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Abstract. Many parallel applications need to communicate non-
contiguous data. Most applications manually copy (pack/unpack) data
before communications even though MPI allows a zero-copy specifica-
tion. In this work, we study two complex use-cases: (1) Fast Fourier
Transformation where we express a local memory transpose as part of
the datatype, and (2) a conjugate gradient solver with a checkerboard
layout that requires multiple nested datatypes. We demonstrate signifi-
cant speedups up to a factor of 3.8 and 18%, respectively, in both cases.
Our work can be used as a template to utilize datatypes for application
developers. For MPI implementers, we show two practically relevant ac-
cess patterns that deserve special optimization.

1 Introduction

The Message Passing Interface (MPI) offers a mechanism called derived datatypes
(DDT) to specify arbitrary memory layouts for sending and receiving messages. This
mighty mechanism allows the integration of communication into the parallel algorithm
and data layout and thus is likely to become an important part of application devel-
opment and optimization. Not only do DDTs save implementation effort by providing
an abstract and versatile interface to specify arbitrary data layouts, but they also pro-
vide a portable high-performance abstraction for data accesses. It is easy to show that
datatypes are complete in that any permutation from a layout on the sender to a layout
on the receiver can be expressed (different DDTs at sender and receiver are allowed as
long as the type maps [1] match).

Zero-copy refers to a mechanism to improve application performance by avoiding
copies in the messaging middleware. Several low-level communication APIs, such as
InfiniBand [2] or DCMF [3] allow direct copies from a user-buffer on the sender to a
user-buffer at the receiver. We extend this definition into the application space and
argue that the specification of derived datatypes is necessary to enable zero-copy

algorithms, i.e., no explicit buffer pack/unpack, for parallel applications. It has been
shown that non-contiguous data can be transferred without additional copies using
InfiniBand [4].
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Many applications require sending data from non-contiguous locations, so we would
expect that many MPI applications use datatypes to specify their communications.
However, on the contrary, implementations of the DDT mechanism in MPI have been
suboptimal so that manual packing and unpacking of data often yielded higher perfor-
mance. In the last years, implementations have much improved [4–8] but the folklore

about low performance still remains. Indeed, the number of success stories is low and
limited to application benchmarks with relatively simple datatype layouts [9].

In this work, we demonstrate two complex use-cases for DDTs in parallel appli-
cations. The first example shows how to express the local transpose operations in a
parallel Fast Fourier Transformation (FFT). The second example shows a complex 4-d
stencil code with checkerboard layout.

2 Fast Fourier Transformations

Fast Fourier Transforms (FFT) have numerous applications in science and engineering
and are among the most important algorithms today. One-dimensional (1-d) FFTs
accept an array of N complex numbers as input and produce an array of size N as
output. FFTs can also be done in place with negligible additional buffering. Such 1-d
FFTs can be expressed as several multi-dimensional FFTs and application of so called
twiddle factors [10, §12]. Such a decomposition is often used to parallelize FFTs because
applying the twiddle factors is a purely local operation. Naturally multi-dimensional
FFTs are also very important in practice, for example, 2-d FFTs for image analysis and
manipulation and 3-d FFTs for real-space domains. Such n-d FFTs can be computed
by performing 1-d FFTs in all n dimensions.

2.1 A typical parallel FFT implementation

We discuss a typical parallel implementation of a Nx × Ny 2-d FFT with MPI. We
assume that the array is stored in x-major order and distributed along the x dimension
such that each process has Nx/P y-pencils. Figure 1 illustrates the whole procedure
for a 4 × 4 FFT on two processes (0 and 1). Each process holds two 4-element y-

(all−to−all)

1,1 1,2 2,1 2,2 1,3 1,4 2,3 2,4

3,1 3,2 4,44,34,1 4,2 3,3 3,4

3,1 3,2 3,3 3,4 4,1 4,2 4,3 4,4

1,2 1,41,31,1

1−d FFT

2,42,2 2,32,1

1−d FFT

4,44,33,3 3,41,3 1,4 2,3 2,4

1,1 1,2 2,1 2,2 3,1 3,2 4,1 4,2

(all−to−all)
 transpose 

1,1 1,2 2,1 2,2 1,3 1,4 2,3 2,4

3,1 3,2 4,44,34,1 4,2 3,3 3,4

to: 0

to: 0

to: 1

to: 1

0

1

local pack
1−d FFT 1−d FFT

0

1

1,3

1,1 2,1 3,1 4,24,1 1,2 3,22,2

2,3 3,3 2,41,4 4,44,3 3,4

1−d FFT 1−d FFT

1−d FFT 1−d FFT

local pack
local unpack  transpose 

from: 0

from: 0

from: 1

from: 1

local unpack

1,2 1,41,31,1 2,42,2 2,32,1

3,1 3,2 3,3 3,4 4,1 4,2 4,3 4,4

A

B

C D

E

F

Fig. 1. Parallel two-dimensional FFT on two processes. The steps are explained below.

pencils in its local memory. The elements are shown with (x, y) indices in contiguous
memory locations (left→right) in the figure. The two processes are drawn vertically
and separated by a dashed line. The steps needed to transform the array and return it
in the original layout are:



1. perform Nx/P 1-d FFTs in y-dimension (Ny elements each)
2. pack the array into a sendbuffer for the all-to-all (A)
3. perform global all-to-all (B)
4. unpack the array to be contiguous in x-dimension (each process has now Ny/P

x-pencils) (C)
5. perform Ny/P 1-d FFTs in x-dimension (Nx elements each)
6. pack the array into a sendbuffer for the all-to-all (D)
7. perform global all-to-all (E)
8. unpack the array to its original layout (F)

Thus, in order to transform the two-dimensional data, it is rearranged six times. Each
rearrangement is effectively a copy operation of the whole data. However, four rear-
rangements (pack and unpack) are related to the global transpose operation. Since
MPI datatypes are complete, we can fold all pack and unpack operations into the
communication and thus avoid the explicit copy for packing the data.

2.2 Constructing the Datatypes

We assume that the basic element is a complex number. A datatype for complex num-
bers can simply be created with MPI Type contiguous with two double elements.

The send-datatype can be constructed with MPI Type vector because each y-pencil
is logically cut into P pieces that need to be redistributed to P processes. Thus, the
blocklength is

Ny

P
. Each process typically holds Nx

P
pencils, thus, there are a total of Nx

P

such blocks. The stride between the blocks is one complete y-pencil of length Ny . The
basic vector datatype is shown in Figure 2(a). Sending a single element of this datatype
would transmit {(1,1),(1,2),(2,1),(2,2)}. The problem is now that the comb-shaped
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Fig. 2. Visualization of the send datatype creation.

datatypes that need to be sent are interleaved as shown in Figure 2(b). Thus, one can’t
just sent two of those datatypes (as this would gather two contiguous combs instead
of two interleaved combs). MPI allows the user to change the extent of a datatype in
order to allow such interleaved accesses. In our example we use MPI Type create resized

to change the extent to
Ny

P
times the base-size as shown in Figure 2(b). The resulting

datatype can be used as input to MPI Alltoall by sending count=1 to each process.
Performing the unpack on the receiver is slightly more complex because the data

arrives in non-transposed form from the sender. Thus, the receiver does not only need
to unpack the data but also transpose each block locally. This can also be expressed in



a single derived datatype. The top of Figure 3(a) shows how the data-stream arrives
at the receiver (process 0) and the bottom the desired layout after unpack. Like in the
sender-case, we create a MPI Type vector datatype. However, the blocklength is now
one element because we need to transpose the array locally. We have Nx

P
blocks with a

stride of Nx between them. The newly created comb-shaped type captures one incoming
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Fig. 3. Visualization of the receive datatype creation.

y-contribution of one process. To capture all, we need to create a contiguous datatype
with

Ny

P
elements. We have to change the extent to 1 with MPI Type create resized as

for the send datatype. Figure 3(b) shows the final datatypes for our example. Those
types can be used as the receive type in MPI Alltoall with count=1 per process (note
that the send- and receive-types in MPI Alltoall do not have to be identical as long as
the type-map matches).

By using both created datatypes, we can effectively eliminate steps A, C, D, and F
in Figure 1 which leads to a zero-copy FFT. An optimized MPI implementation would
stream the data items directly from the send buffers into the receive buffers and apply
the correct permutation (local transpose). This should lead to significant performance
improvements over the state of the art because it avoids four explicit copies of the
whole 2-d array. Higher-dimensional FFTs can be treated with similar principles.

2.3 Experimental Evaluation

We used two systems for our performance evaluation, Odin at Indiana University and
Jaguar at the Oak Ridge National Laboratory. Odin consists of 128 compute nodes
with dual-CPU dual-core Opteron 1354 2.1 GHz CPUs running Linux 2.6.18 and are
connected with SDR InfiniBand (OFED 1.3.1). We used Open MPI 1.4.1 (openib BTL)
and g++ 4.1.2 for our evaluation. Jaguar (XT-4) comprises 150152 2.1 GHz Opteron
cores in quad-core nodes connected with a Torus network (SeaStar). Jaguar runs Com-
pute Node Linux 2.1 and the Cray Message Passing Toolkit 3. All software was compiled
with -O3 -mtune=opteron on both systems.

In all experiments, we ran one warmup round (using the same buffers as for the
actual run). We repeated each run three times (in the same allocation) and found a
maximum deviation of 4%. We report the smallest measured time for the complete
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Fig. 4. Strong-scaling of a 2-d FFT with and without zero-copy (MPI Datatypes).

parallel 2-d FFT of the three runs. The overhead to create the derived datatypes is
included in the measurements that use derived datatypes.

Figure 4 shows the results for a strong-scaling N×N 2-d FFT on Odin and Jaguar.
Using derived datatypes improves the performance of parallel FFTs on both systems
by more then a factor of 1.5. The improvement typically grows with the number of
processes as local FFTs get smaller. The anomaly at P=200 on Odin (Figure 4(a))
is reproducible. Datatypes also improved parallel scaling on Jaguar as shown in Fig-
ure 4(b) where the traditional FFT stopped scaling at 1024 processes and the version
using derived datatypes scaled up to 2048 processes.

The performance of derived datatypes is system dependent and might as well not
result in any speedup if the implementation performs a complete local pack/unpack.
We found only one system, BlueGene/P, where the datatype implementation is slow-
ing down the FFT significantly (up to 40%). The simple representation of the con-
structed vector datatype should not introduce significant overhead. This might point
at an optimization opportunity or performance problem of the MPI implementation
on BlueGene/P.

3 MIMD Lattice Computation Collaboration Application

The MIMD Lattice Computation (MILC) Collaboration studies Quantum Chromody-
namics (QCD) the theory of the strong interaction [11]. Their suite of applications,
known as the MILC code is publicly available for the study of lattice QCD. This group
regularly gets one of the largest allocations of computer time at NSF supercomputer
centers. One application from the code suite, su3 rmd, is part of the SPEC CPU2006
and SPEC MPI benchmarks. It is also used to evaluate the performance of the Blue
Waters computer to be built by IBM.

Lattice QCD approximates space-time as a finite regular hypercubic grid of points
in four dimensions. The physical quarks are represented by 3-component complex ob-
jects at each point of the grid. The variables that describe the gluons, the carriers of
the strong force are represented by 3×3 unitary matrices residing on each ‘link’ joining
points of the grid. Currently, grids as large as 643×192 are in use. Much of the floating
point work is involved in multiplying the 3×3 matrices together or applying the matrix



to a 3-component vector. Routines for these basic operations are often optimized by
assembly code or compiler intrinsics.

The code is easily parallelized by domain decomposition. Once that is done, the
program must be able to communicate with neighboring processes that contain off-node
neighbors of the points in its local domain. The MILC code abstracts all the communi-
cation into a small set of routines: start gather, wait gather, and cleanup gather.
These routines are all contained in a single file specific to the message passing library
available on the target computer.

The MILC code allows very general assignments of grid points to the processes. At
startup, a list of local grid points that need off-node neighbors for their computation
is created for each direction ±x, ±y, ±z, ±t. There is one list corresponding to each
other process that contains any needed neighbors for a particular direction. There are
also similar lists for all the local grid points whose values will need to be sent to other
processes. At the time a gather is called, the lists containing data that must be sent
to other processes are processed and for each grid point in a list the value of the
data to be gathered is copied (packed) into a buffer. The buffer is then sent to the
neighboring process. The index list is used to allow for arbitrary decompositions of
the grid; however, in practice, the most common data layout is just to break up the
domain into hyperrectangular subdomains with checker boarding as described below.
It is for this case that we have implemented derived datatypes to avoid copying the
data to a buffer before sending it to the destination process. The receive portion does
not require datatypes because the computation uses indirect addressing for all grid
points. The index list of local grid points with remote data dependencies is set (once
during initialization) to point to the correct element in the receive buffer.

3.1 Data Layout and Datatype Construction

The code consists of several computation phases that perform different tasks. There
are compilation flags that allow timing and printing performance information for each
phase. In this work, we will concentrate on the conjugate gradient (CG) solver since
that routine takes the vast majority of the time in production runs. Checkerboarding, or
even-odd decomposition is used in the iterative solver. A grid point is even (odd) if the
sum of its coordinates is even (odd). Thus, the grid points are stored in memory so that
all even sites are stored before the odd sites. If the coordinates of a point are denoted
(x, y, z, t), the data is stored so that x is incremented first, then y is incremented, then
z and finally t. That means that the edge of the domain in t is (almost) contiguously
stored. If the local domain is of size Lx ×Ly ×Lz ×Lt, there are Lx ×Ly ×Lz/2 even
sites stored contiguously and the same number of odd sites stored contiguously. Note
that our current implementation of datatypes requires that each of the local dimensions
is even. During the CG solver, we are usually only transferring one checkerboard at
a time. (In other phases of the code, we operate on all grid points, so we also define
datatypes for even-and-odd gathers. These are defined with MPI Type hvector in the
code example. The blocks of even and odd sites are identical patterns separated by the
number of even sites on each process. This is converted to bytes by multiplying by the
size of the object.) If we need to fetch values from the z-direction, however, the points
are not all stored contiguously. For each value of t, there are Lx×Ly/2 contiguous sites
in each checkerboard. The datatype defined for the gathers in the z-direction consists
of Lt repetitions of such contiguous data. For the gathers in the y-direction, there are
Lz×Lt regions of Lx/2 contiguous sites. Listing 1.1 shows parts of the datatype layout
routine which is called during initialization.



/* the basic elements */

MPI_Type_contiguous(6, MPI_FLOAT, &su3_vect_dt);

MPI_Type_contiguous(12, MPI_FLOAT, &half_wilson_vector_mpi_t);

MPI_Type_contiguous(18, MPI_FLOAT, &su3_matrix_mpi_t);

/* 48 field types, 3 for su3_vector, half_wilson_vector, and su3_matrix,

2 for even and even and odd, 8 for directions */

MPI_Datatype neigh_dt_ddt[3][2][8];

/* t-direction, even points */

MPI_Type_contiguous(Lx · Ly · Lz/2, su3_vect_dt, &neigh_dt_ddt[0][0][3]);

/* t-direction, even and odd points */

MPI_type_hvector(2,1,sizeof(su3_vector)*even_sites, neigh_dt_ddt[0][0][3],

&neigh_dt_ddt[0][1][3]);

/* z-direction, even points */

MPI_Type_vector(Lt, Lx · Ly/2, Lx · Ly · Lz/2, su3_vect_dt,

&neigh_dt_ddt[0][0][2]);

/* z-direction, even and odd points */

MPI_type_hvector(2,1,sizeof(su3_vector)*even_sites, neigh_dt_ddt[0][0][2],

&neigh_dt_ddt[0][1][2]);

...

Listing 1.1. Datatype Example for the Up Direction and su3 vector. MILC uses 48
different data layouts for sending.

Three other issues are simplified in the code example. We do not show code for
negative directions or for gathers of matrices and pairs of vectors. We show the basic
definitions for half wilson vector mpi t and su3 matrix mpi t, but not the corre-
sponding definitions of field neigh dt[{1,2}][ ][ ]. Further, for the CG routine, we
also need to gather from sites three grid points away in each direction. These require
contiguous blocks three times as long and merely require changing some factors of 1/2
to 3/2.

3.2 Experimental Evaluation

We now present performance results comparing the version the datatype version with
the original pack/unpack version. We chose a weak scaling problem of size Lx = Ly =
Lz = Lt = 4 per process which is similar to the Petascale benchmark problem that will
be used to verify the Blue Waters machine on > 3 · 105 cores. We ran each benchmark
multiple times and report the average performance of all CG phases.

Figure 5 shows the performance in MFlop/s of runs on Odin and Jaguar. The CG
solver requires global sums in addition to the nearest neighbor gathers. These sums are
the biggest impediment to scaling since the global sum time is expected to increase as
the logarithm of the number of processes. For a fixed local grid size, i.e., weak scaling,
the time for the global sum will eventually dominate the time for the work that must
be done on each process. This is reflected in the decreasing performance is the number
of processors is increased beyond 16. The sharp dropoff between 8 and 16 is due to the
fact the one additional direction has off-node neighbors. Most other parts of the code
do not require global sums. We see a speedup up to 18% by using derived datatypes on
Odin while we see no benefit, indeed an average performance penalty of 3% on Jaguar.

The performance degradation on Jaguar is surprising because the data access of
the MPI Type vector definition of the used datatype can be easily expressed as two
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Fig. 5. Weak-scaling MILC run with a 44 lattice per process.

loops [5, 7] while the original MILC packing routine traverses an array of indices which
adds more pressure to the memory subsystem. This points at possible optimization
opportunities in Cray’s MPI because the simple structure of the datatype should, even
in a simple implementation, not introduce significant overheads.

4 Conclusions

We demonstrated two applications that can take significant advantage of using MPI’s
derived datatype mechanism for communication. Such techniques essentially enable
parallel zero-copy algorithms and even allows one to express additional local transfor-
mations (as demonstrated for FFT). Performance results of FFT and a CG solver show
improvements up to a factor of 3.8 and 18% respectively. However, we also found per-
formance degradation, which indicate optimization opportunities in the MPI libraries
on BlueGene/P and Jaguar systems, in some cases.

We expect that our results will influence two groups: (1) application developers
are encouraged to use MPI datatypes to simplify and optimize their code, and (2)
MPI implementers should use the presented algorithms as examples for practically
relevant access patterns that might benefit from extra optimizations. The source code
of both applications is publicly available and can be used for evaluating datatype
implementations.
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