Communication Optimization for Medical
Image Reconstruction Algorithms

Torsten Hoeflert, Maraike Schellmann?,
Sergei Gorlatch? and Andrew Lumsdaine?

Indiana University
2University of Munster

EuroPVM/MPI 2008
Dublin, Ireland

9" September 2008



Positron Emission Tomography

used to create high resolution images of the inside of a body

computationally intensive post-processing

most common is the list-mode OSEM algorithm

needs many hours on a single CPU

parallelization is an option to achieve higher performance



PET Details

radiocative substance is applied to the patient

patient is placed inside a scanner

detectors of the scanner count events

radiocative material emits positrons

positrons collide with an electron in the surrounding tissue
collision emits gamma rays which are detected by scanner

annihilation




PET Parameters

a single measurement results in 10’to 5x10° events
the algorithm computes a 3d image of the substance
distribution
Ordered Subset Expectation Maximation algorithm is used
image f is vector of N voxels
block-iterative method (m blocks of events)
I-th row of mxN matrix A represents interaction between event
| and a voxel

for each(iteration k)/{

for each(subiteration | ){
for (event i€ 5;)4
compute A;

1

Ai f " }

compute ¢ (A

,-'p.'k- | f .'I" cl j
fo'' = i1}




£

Parallelization Options

 two strategies:
* Projection Space Decomposition (PSD)
* Image Space Decomposition (ISD)
« PSD distributes events, was shown to be better

. read my/P events

t 1 . . .
compute ¢ j = g j (A;) o This includes the on-the-fly computation
: iJ1

of A; for each event in 5; ;.
" _ N — :
sum up ¢; € RY (3., = ¢) with MPI_Allreduce

. compute f;11 = fig

« use OpenMP to parallelize computation of steps 2 and 4
« events are read with MPI/IO operations
 exclusive use of collective operations!



The algorithm (schematically)

1. Read 2. Compute C; 3. MPI_Allreduce(+) 4. Update

Al-l_l fl —_—> Crt NE J.Fi fl:‘i' ProcO

A\
|

. ¢
. ’
. ’
h !’
~ —»
] N !
" " Y
LSNP 2 !
W s .
y AN
Y LA i

G

\
\
\
h |
s
L
=
IH
>t
O
o
T
D
(@]
)

In Subset | AN AT

Events ST e e S

_l_
[SmY
=
(@)
=~
VALl
2
o
i
T
(@]
(@]
W




Qo

n

. compute ¢ ; = ),

Optimization Options

 collective operations are already used
 hide overhead? ("overlap” computation and communication)
> should be possible (at a small cost)!

. read ms/P events in the first subset

1
(As) A fi

of A; for each event in S;; in the first subset. Beginning from the second
subset, rows A; have already been computed in parallel with NBC_lallreduce

. This includes the on-the-fly computation

’ILGS,{J

. start NBC_lallreduce for ¢; ; (Zj i =)
. in every but the last subset, each node reads the m /P events for subset

[ +1 and computes A; for subset [ + 1

. perform NBC_Wait to finish NBC_lallreduce
. compute fi11 = fig



The new algorithm (schematically)

NBC_I|Allreduce(+)

Computecy” Read Compute A 1 N Update

..................................................................................................................................................................................................................................................................................................................................

-
-
-
-

Events in

Subset [+1

SS
Ss
~

YYr)

>
=h
&
=
R




Potential Overlap

need enough computation to overlap communication

but: read-time and computation-time decrease linearly with P
computation time decreases linearly with number of threads T
* but: OpenMP doesn't scale that well (investigating)
 delivers speedup of approx. 2 on 4 cores

overlap potential:

 parallelization works against us!

how much do we need?

> as much time as the reduction takes!

 reduction-size is scanner dependent (approx. 48 MiB)



Allreduce Latency (ms)

48 MiB Allreduce Options

» expect small communicators
e chunk data into P pieces
* reduce in ring: 2P-2 comm/comp cycles

450 F 5 ( ! ! ! ! 70
a0 T
350 1 /e

300 o — ‘ ‘ ‘
250 | b
200F
70 J R N ——
0

50
40 |
30

Allreduce Overhead (ms)

10 - PSR SR S R N —
no progress thread ——
_progress thread

50 Open MPl/tuned 1.2.6rc2 —— -
0 | LibNBC/ofed 0.9.3

0 8 16 24 32 40 48 56 64 0 8 16 24 32 40 48 56 64
Number of Nodes Number of Nodes




What to expect?

overhead nearly an order of magnitude lower

two orders of magnitude with thread and spare core
we expect the overlap to decrease with increasing P and T
threaded progression will have problems without spare core

32-node application runtime results:

25

20

—
N

—
-

Time to Solution (8)

MP| Allreduce() o
NEC lallreducel) r—
NEC_lallreduce() (thread)

1 thread

¢ threads

2 threads 4 threqds



What is the Overhead?

« Allreduce overhead with a single thread per node
e communication overhead is decreased
« computation time slightly increased (cache misses)

7
MPI_Allreduce() s
NBC_lallreduce() ==
6 NBC lallreduce() (thread) wwwssm _

Communication Overhead (S)

8 nodes 16 nodes 32 nodes



Conclusions

« Non-blocking Allreduce is easy to apply
* Needs small code-reorganization to maximize overlap
« Might cause other slowdowns (cache misses)
« Analysis of overlap potential has to be done before!
» Also analyze scaling behavior!
« Parallel scaling works against overlap in some cases
* Progression issues remain complex
« Threaded vs. Test-based progression
* Progress thread might cause CPU congestion
* OpenMP and MPI can be combined (also with NBC)



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

