Optimized Routing for Large-Scale InfiniBand Networks

Torsten Hoefler, Timo Schneider, and Andrew Lumsdaine

> Open Systems Lab Indiana University

Effect of Network Congestion

Full Bisection Bandwidth != Full Bandwidth

- expensive topologies do not guarantee high bandwidth
- deterministic oblivious routing cannot reach full bandwidth!
 - see Valiant's lower bound
 - random routing is asymptotically optimal but looses locality
- but deterministic routing has many advantages
 - completely distributed
 - very simple implementation
- □ InfiniBand routing:
 - deterministic oblivious, destination-based
 - linear forwarding table (LFT) at each switch
 - lid mask control (LMC) enables multiple addresses per port

InfiniBand Routing Continued

- offline route computation (OpenSM)
- different routing algorithms:
 - MINHOP (finds minimal paths, balances number of routes local at each switch)
 - UPDN (uses Up*/Down* turn-control, limits choice but routes contain no credit loops)
 - FTREE (fat-tree optimized routing, no credit loops)
 - DOR (dimension order routing for k-ary n-cubes, might generate credit loops)
 - LASH (uses DOR and breaks credit-loops with virtual lanes)

Why do Credits Loop?

IB uses credit-based p2p flow-control

egress messages sent only if receive-buffer available

very similar to deadlocks in wormhole-routed systems

How to deal with Credit Loops?

- prevent (UP*/Down*, turn-based routing)
- □ resolve (LASH, use VLs to break cycles)
- ignore (MINHOP, DOR, not as bad as it sounds, might deadlock but can be "resolved" with packet timeouts)
 - discouraged by IB spec

Some Theoretical Background

- $\square \text{ model network as } G=(V_P \cup V_C, E)$
- □ path r(u,v) is a path between $u,v \in V_P$
- **routing** R consists of P(P-1) paths
- □ edge load l(e) = number of paths on $e \in E$
- □ edge forwarding index $\pi(G,R)=max_{e\in E} l(e)$
 - $\pi(G,R)$ is a trivial upper bound to congestion!
- > goal is to find R that minimizes $\pi(G,R)$
 - shown to be NP-hard in the general case

Two heuristics based on SSSP

- □ we propose two heuristics:
 - P-SSSP
 - P²-SSSP
- P-SSSP starts a SSSP run at each node
 - finds paths with minimal edge-load l(e)
 - updates routing tables in reverse
 - essentially SDSP
 - updates l(e) between runs
- □ let's discuss an example ...

P-SSSP Routing (1/3)

Step 1: Source-node 0:

P-SSSP Routing (2/3)

Step 2: Source-node 1:

P-SSSP Routing (3/3)

P²-SSSP

□ simply run a single SSSP for each route

2

• better (expensive) heuristic, lower $\pi(G,R)$

C

В

E

How to Assess a Routing?

- edge forwarding index is a trivial upper bound
- ability to route permutations is more important
 - bisect P into two equally-sized partitions
 - choose exactly one random partner for each node
 - $\Theta(P!/(P/2)!) \text{ combinations!}$
- our simulation approach:
 - pick N (=5000) random bisections/matchings
 - compute average bandwidth
 - shown to be rather precise (Cluster'08)

Comparison to Real Systems

- ibdiagnet, ibnetdiscover, and ibsim
- we extracted topology and routing from:
 - Thunderbird (SNL) 4390 LIDs
 - thanks to: Adam Moody & Ira Weiny
 - Ranger (TACC) 4080 LIDs
 - thanks to: Christopher Maestas
 - Atlas (LLNL) 1142 LIDs
 - thanks to: Len Wisniewsky
 - Deimos (TUD) 724 LIDs
 - thanks to: Guido Juckeland and Michael Kluge
 - Odin (IU) 128 LIDs

Real-world Results

•

pervasivetechnologylabs

Some more Topologies

Even more Topologies

effective Bisection Bandwidth

pervasivetechnologylabs AT INDIANA UNIVERSITY

Simulations are good, but still Simulations

- □ we implemented our routing with OpenSM's file method
- tested it on the Deimos and Odin clusters (needs exclusive admin access to whole machine – many thanks to Guido Juckeland)
- Odin is standard fat-tree, Deimos' topology:

Benchmark Results Odin

Benchmark shows 18% improvement!

pervasivetechnologylabs

Benchmark Results Deimos

pervasivetechnologylabs

Summing up and Future Work!

- we proposed two new routing heuristics for deterministic oblivious routing (IB)
- simulation shows increase in effective bisection bandwidth over standard OpenSM routing
 - e.g., Odin 5%, Deimos 23%, Atlas 15%, Thunderbird 6%
- benchmarks show even higher improvements
 - Odin 18%, Deimos 40%
- Credit-loops remain, but solution is obvious (LASH-like VL principle)

Reproduce our Results!

- □ talk to us!
- play with our ORCS simulator
 - <u>http://www.unixer.de/ORCS</u>
- benchmark your cluster (and talk to us)
 - Netgauge pattern "ebb"
 - http://www.unixer.de/research/netgauge
- ask questions now!

Backup Slides

Backup Slides

Credit Loops Continued ...

Lower $\pi(G,R)$ and lower bandwidth!?

□ Yes!

- $\pi(G,R)$ is just an upper bound
- example:

no worries, I will not explain it here (refer to article for details)

