
Bridging Performance Analysis Tools and

Analytic Performance Modeling for HPC

Torsten Hoefler

University of Illinois at Urbana-Champaign, IL, USA,
htor@illinois.edu

Abstract. Application performance is critical in high-performance com-
puting (HPC), however, it is not considered in a systematic way in
the HPC software development process. Integrated performance models
could improve this situation. Advanced analytic performance modeling
and performance analysis tools exist in isolation but have similar goals
and could benefit mutually. We find that existing analysis tools could
be extended to support analytic performance modeling and performance
models could be used to improve the understanding of real application
performance artifacts. We show a simple example of how a tool could
support developers of analytic performance models. Finally, we propose
to implement a strategy for integrated tool-supported performance mod-
eling during the whole software development process.

1 Motivation

High performance computing (HPC) software development differs from tradi-
tional software development in several aspects. In addition to the forus on relia-
bility, correctness and productivity, HPC software development strives to achieve
maximum performance. This is reflected throughout the whole development pro-
cess and tool-chain. HPC libraries and APIs such as BLAS, LAPACK, and the
Message Passing Interface (MPI) focus mostly on the highest performance and
performance portability. HPC applications are mostly scientific codes that are
usually dominated by floating-point and memory operations and are often reg-
ular. Languages such as Fortran and High Performance Fortran thus pick their
default semantics (e.g., dense arrays) to support such regular scientific codes.

In addition to the traditional software development tools such as debuggers
and profilers, advanced (parallel) performance analysis tools are often necessary
to understand the complex performance characteristics of HPC applications.
Large scientific codes are often significant investments at a national level, but
a clear software engineering methodology that integrates performance into all
layers of the development process has not been established yet. The field of
performance engineering [15] made some advances in this direction and first
strategies exist to incorporate performance models into standard software devel-
opment using UML [10, 14].

2 State of the Art

We advocate the idea that performance should play a central role in software
development and maintenance. This means that expected performance of codes
or parts of codes are expressed as analytic performance models. The development
and maintenance of such models should be supported by tools that become an
essential part of HPC software development and maintenance.

In this position paper, we point out that both, performance tools and perfor-
mance models, exist separately and could be combined to improve HPC software
development. We begin with an (due to space limitations incomplete) overview
of the state of the art techniques for performance modeling, which is followed
by a similar discussion for performance analysis tools.

2.1 Overview of Analytic Performance Modeling

Performance modeling is important for many aspects of HPC. It has been used
to compare system performance, validate large system installations (acceptance
testing), for routine tests during the lifetime of a computer system to detect
anomalies and degradation, to guide hardware-software co-design, to guide re-
engineering of large applications, to optimize schedulers and batch systems, and
to predict costs to solve a particular scientific problem. Performance models
are generally less accurate than actual benchmark studies but allow predicting

performance on different systems.
Alam and Vetter propose code annotations, called “Modeling Assertions” [2]

that combine empirical and analytical modeling techniques and help the devel-
oper to derive performance models for his code. Kerbyson et al. propose a perfor-
mance modeling approach [11] that is based on manually developed human ex-
pert knowledge about the application. Those modeling techniques rely on empir-
ical execution of serial parts on the target architecture and are usually applied to
stable codes which limits their usefulness during software development. Snavely
et al. uses an application’s memory access pattern and processing requirements
to predicts its performance on a target architecture [16]. This approach relies on
memory profiles of the application and automated, simulation-based prediction.
Hoefler et al. define strategies to trade the accuracy and complexity for modeling
the performance of Message Passing Interface implementations [7].

Several other research works, such as [9], use analytic performance model-
ing to understand the performance characteristics of different codes or to guide
optimizations.

Analytic performance modeling of scientific codes is usually performed in
three phases: (1) identify the performance-critical input parameters, (2) formu-
late and test a hypothesis about the performance as function of the performance-
critical input parameters, and (3) parametrize the function. Empirical modeling
strategies that benchmark parts of the code (kernels) on the target architec-
ture are often employed to maintain human-manageable performance models.
Steps (2) and (3) of developing analytic performance models are often performed
with the help of performance tools even though performance tools do not offer

explicit support for the modeling workflow. Analytic performance models

strive to capture the applications’ performance characteristics in a

human-understandable form.

2.2 Overview of Performance Analysis Tools

Performance tools are an integral part of the HPC ecosystem. They allow deep
insights into the behavior of machines and their performance by displaying the
performance characteristics of executed applications. Tools allow us to find bot-
tlenecks and tune applications. They can also guide re-engineering of applications
and they are often used to collect the data to design application models.

HPCToolkit [1] provides a framework for measurement and analysis of pro-
gram performance, collects call path profiles, and can display hierarchical space-
time diagrams. Periscope [5] monitors performance online and uses a distributed
search to detect performance bottlenecks automatically. This approach omits
time-and space-intensive offline trace analysis and allows the specification of
“performance properties” to check during runtime. The TAU project [13] offers
multiple tracing, profiling, and analysis tools to collect and analyze performance
data of large-scale parallel applications. Vampir [12] uses the Open Trace Format
and supports the visualization of performance traces and profiles. Scalasca [4] is
targeted at large-scale architectures and offers scalable performance views and
analyses.

In general, performance tools strive to guide performance analysis by dis-
playing performance behavior. This enables users to understand the perfor-
mance characteristics. Advanced analysis tools try to support users by pin-
pointing possible performance bottlenecks, hotspots, or other potential prob-
lems. Fully-automated tools are often imperfect and allow some guidance (such
as Periscope’s “performance properties”) to be specified by the user. Perfor-
mance tools strive to extract performance properties of applications

that enable users to understand application performance.

We now discuss how performance tools and performance-models could be
combined to benefit the software development process.

3 Combining Performance Tools and Analytic Modeling

We showed in the previous section that there already exists some overlap be-
tween performance analysis tools and analytic performance modeling. Analytic
performance modeling can be seen as top-down approach where the user for-
mulates an expectation based on an algorithm or implementation and tries to
validate and parametrize it to predict performance. Performance analysis tools
can be seen as a bottom-up approach that records performance artifacts and
strive to trace the artifacts back to the original implementation or algorithm.

It is now obvious that performance analysis and analytic performance mod-
eling can benefit from each other. Performance tools could use analytic per-
formance models to filter the displayed information or even to pinpoint possi-
ble problems automatically and during runtime. Creating analytic performance

Understanding of Application

Performance Characteristics

"reverse engineering"

− derive models for algortithm

 and implementation

− validate and parameterize

 models with measurements

− extrapolate, compare & check

"parameter fitting"

− measure performance profile

 or trace

− display performance information

− pinpoint bottlenecks with

 code−oblivious techniques

Analytic Modeling Performance Analysis

top−down

bottom−up

Fig. 1. Comparison of Performance Modeling and Performance Analysis Approaches

models could benefit largely from effective tool support that could automatize
the benchmark and fitting cycle. Both scenarios require human input of an ini-
tial model and model inputs (performance-critical input parameters). However,
such models are often easy to derive and already used in algorithm design.

We now describe the first option, i.e., how a performance analysis tool could
assist users in deriving performance models. For this, we propose a possible
work-flow based on tools and human input.

The first step would be to identify performance-critical input parameters.
This has to be done by an application expert. Performance-critical input param-
eters (called critical parameters in the following) are for example the dimensions
of the simulated system or parameters that influence convergence. Other param-
eters, such as initial starting values (e.g., heats or masses) might not change
the runtime of the algorithm and are thus not critical in performance models.
More complex parameters such as the shape of the input systems need to be
approximated into a single value by the application expert.

The set of critical parameters could now be used by a static analysis frame-
work to identify the propagation though the code. This could help to guide the
user through the second step, the identification of critical blocks which exhibit
similar performance characteristics. This often means identifying parts of the
call-tree for which the runtime can be modeled by a single analytic expression.

The third step requires the user to define abstract parametric models for
the performance of each code block. For example, the user can specify that the
expected runtime of a matrix-matrix multiplication is TMM = a+b·(c·N)3 where
N is the size of the matrix (a critical input parameter), and a,b,c are parameters
that depend on the performance characteristics of the implementation and the
target machine. Such performance expectations are often low-order polynomials
or simple logarithmic functions and a tool could support the user with pre-
defined functions. Additionally, a tool could support modeling of caches by pre-
defining segmented functions, such as TMMc = a+min{CN , N} · b1 · (c1 ·N)3 +
max{N−CN , 0}·b2·(c2 ·N)3 where CN specifies the number of elements x·N that
can be stored in fast cache-memory. The variables b1 and c1 model the in-cache
execution and b2 and c2 out-of-cache execution. Such simple transformations
can easily be extended to deeper memory hierarchies and supported by tools.

The performance tool could then assist in conducting a series of benchmarks
with different values of N and perform user-guided statistical fits to the target
function in order to parametrize the model.

Communication analysis could similarly be guided by tools. A communication
model usually includes the number of messages and the communicated sizes for
each critical block. Those counts are then used to parametrize network models
such as the LogGPS model. Tools and techniques to parametrize the LogGPS
machine model exist elsewhere [8].

The model validation phase could similarly be automated with an appropri-
ate tool which then benchmarks different parameter configurations in order to
certify the model’s prediction. Several well-known methods from statistics exist
to perform such checks. This would imply that tools need to be extended to run
multiple experiments instead of analyzing only a single experiment.

The two main impediments to wide adoption of analytic performance mod-
eling are (1) that the software developer needs to be familiar with the details of
the modeling strategy and (2) the necessary manual work and missing standard-
ization and guidance for notation (cf. UML). The proposed tool-support would
address both in that it offers an integrated interface to performance analysis
and performance modeling. Tools would also be able to adopt UML-like syntax
and add performance assertions (cf. [10, 14]). This would enhance the software
development cycle in HPC and help the developers to focus on end-to-end per-
formance and thus improve productivity.

4 A Motivating Modeling Example: MILC

We now present a brief overview about manual analytic performance modeling
for the MIMD Lattic Computation (MILC) code [3]. This code is highly regular
and the code- and data-flow is mostly deterministic and very structured. The
balanced computation is performed on a regular four-dimensional grid.

The critical parameters of the MILC code are the size of each dimension
nx, ny, nz, nt, the number of warmups (warms) and trajectories (trajecs),
steps per trajectory (steps) and trajectories between measurements (meas). The
number of CG iterations is determined by different input parameters (masses and
convergence factors) but a single step usually requires around 2,100 iterations.

Identifying the critical blocks can often be done by analyzing the call-graph
and identifying subtrees with common performance characteristics. The MILC
developers already identified five significant blocks: (1) LL (load longlinks),
(2) FL (load fatlinks), (3) CG (ks congrad), (4) GF (imp gauge force), and
(5) FF (eo fermion force twoterms).

The expected runtime of each of the serial blocks scales linearly with the
number of grid points per process V . Thus, a simple linear function, for example
TGF (V) = t1,GF · V can be used to model the performance. In order to model
the cache hierarchy, we split the linear model into two pieces TGF (V) = t1,GF ·
min{sGF , V }+ t2,GF ·max{0, V − sGF } with t1,GF being the in-cache time per
grid point and t2,GF being the out-of-cache time.

Parametrizing t1,GF and t2,GF and finding the exact switching point s is usu-
ally done via curve-fitting. Figure 2(a) shows the benchmarked and parametrized
model (t1,GF = 88µs, t2,GF = 157µs, and sGF = 1900). The model was parametrized
by least-squares curve-fitting which could be easily supported by tools. This
time-consuming step needs to be repeated for each target architecture and can
easily be automatized.

 0

 500

 1000

 1500

 2000

 2500

 0 5000 10000 15000
 0

 20

 40

 60

 80

 100

 120

 140

T
im

e
 [
m

s
]

R
e
la

ti
v
e
 E

rr
o
r

[%
]

Grid Points per Process (L)

Model Function
Model Error

(a) TGF measured and modeled

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5000 10000 15000

T
im

e
 [
m

s
]

Grid Points per Process (L)

16
256

1024
Model

(b) Parallel model and benchmark for GF

Fig. 2. Performance Modeling on POWER5+.

A complete serial application model can now be constructed from either a
detailed understanding of the code execution or by analyzing multiple different
program runs and observing the number of invocations of each critical block.
The complete serial model for MILC is a simple linear model:

Tserial(V) = (trajecs+ warms) · steps · [TFF (V) + TGF (V) + 3(TLL(V) +

TFL(V))] +

⌊

trajecs

meas

⌋

[TLL(V) + TFL(V)] + niters · TCG(V)

Parallel execution models can often be derived from serial performance mod-
els. For MILC, it is sufficient to add the communication overheads to the serial
time. The communication overhead depends on the number and sizes of messages
sent via point-to-point and collective communication calls. Those parameters
can either be derived from the source-code or measured with performance tools.
Using the latter approach, we were able to construct a simple linear model for de-
tailed message counts and sizes for nearest-neighbor (along the four-dimensional
grid) and collective (CG convergence checks) communication. We omit the de-
tailed linear equations for brevity. Tool support for automatic counting and data
correlation could improve productivity significantly.

Figure 2(b) shows the parallel performance model for GF on 16, 256, and 1024
CPUs. The used LogGPS model ignores congestion and shows thus some little
deviation from the benchmark for large V .

4.1 Application of the Model

After successfully deriving and parametrizing the model for POWER5+, we are
able to make a first prediction for the performance of a large-scale system like

Blue Waters. At this point, there is only a single POWER7 MR system available
for testing but the network parameters are known to us. First, we construct a
serial performance model as described before. Figure 3(a) shows the serial model
in comparison to POWER5+. Figure 3(b) shows the parallel model prediction
for 1,024 CPUs.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 5000 10000 15000
 0

 1

 2

 3

 4

 5

 6

T
im

e
 [
m

s
]

R
e
la

ti
v
e
 S

p
e
e
d
u
p

Grid Points per Process (L)

Model Function (P7MR)
Model Function (P5+)

Speedup over P5+

(a) Serial Performance Model

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0 5000 10000 15000
 0

 20

 40

 60

 80

 100

T
im

e
 [
m

s
]

C
o
m

m
u
n
ic

a
ti
o
n
 O

v
e
rh

e
a
d
 [
%

]

Grid Points per Process (L)

Serial Model
Model P=1024

Comm. Overhead
Pack Overhead

(b) Parallel Performance Model

Fig. 3. Performance Models of POWER7 MR.

The parallel model allows us to predict the performance and identify potential
improvements. For example, a possible optimization which could save up to 15%
for small V is the replacement of the pack routine with MPI Datatypes. The
benefits of this approach were demonstrated in practice [6].

5 Summary and Conclusion

We support the idea of making analytic performance modeling part of the HPC
software development cycle in order to improve programmer productivity and
code maintainability.

We show that a huge body of knowledge, techniques and tools exist in the
analytic performance modeling and the performance analysis tools communities.
We show how performance tools and performance modeling could mutually ben-
efit from each other and we propose an easy roadmap to extend existing tools
with the capability to support simple performance models.

We also show a simplified exemplary model for the MILC application which
could be used as a starting point to explore tool support for analytic performance
modeling. More complex (less regular) applications most likely require more
advanced techniques. However, techniques like clustering are already employed
in current performance analysis tools such as Vampir and TAU.

We propose to both communities to analyze the mutual benefits and develop
a roadmap to synchronize the efforts in analytic modeling and performance anal-
ysis.

Acknowledgments The author thanks William Gropp, Bill Kramer, and Marc
Snir for many helpful discussions and ideas regarding concepts of analytic mod-
eling. Thanks to Steven Gottlieb for discussions about MILC and Shirley Moore,
Fredrik Kjolstad and all anonymous reviewers for comments on early drafts of
this work.

References

1. Adhianto, L., et al.: HPCTOOLKIT: tools for performance analysis of optimized
parallel programs. Concurr. Comput. : Pract. Exper. 22(6), 685–701 (2010)

2. Alam, S., Vetter, J.: A framework to develop symbolic performance models of
parallel applications. Parallel and Distributed Processing Symposium 0, 368 (2006)

3. Bernard, C., Ogilvie, M.C., DeGrand, T.A., DeTar, C.E., Gottlieb, S.A., Krasnitz,
A., Sugar, R., Toussaint, D.: Studying Quarks and Gluons On MIMD Parallel
Computers. Intl. Journal of High Perf. Comp. Applications 5(4), 61–70 (1991)

4. Geimer, M., Wolf, F., Wylie, B.J.N., Ábrahám, E., Becker, D., Mohr, B.: The
Scalasca performance toolset architecture. Concurr. Comput. : Pract. Exper. 22(6),
702–719 (2010)

5. Gerndt, M., Ott, M.: Automatic performance analysis with Periscope. Concurr.
Comput. : Pract. Exper. 22(6), 736–748 (2010)

6. Hoefler, T., Gottlieb, S.: Parallel Zero-Copy Algorithms for Fast Fourier Transform
and Conjugate Gradient using MPI Datatypes. In: Recent Advances in the Message
Passing Interface (EuroMPI’10). vol. LNCS 6305, pp. 132–141. Springer (Sep 2010)

7. Hoefler, T., Gropp, W., Thakur, R., Traeff, J.L.: Toward Performance Models of
MPI Implementations for Understanding Application Scaling Issues. In: Recent
Advances in the Message Passing Interface (EuroMPI’10). vol. LNCS 6305, pp.
21–30. Springer (Sep 2010)

8. Hoefler, T., Lichei, A., Rehm,W.: Low-Overhead LogGP Parameter Assessment for
Modern Interconnection Networks. In: Proceedings of the 21st IEEE International
Parallel & Distributed Processing Symposium (March 2007)

9. Hongzhang, Strohmaier, E., Qiang, J., Bailey, D.H., Yelick, K.: Performance Mod-
eling and Optimization of a High Energy Colliding Beam Simulation Code. Super-
computing, SC06 p. 48 (2006)

10. Hopkins, R.P., Smith, M.J., King, P.J.B.: Two approaches to integrating UML and
performance models. In: WOSP ’02: Proceedings of the 3rd international workshop
on Software and performance. pp. 91–92. ACM, New York, NY, USA (2002)

11. Kerbyson, D.J., et al.: Predictive performance and scalability modeling of a large-
scale application. In: Proceedings of the 2001 ACM/IEEE conference on Super-
computing (CDROM). pp. 37–37. ACM, New York, NY, USA (2001)

12. Knüpfer, A., Brunst, H., Doleschal, J., Jurenz, M., Lieber, M., Mickler, H., Müller,
M.S., Nagel, W.E.: The Vampir Performance Analysis Tool-Set. In: Tools for High
Performance Computing. pp. 139–155. Springer Berlin Heidelberg (2008)

13. Lee, C.W., Malony, A.D., Morris, A.: TAUmon: Scalable Online Performance Data
Analysis in TAU. In: 3rd Workshop on Productivity and Performance (Aug 2010)

14. Pllana, S., Fahringer, T.: UML based modeling of performance oriented parallel
and distributed applications. Winter Simulation Conference 1, 497–505 (2002)

15. Pooley, R.: Software engineering and performance: a roadmap. In: ICSE ’00: Pro-
ceedings of the Conference on The Future of Software Engineering. pp. 189–199.
ACM, New York, NY, USA (2000)

16. Snavely, A., Carrington, L., Wolter, N., Labarta, J., Badia, R., Purkayastha, A.: A
framework for performance modeling and prediction. In: Supercomputing, SC02.
pp. 1–17. Los Alamitos, CA, USA (2002)

