Communication Optimization for Medical Image Reconstruction Algorithms

Torsten Hoefler¹, Maraike Schellmann², Sergei Gorlatch² and Andrew Lumsdaine¹

> ¹Indiana University ²University of Münster

> > EuroPVM/MPI 2008 Dublin, Ireland

> > 9th September 2008

Positron Emission Tomography

- used to create high resolution images of the inside of a body
- computationally intensive post-processing
- most common is the list-mode OSEM algorithm
- needs many hours on a single CPU
- parallelization is an option to achieve higher performance

PET Details

- radiocative substance is applied to the patient
- patient is placed inside a scanner
- detectors of the scanner count events
- radiocative material emits positrons
- positrons collide with an electron in the surrounding tissue
- collision emits gamma rays which are detected by scanner

PET Parameters

- a single measurement results in $10^7 to 5 \times 10^8$ events
- the algorithm computes a 3d image of the substance distribution
- Ordered Subset Expectation Maximation algorithm is used
- image f is vector of N voxels
- block-iterative method (m blocks of events)
- i-th row of mxN matrix A represents interaction between event i and a voxel

```
for each (iteration k) {
	for each (subiteration l) {
	for (event i \in S_l) {
		compute A_i
		compute c_l + = (A_i)^t \frac{1}{A_i f_l^k} }
	f_{l+1}^k = f_l^k c_l }
	f_0^{k+1} = f_{l+1}^k }
```

Parallelization Options

- two strategies:
 - Projection Space Decomposition (PSD)
 - Image Space Decomposition (ISD)
- PSD distributes events, was shown to be better
- 1. read m_s/P events
- 2. compute $c_{l,j} = \sum_{i \in S_{l,j}} (A_i)^t \frac{1}{A_i f_l}$. This includes the on-the-fly computation of A_i for each event in $S_{l,j}$.
- 3. sum up $c_{l,j} \in \mathbb{R}^N$ $(\sum_i c_{l,j} = c_l)$ with MPI_Allreduce
- 4. compute $f_{l+1} = f_l c_l$
 - use OpenMP to parallelize computation of steps 2 and 4
 - events are read with MPI/IO operations
 - exclusive use of collective operations!

The algorithm (schematically)

Optimization Options

- collective operations are already used
- hide overhead? ("overlap" computation and communication)
 - → should be possible (at a small cost)!
- 1. read m_s/P events in the first subset
- 2. compute $c_{l,j} = \sum_{i \in S_{l,j}} (A_i)^t \frac{1}{A_i f_l}$. This includes the on-the-fly computation of A_i for each event in $S_{l,j}$ in the first subset. Beginning from the second subset, rows A_i have already been computed in parallel with NBC_lallreduce
- 3. start NBC_lallreduce for $c_{l,j}$ $(\sum_{j} c_{l,j} = c_l)$
- 4. in every but the last subset, each node reads the m_s/P events for subset l+1 and computes A_i for subset l+1
- 5. perform NBC_Wait to finish NBC_lallreduce
- 6. compute $f_{l+1} = f_l c_l$

The new algorithm (schematically)

Potential Overlap

- need enough computation to overlap communication
- but: read-time and computation-time decrease linearly with P
- computation time decreases linearly with number of threads T
 - but: OpenMP doesn't scale that well (investigating)
 - delivers speedup of approx. 2 on 4 cores
- overlap potential:
 - parallelization works against us!
- how much do we need?
 - → as much time as the reduction takes!
- reduction-size is scanner dependent (approx. 48 MiB)

48 MiB Allreduce Options

- expect small communicators
 - chunk data into P pieces
 - reduce in ring: 2P-2 comm/comp cycles

What to expect?

- overhead nearly an order of magnitude lower
- two orders of magnitude with thread and spare core
- we expect the overlap to decrease with increasing P and T
- threaded progression will have problems without spare core
- 32-node application runtime results:

What is the Overhead?

- Allreduce overhead with a single thread per node
- communication overhead is decreased
- computation time slightly increased (cache misses)

Conclusions

- Non-blocking Allreduce is easy to apply
 - Needs small code-reorganization to maximize overlap
 - Might cause other slowdowns (cache misses)
- Analysis of overlap potential has to be done before!
 - Also analyze scaling behavior!
 - Parallel scaling works against overlap in some cases
- Progression issues remain complex
 - Threaded vs. Test-based progression
 - Progress thread might cause CPU congestion
- OpenMP and MPI can be combined (also with NBC)