
Optimized Routing for Large-
Scale InfiniBand Networks

Torsten Hoefler, Timo Schneider,
and Andrew Lumsdaine

Open Systems Lab
Indiana University

1

Effect of Network Congestion

2

Microbenchmarks
(NetPIPE, IMB ping pong

Netgaugeone_one) Lower Bound!

Reality? 3 2 1 0
Congestion Factor

CHiC Supercomputer:
• 566 nodes, full bisection IB fat-tree
• effective Bisection Bandwidth: 0.699

Full Bisection Bandwidth != Full Bandwidth
�† expensive topologies do not guarantee high bandwidth
�† deterministic oblivious routing cannot reach full bandwidth!

�„ see Valiant’s lower bound
�„ random routing is asymptotically optimal but looses locality

�† but deterministic routing has many advantages
�„ completely distributed
�„ very simple implementation

�† InfiniBand routing:
�„ deterministic oblivious, destination-based
�„ linear forwarding table (LFT) at each switch
�„ lid mask control (LMC) enables multiple addresses per port

3

InfiniBand Routing Continued
�† offline route computation (OpenSM)
�† different routing algorithms:

�„ MINHOP (finds minimal paths, balances number of
routes local at each switch)

�„ UPDN (uses Up*/Down* turn-control, limits choice but
routes contain no credit loops)

�„ FTREE (fat-tree optimized routing, no credit loops)
�„ DOR (dimension order routing for k-ary n-cubes, might

generate credit loops)
�„ LASH (uses DOR and breaks credit-loops with virtual

lanes)
4

Why do Credits Loop?
�† IB uses credit-based p2p flow-control

�„ egress messages sent only if receive-buffer available

�† very similar to deadlocks in wormhole-routed systems

5

How to deal with Credit Loops?
�† prevent (UP*/Down*, turn-based routing)

�† resolve (LASH, use VLs to break cycles)

�† ignore (MINHOP, DOR, not as bad as it
sounds, might deadlock but can be
“resolved” with packet timeouts)
�„ discouraged by IB spec

6

Some Theoretical Background
�† model network as G=(VP[VC, E)
�† path r(u,v) is a path between u,v 2 VP

�† routing R consists of P(P-1) paths
�† edge load l(e) = number of paths on e 2 E
�† edge forwarding index ¼(G,R)=maxe2E l(e)

�„ ¼(G,R) is a trivial upper bound to congestion!

�¾ goal is to find R that minimizes ¼(G,R)
�„ shown to be NP-hard in the general case

7

Two heuristics based on SSSP
�† we propose two heuristics:

�„ P-SSSP
�„ P2-SSSP

�† P-SSSP starts a SSSP run at each node
�„ finds paths with minimal edge-load l(e)
�„ updates routing tables in reverse

�† essentially SDSP
�„ updates l(e) between runs

�† let’s discuss an example …

8

P-SSSP Routing (1/3)

9

Step 1:
Source-node 0:

P-SSSP Routing (2/3)

10

Step 2:
Source-node 1:

P-SSSP Routing (3/3)

11

Step 3:
Source-node 2:

¼(G,R)=2

P2-SSSP
�† simply run a single SSSP for each route

�„ better (expensive) heuristic, lower ¼(G,R)

12

¼(G,R)=1

How to Assess a Routing?
�† edge forwarding index is a trivial upper bound
�† ability to route permutations is more important

�„ bisect P into two equally-sized partitions
�„ choose exactly one random partner for each node
�„ £ (P!/(P/2)!) combinations!

�† our simulation approach:
�„ pick N (=5000) random bisections/matchings
�„ compute average bandwidth
�„ shown to be rather precise (Cluster’08)

13

Comparison to Real Systems
�† ibdiagnet , ibnetdiscover , and ibsim

�† we extracted topology and routing from:
�„ Thunderbird (SNL) – 4390 LIDs

�† thanks to: Adam Moody & Ira Weiny

�„ Ranger (TACC) – 4080 LIDs
�† thanks to: Christopher Maestas

�„ Atlas (LLNL) – 1142 LIDs
�† thanks to: Len Wisniewsky

�„ Deimos (TUD) – 724 LIDs
�† thanks to: Guido Juckeland and Michael Kluge

�„ Odin (IU) – 128 LIDs

14

Real-world Results

15

Real-World Bandwidth

Real-World Runtime

Some more Topologies

16

Fat-tree topologies

k-ary2,3-cube topologies (torus)
(filled switches with endpoints)

Even more Topologies

17

2-ary n-cube topologies (hypercube)
(filled switches with endpoints)

random topologies
(12 nodes per switch)

Simulations are good, but still Simulations
�† we implemented our routing with OpenSM’s file method

�† tested it on the Deimos and Odin clusters (needs exclusive
admin access to whole machine – many thanks to Guido Juckeland)

�† Odin is standard fat-tree, Deimos’ topology:

18

Benchmark Results Odin

19

Simulation
Benchmark

(NetgaugePattern eBB)

Simulation predicts 5% improvement

Benchmark shows 18% improvement!

Benchmark Results Deimos

20

Simulation
Benchmark

(NetgaugePattern eBB)

Simulation predicts 23% improvement

Benchmark shows 40% improvement!

Summing up and Future Work!
�† we proposed two new routing heuristics for

deterministic oblivious routing (IB)

�† simulation shows increase in effective bisection
bandwidth over standard OpenSM routing
�„ e.g., Odin 5%, Deimos 23%, Atlas 15%, Thunderbird 6%

�† benchmarks show even higher improvements
�„ Odin 18%, Deimos 40%

�† Credit-loops remain, but solution is obvious
(LASH-like VL principle)

21

Reproduce our Results!
�† talk to us!

�† play with our ORCS simulator
�„ http://www.unixer.de/ORCS

�† benchmark your cluster (and talk to us)
�„ Netgauge pattern “ebb”
�„ http://www.unixer.de/research/netgauge

�† ask questions – now!

22

Backup Slides

23

Backup Slides

Credit Loops Continued …

24

Source Network and Routes

Buffer
Dependency

Graph

Lower ¼(G,R) and lower bandwidth!?

�† Yes!
�„ ¼(G,R) is just an upper bound
�„ example:

�„ no worries, I will not explain it here (refer to article for details)

25

