
For example, the upcoming PCIe 6.0 specification
protects a block of 242 Bytes with 6 Bytes of
FEC together with an additional 8 Byte CRC.
The receiver first uses the FEC to correct some
bit errors and then checks the CRC. If this check
fails, it initiates a simple link-layer retransmission
protocol to request the data again. The FEC
reduces the bit error rate from 1e-4 to 1e-6 and the
CRC then triggers retransmission with probability
of less than 1e-5. The latency addition due to FEC
is less than 2ns and the bandwidth reduction due
to retransmission less than 2%. The challenge for
Ethernet are longer links leading to higher link-
latencies.

System issues
Growing link-level and thus end-to-end laten-

cies can lead to more issues at the system level.
Higher latencies lead to higher buffer occupation
and energy consumption. Less obviously, higher
latencies lead to less efficient congestion control:
messages that are transmitted faster than a sin-
gle RTT cannot benefit from congestion control
mechanisms that rely on receiver-based notifica-
tions. The bad case of incast with small messages
thus gets worse or at least more common because
the size of a “small message” increases. Figure 3
shows the size of the bandwidth delay product
for some realistic latencies in datacenters today
showing that even 1 MiB messages can be con-
sidered “too small” for effective incast handling
by throttling the sender. Thus, problematic incast
patterns may become more common with higher
latencies!

Google GCP

Amazon Web Services

Azure
HPC

Typical frontend network

Figure 3: Bandwidth-delay-product vs. Round-
Trip-Time (numbers from De Sensi et al. [18])).

In other words, if a system can throttle the
sender fast enough, it can reduce the message
size below which incast is a problem. This
can be achieved by lowering latencies or hav-
ing switches report incast congestion directly
to the source (without bouncing through the re-
ceiver). Furthermore, if only very small messages
create bad-case incasts, switch buffers may sim-
ply ingest them in the common case without even
running out of resources. This may be amplified
along incast trees where multiple sets of switch
buffers can ingest transient incast messages, of
course, potentially leading to congestion trees in
the network. Such whole-systems issues remain
an open discussion but it seems that lower latency
generally simplifies them.

One also needs to pay attention to other
aspects of the overall stack that can be quite
complex. For example, simple and clear (remote)

8

memory semantics are tricky to define, reason
about, and implement correctly [19]. Further-
more, the fact that process-local virtual addresses
are exposed to remote hosts can be problematic
for security and performance. One could think of
a scheme with addressing relative to a memory
region [20]. From a security perspective both
schemes have their weaknesses: exposing ad-
dresses allows learning about the remote process,
yet fixed offsets are much simpler to guess for
an attacker [17]. We note that these are general
problems for all RDMA systems and not specific
to RoCE.

Routing and load balancing remains an open
challenge—most HPC networks use packet-level
adaptive routing with relatively advanced in-
network mechanisms [3] while most datacenter
networks use simple oblivious ECMP driven by
the endpoints that change header fields to guide
path selection in very simple ways. The granular-
ity of such ECMP load balancing in data centers
ranges from traditionally full flows to recently
considered flowlets. Flowlets are consecutive se-
quences of packets that have a sufficient gap
between them that flowlets cannot pass each other
even when sent along different routes. Such gaps
can be introduced by delaying packets or appear
naturally. More recently, datacenter networks are
looking towards more fine-grained mechanisms
for load balancing. Another challenge is the re-
quirement of some applications that messages
be delivered in order. In general, out-of-order
granularity and capabilities depend heavily on
application requirements and the capabilities of
the endpoint NICs. Finer and more out-of-order
capabilities simplify network load balancing.

Predictions
Based on all these points, we predict that

academia and industry will revisit datacenter Eth-
ernet. This next-generation Ethernet will likely
support lossy and lossless transport modes for
RDMA connections to allow intelligent switch-
buffer management. This will make the provi-
sioning of headroom buffer optional and avoid
the other problems such as victim flows and
congestion trees of lossless networking. Next-
generation Ethernet is also unlikely to adopt go-
back-n retransmission semantics but opt for more
fine-grained mechanisms such as selective ac-

knowledgments. Furthermore, it will likely make
congestion management part of the specification.
Special attention will be paid to colocation with
other flows, espcially in lossy traffic classes. The
protocols will be designed in a flexible way
to support smart networking stacks and security
will finally become a first-class citizen. We may
also see innovations in headers and reliability
approaches as well.

Such modernizations will drive a new high-
performance networking ecosystem for AI, HPC,
and storage systems that are at the heart of hyper-
scale datacenters. This development will conclude
the convergence of HPC and datacenter networks!

REFERENCES
1. T. Hoefler, A. Hendel, and D. Roweth, “The convergence

of hyperscale data center and high-performance com-

puting networks,” Computer, vol. 55, no. 7, pp. 29–37,

2022.

2. T. Hoefler, T. Bonato, D. De Sensi, S. Di Girolamo,

S. Li, M. Heddes, J. Belk, D. Goel, M. Castro, and

S. Scott, “Hammingmesh: A network topology for large-

scale deep learning,” in Proceedings of the International

Conference on High Performance Computing, Network-

ing, Storage and Analysis, SC ’22, IEEE Press, 2022.

3. D. De Sensi, S. Di Girolamo, K. H. McMahon,

D. Roweth, and T. Hoefler, “An in-depth analysis of

the Slingshot interconnect,” in Proceedings of the Inter-

national Conference for High Performance Computing,

Networking, Storage and Analysis, SC ’20, IEEE Press,

2020.

4. Y. Li, R. Miao, H. H. Liu, Y. Zhuang, F. Feng, L. Tang,

Z. Cao, M. Zhang, F. Kelly, M. Alizadeh, and M. Yu,

“HPCC: High precision congestion control,” in Pro-

ceedings of the ACM Special Interest Group on Data

Communication, SIGCOMM ’19, (New York, NY, USA),

p. 44–58, Association for Computing Machinery, 2019.

5. Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn,

Y. Liron, J. Padhye, S. Raindel, M. H. Yahia, and

M. Zhang, “Congestion control for large-scale rdma

deployments,” in Proceedings of the 2015 ACM Confer-

ence on Special Interest Group on Data Communica-

tion, SIGCOMM ’15, (New York, NY, USA), p. 523–536,

Association for Computing Machinery, 2015.

6. R. Mittal, V. T. Lam, N. Dukkipati, E. Blem, H. Wassel,

M. Ghobadi, A. Vahdat, Y. Wang, D. Wetherall, and

D. Zats, “TIMELY: RTT-based congestion control for

the datacenter,” SIGCOMM Comput. Commun. Rev.,

vol. 45, p. 537–550, aug 2015.

9

IEEE Computer

7. Message Passing Interface Forum, MPI: a message

passing interface standard. Technical Report, Septem-

ber 2012.

8. M. Besta and T. Hoefler, “Slim fly: A cost effective low-

diameter network topology,” in Proceedings of the Inter-

national Conference for High Performance Computing,

Networking, Storage and Analysis, SC ’14, p. 348–359,

IEEE Press, 2014.

9. Chelsio Communications, “A rocky road for RoCE.”

https://www.chelsio.com/wp-content/uploads/2011/05/

A-Rocky-Road-for-Roce-White-Paper-0112.pdf, 2012.

Accessed: 2022-12-26.

10. R. Mittal, A. Shpiner, A. Panda, E. Zahavi, A. Krish-

namurthy, S. Ratnasamy, and S. Shenker, “Revisiting

network support for RDMA,” in Proceedings of the 2018

Conference of the ACM Special Interest Group on

Data Communication, SIGCOMM ’18, (New York, NY,

USA), p. 313–326, Association for Computing Machin-

ery, 2018.

11. P. Goyal, P. Shah, N. K. Sharma, M. Alizadeh, and T. E.

Anderson, “Backpressure flow control,” in Proceedings

of the 2019 Workshop on Buffer Sizing, BS ’19, (New

York, NY, USA), Association for Computing Machinery,

2020.

12. “IEEE standard for ethernet,” IEEE Std 802.3-2018

(Revision of IEEE Std 802.3-2015), pp. 1–5600, 2018.

Section Four, clause 44.

13. T. Khan, S. Rashidi, S. Sridharan, P. Shurpali, A. Akella,

and T. Krishna, “Impact of RoCE congestion con-

trol policies on distributed training of DNNs,” in 2022

IEEE Symposium on High-Performance Interconnects

(HOTI), (Los Alamitos, CA, USA), pp. 39–48, IEEE

Computer Society, aug 2022.

14. G. Kathareios, C. Minkenberg, B. Prisacari, G. Ro-

driguez, and T. Hoefler, “Cost-Effective Diameter-Two

Topologies: Analysis and Evaluation,” ACM, Nov. 2015.

In Proceedings of the International Conference for

High Performance Computing, Networking, Storage and

Analysis (SC15).

15. T. Hoefler, S. Di Girolamo, K. Taranov, R. E. Grant,

and R. Brightwell, “Spin: High-performance streaming

processing in the network,” in Proceedings of the Inter-

national Conference for High Performance Computing,

Networking, Storage and Analysis, SC ’17, (New York,

NY, USA), Association for Computing Machinery, 2017.

16. K. Taranov, B. Rothenberger, A. Perrig, and T. Hoe-

fler, “SRDMA: Efficient NIC-Based Authentication and

Encryption for Remote Direct Memory Access,” in Pro-

ceedings of the 2020 USENIX Conference on Usenix

Annual Technical Conference, USENIX ATC’20, (USA),

USENIX Association, 2020.

17. B. Rothenberger, K. Taranov, A. Perrig, and T. Hoefler,

“ReDMArk: Bypassing RDMA Security Mechanisms,” in

Proceedings of the 2021 USENIX Security Symposium,

USENIX, 2021.

18. D. De Sensi, T. De Matteis, K. Taranov, S. Di Girolamo,

T. Rahn, and T. Hoefler, “Noise in the clouds: Influence

of network performance variability on application scala-

bility,” 2022.

19. A. M. Dan, P. Lam, T. Hoefler, and M. Vechev, “Modeling

and Analysis of Remote Memory Access Programming,”

in Proceedings of the 2016 ACM SIGPLAN Interna-

tional Conference on Object-Oriented Programming,

Systems, Languages, and Applications, pp. 129–144,

ACM, Nov. 2016.

20. B. W. Barrett, R. Brightwell, R. E. Grant, W. Schonbein,

S. Hemmert, K. Pedretti, K. Underwood, R. Riesen,

T. Hoefler, M. Barbe, L. H. S. Filho, A. Ratchov, and

A. B. Maccabe, “The Portals 4.3 Network Program-

ming Interface,” tech. rep., June 2022. Technical Report

SAND2022-8810, 2022.

Torsten Hoefler is a Professor of Computer Science
at ETH Zürich. His research interests revolve around
large-scale high-performance systems and networks
for HPC and AI. He is a fellow of the ACM and IEEE as
well as a member of Academia Europaea. For more
information visit http://htor.ethz.ch.

Duncan Roweth is a Senior Distinguished Technolo-
gist in the Slingshot Business Unit CTO office at HPE.
He joined HPE in Jan 2020 with the acquisition of
Cray. While at Cray he worked on three generations of
HPC network. He has been in a leading figure in the
Slingshot program since its inception. Duncan holds
a Ph.D. from the University of Edinburgh.

Keith Underwood is a Senior Distinguished Tech-
nologist at Hewlett Packard Enterprise. He is an ar-
chitect in the Slingshot program focusing on network
interface architecture.

Robert Alverson is a Distinguished Technologist
at Hewlett Packard Enterprise. Bob has a Master of
Science degree from Stanford University in Electrical
Engineering. He has a long history in HPC inter-
connects and was a lead architect of Slingshot high
speed network interconnect, which combines HPC
performance with Ethernet compatibility in a dragonfly
network.

Mark Griswold is a Distinguished Engineer and

10

https://www.chelsio.com/wp-content/uploads/2011/05/A-Rocky-Road-for-Roce-White-Paper-0112.pdf
https://www.chelsio.com/wp-content/uploads/2011/05/A-Rocky-Road-for-Roce-White-Paper-0112.pdf
http://htor.ethz.ch

Switch Architect at Broadcom. His primary research
interests are high-performance interconnects, com-
puter architecture, device architecture and workloads.
He obtained a B.S. in Mathematics & Computer Sci-
ence and a B.S. in Computer Engineering, both from
Carnegie Mellon University.

Vahid Tabatabaee is a Distinguished Engineer
and Switch Architect at Broadcom. He received
his Ph.D. from the University of Maryland, College
Park. His research interests are in algorithm de-
sign and performance analysis for congestion control
and traffic management in networks. His email is
vahid.tabatabaee@broadcom.com.

Mohan Kalkunte is the Vice President of Architec-
ture and Technology responsible for the architecture
development of switches for Enterprise, Data Center,
and Service Provider markets at Broadcom. He is an
IEEE fellow and has over 150 patents. His email is
mohan.kalkunte@broadcom.com.

Surendra Anubolu is a Distinguished Engineer at
Broadcom in the Switch Group. He is currently work-
ing on benchmarking and enhancing performance of
distributed AI work loads and telemetry for network
applications. He holds an MS from Indian Institute of
Science, Bangalore.

Siyuan Shen received his MEng degree in Com-
puting from Imperial College London and is currently
a Ph.D. student in the Scalable Parallel Computing
Lab at ETH Zurich. His primary research interests
include distributed computing, networking, and dis-
tributed machine learning.

Moray McLaren is a Principal Engineer at Google.
His research interests include future data center
networking, and interconnects for High Performance
Computing and Machine Learning. His e-mail is
moray@google.com.

Abdul Kabbani is a Principal Network HW Archi-
tect at Microsoft. His research interests include con-
gestion management algorithms in high-performance
and frontend networking. He received his PhD from
Stanford University.

Steve Scott is a Technical Fellow and Corporate
Vice President of Azure Hardware Architecture at
Microsoft. His research interests are in high perfor-
mance system and network architecture. He is an
IEEE and ACM Fellow, and received his PhD from the
University of Wisconsin at Madison.

Appendix
Derivation of Frame Loss Probability

To measure the performance of a specific
RS(n, k) scheme under the assumption that a
random-error model is used, we need to find
the probability of losing an Ethernet frame given
a pre-defined input bit error rate (BERin) and
the number of hops in the network. As a first
step, we can calculate the input symbol error rate
(SERin), i.e. the probability of an FEC symbol
being corrupted, as:

SERin = 1− (1−BERin)
m

≈ m ·BERin (for small BERin)

where m is the number of bits in an FEC symbol.
The sub-expression (1−BERin)

m represents the
probability of having no errors in a symbol.

The number of symbols in an FEC codeword
that can be corrected by a RS(n, k) scheme is
expressed as t = bn−k

2
c, which signifies that after

decoding, the uncorrectable codeword error rate
(CER) is:

CER =
n∑

i=t+1

(
n

i

)
SERi

in(1− SERin)
n−i

︸ ︷︷ ︸
Probability of having exactly i

corrupted symbols in a codeword

Since an Ethernet frame can only be properly
received when all of its constituent codewords are
correctable, we can compute the frame error rate
(FER) as:

FER = 1− (1− CER)1+b
frame size

codeword size c

≈
(
1 + b frame size

codeword size
c
)
· CER

where the average number of codewords that a
frame occupies is denoted by 1 + b frame size

codeword sizec.
After obtaining the FER per link, the frame

loss probability P is simply:

P = 1− (1− FER)hops+1

≈ (hops+ 1) · FER

11

	Datacenter Ethernet's new Environment
	A brief history of RDMA for Ethernet
	RoCE – convergence or duct tape?

	Guiding Traffic Motifs
	Incast (IN)
	Oblivious bulk synchronous (OBS)
	Latency-sensitive (LS)
	Deployment characteristics

	Where RoCE needs improvement
	1) PFC requires excessive buffering for lossless transport
	2) Victim flows, congestion trees, PFC storms, and deadlocks
	3) Go-back-N retransmission
	4) Congestion control and colocation with other traffic
	5) Header sizes, packet rates, scalability
	6) No support for smart stacks
	7) Security
	8) Link-level reliability

	System issues
	Predictions
	REFERENCES
	Biographies
	Torsten Hoefler
	Duncan Roweth
	Keith Underwood
	Robert Alverson
	Mark Griswold
	Vahid Tabatabaee
	Mohan Kalkunte
	Surendra Anubolu
	Siyuan Shen
	Moray McLaren
	Abdul Kabbani
	Steve Scott

	Appendix
	Derivation of Frame Loss Probability

