
Performance Modeling for

Systematic Performance Tuning

Torsten Hoefler, William Gropp, Marc Snir, Bill Kramer

Paper Presentation at Supercomputing 2011 (SotP)

November 15th 2011

All used images belong to the owner/creator!

2/21

Hoefler, Gropp, Snir, Kramer: Performance Modeling for Systematic Performance Tuning

• Blue Waters is now officially back!

• … but back to the talk (examples are still POWER7)

Special Announcement!

Details: http://www.ncsa.illinois.edu/BlueWaters/system.html

3/21

Hoefler, Gropp, Snir, Kramer: Performance Modeling for Systematic Performance Tuning

The Perspective of a Computing Center

• Performance = “completed science per cost and

time”

• Optimizing this metric can be manifold:

• Application optimization (support application teams)

• Architecture optimization (select best hardware)

• Optimize Middleware (scheduler, libraries etc.)

• Optimize Policies (scheduling, charging etc.)

• … and many more

4/21

Hoefler, Gropp, Snir, Kramer: Performance Modeling for Systematic Performance Tuning

Performance Modeling – State of the Practice

• Delivers the “science per cost/time” metric

• Can be used to drive optimizations!

• Who does performance modeling?

• Mostly computer scientists, in-house teams

• BUT: most development is done by application

developers and/or domain scientists

• They should develop performance models during

software development

• See performance modeling panel @3:30 in TCC 101

5/21

Hoefler, Gropp, Snir, Kramer: Performance Modeling for Systematic Performance Tuning

(Ideal) State of the Practice @NCSA

• Propose to use simple performance modeling to

characterize the behavior of applications

• Enables rough optimization (cf. “80/20 rule”)

• We provide a set of simple modeling guidelines

• Semi-analytic performance modeling

• Small number of parameters, use other techniques

where necessary

6/21

Hoefler, Gropp, Snir, Kramer: Performance Modeling for Systematic Performance Tuning

Overview of Performance Modeling

• Analytic modeling:

• Determine application requirements and system

speeds to compute time (e.g., bandwidth)

• Empirical modeling (e.g. [1,2]):

• “Black-box” approach: machine learning, neural

networks, statistical learning …

• Semi-empirical modeling:

• “White box” approach: find asymptotically tight

analytic models, parameterize empirically (curve fitting)

[1]: Barnes, Rountree, Lowenthal, Reeves, Supinski, Schulz: A regression-based approach to scalability prediction

[2]: McKee, Singh, Supinski, Schulz: Constructing Application Performance Models Using Neural Networks

7/21

Hoefler, Gropp, Snir, Kramer: Performance Modeling for Systematic Performance Tuning

A Quick Example - MM

• Matrix multiplication (N3 algorithm)

• Trivial (non-blocked) algorithm

• Analytic Model:

• N3 FP add/mult, 4N3 FP load/store, +int ops

• How can we get to an execution time?  very hard!

for(int i=0; i<N; ++i)

 for(int j=0; j<N; ++j)

 for(int k=0; k<N; ++k)

 C[i+j*N] += A[i+k*N] * B[k+j*N];

1 1 3 1
1 4 1 7
9 4 1 2
1 5 1 3

1 3 0 1
3 7 4 1
3 0 9 8
1 2 5 6

5

…

8/21

Hoefler, Gropp, Snir, Kramer: Performance Modeling for Systematic Performance Tuning

Semi-Empiric Model for MM

• T(N) = tN3

• POWER7

• t=2.2ns

• 0.8% err

• Is that all?

• Requirement

Model delivers

more insight!

9/21

Hoefler, Gropp, Snir, Kramer: Performance Modeling for Systematic Performance Tuning

Requirements Model for MM

• Required floating point operations: 2N3 (verified)

• Cache misses?

• Semi-analytic!

• C(N) = aN3 – bN2

• POWER7

• a=3.8e-4

• a=2.7e-1

10/21

Hoefler, Gropp, Snir, Kramer: Performance Modeling for Systematic Performance Tuning

Our Ubiquitous Modeling Philosophy

• Modeling during each phase of SW development:

• Analysis – pick right method (asymptotic models)

• Design – pick right algorithms (asymptotic models)

• Implementation – show good usage of machine,

e.g., blocking in MM (semi-empirical models)

• Testing – fulfilling model expectations as

correctness criterion (compare tests with models)

• Maintenance – monitor performance on different

architectures (compare times with models)

11/21

Hoefler, Gropp, Snir, Kramer: Performance Modeling for Systematic Performance Tuning

• Performance Optimization

• Identify bottlenecks and problems

during porting

• System Design

• Co-design based on application requirements

• System Deployment and Testing

• Know what to expect, find performance issues quickly

• During System Operation

• Detect silent (and slow) performance degradation

More uses of Models

12/21

Hoefler, Gropp, Snir, Kramer: Performance Modeling for Systematic Performance Tuning

Six-Steps to a Model

• Our very high-level strategy consists of the

following six steps:

1) Identify input parameters that influence runtime

2) Identify application kernels

3) Determine communication pattern

4) Determine communication/computation overlap

5) Determine sequential baseline

6) Determine communication parameters

Empiric

Analytic

13/21

Hoefler, Gropp, Snir, Kramer: Performance Modeling for Systematic Performance Tuning

All Steps By Example – MILC

• MIMD Lattice Computation

• Gains deeper insights in

fundamental laws of physics

• Determine the predictions of

lattice field theories (QCD &

Beyond Standard Model)

• Major NSF application

• Challenge:

• High accuracy (computationally intensive) required for

comparison with results from experimental programs in

high energy & nuclear physics

Bernard, Gottlieb et al.: Studying Quarks and Gluons On Mimd Parallel Computers

14/21

Hoefler, Gropp, Snir, Kramer: Performance Modeling for Systematic Performance Tuning

Step 1: Critical Parameters

• Best way: ask a domain expert!

• Or: look through the code/input file format

• For MILC (thanks to S. Gottlieb):

15/21

Hoefler, Gropp, Snir, Kramer: Performance Modeling for Systematic Performance Tuning

Step 2: Find Kernels

• E.g., investigate call-tree or source-code

• Control logic

• update

• MILC’s kernels:

• LL (load_longlinks)

• FL (load_fatlinks)

• CG (ks_congrad)

• GF (imp_gauge_force)

• FF (eo_fermion_force_twoterms)

16/21

Hoefler, Gropp, Snir, Kramer: Performance Modeling for Systematic Performance Tuning

Step 4: Sequential Performance

• MILC “only” loops over the lattice 

T(V) = tV

• Wait, it’s not that simple with caches 

• Small V fit in cache!

T(V) = t1 * min(s, V) + t2 * max(0, V-s)

• Cache holds s data elements

• Three parameters for each kernel

17/21

Hoefler, Gropp, Snir, Kramer: Performance Modeling for Systematic Performance Tuning

An Example Kernel: GF (Gauge Force)

• On POWER7:

• t1=62.4 μs

• t2=92 μs

• s=4.000

• Errors

• Max <10%

• Cum <3%

18/21

Hoefler, Gropp, Snir, Kramer: Performance Modeling for Systematic Performance Tuning

Complete Serial Performance Model

19/21

Hoefler, Gropp, Snir, Kramer: Performance Modeling for Systematic Performance Tuning

Step 3: Communication Pattern

• 4d domain is cut in all dimensions (cubic)

• 4d nearest-neighbor communication (8 neighbors)

• Allreduce to check CG convergence

• One per iteration on full process set

• We counted messages and sizes

• Separate for each kernel

• See paper for

sizes and full

model equation!

20/21

Hoefler, Gropp, Snir, Kramer: Performance Modeling for Systematic Performance Tuning

Step 6: Communication Parameters

• Two options:

• Semi-empiric – fit measurements to get effective

latency and bandwidth

• Enables to check if they match expectations

• Analytic – derive parameters separately (e.g.,

documentation or separate benchmark)

• Often problematic if they do not match expectations

• Our model was analytic

• Uses LogGP parameters (measured by Netgauge [1])

[1] Hoefler et al.: Low-Overhead LogGP Parameter Assessment for Modern Interconnection Networks

21/21

Hoefler, Gropp, Snir, Kramer: Performance Modeling for Systematic Performance Tuning

The Fully-Parameterized Parallel Model

22/21

Hoefler, Gropp, Snir, Kramer: Performance Modeling for Systematic Performance Tuning

Conclusions and Future Work

• Models in use for predictions and optimizations

• First successes: ~10-20% improved performance [1]

• Simple strategy enables application team models

• Better chance to be maintained than external models

• Critical for performance-centric software development

• We need (and work on):

• More examples for irregular/dynamic codes

• Better tool support for modeling

[1] Hoefler, Gottlieb.: Parallel Zero-Copy Algorithms for Fast Fourier Transform and Conjugate Gradient using MPI Datatypes

