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Abstract. Modular programming is an important software design con-
cept. We discuss principles for programming parallel libraries, show sev-
eral successful library implementations, and introduce a taxonomy for
existing parallel libraries. We derive common requirements that parallel
libraries pose on the programming framework. We then show how those
requirements are supported in the Message Passing Interface (MPI) stan-
dard. We also note several potential pitfalls for library implementers us-
ing MPI. Finally, we conclude with a discussion of state-of-the art of
parallel library programming and we provide some guidelines for library
designers.

1 Introduction

Modular and abstract structured programming is an important software-
development concept. Libraries are commonly used to implement those tech-
niques in practice. They are designed to be called from a general purpose lan-
guage and provide certain functions. Libraries can be used to simplify the soft-
ware development process by hiding the complexity of designing an efficient
and reusable collection of (parallel) algorithms. High-performance libraries often
provide performance portability and hide the complexity of architecture-specific
optimization details. Library reuse has been found to improve productivity and
reduce bugs [2, 17].

In this work, we discuss principles for designing and developing parallel li-
braries in the context of the Message Passing Interface (MPI) [18]. We reca-
pitulate the features that have been introduced 18 years ago [21, 6], add newly
found principles and interface issues, and discuss lessons learned. We also analyze
current practice and how state of the art libraries use the provided abstractions.

We show that the key concepts are widely used while other concepts, such
as process topologies and datatypes, did not find very wide adoption yet. In the
following sections, we describe principles for modular distributed memory pro-
gramming, introduce a taxonomy for parallel libraries, discuss several example
libraries, derive common requirements to support modular programming, show
how MPI supports those requirements, discuss common pitfalls in MPI library
programming, and close with a discussion of common practice.

2 Modular Distributed Memory Programming

Modular programming plays an important role in “Component-based software
engineering (CBSE)”, which suggests to program by composing large-scale com-
ponents. Korson and McGregor [12] identify ten generally desirable attributes
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that each serial and parallel library should bear: wide domain coverage, consis-
tency, easy-to-learn, easy-to-use, component efficiency, extensibility, integrabil-
ity, intuitive, robust, well-supported.

Those principles are also valid in distributed memory programming. The
main difference is that distributed and parallel programming requires to control
multiple resources (processing elements). Several major language techniques to
support the development of distributed libraries have been identified in the de-
velopment of the Eiffel language [16]. The list includes (among others) several
items that are relevant for the development of parallel libraries:

classes reusable components should be organized around data structures rather
than action structures

information hiding libraries may use each others facilities, but internal struc-
tures remain hidden and “cross talk” between modules is avoided

assertions characterize semantic properties of a library by assertions
inheritance can serve as module inclusion facility and subtyping mechanism
composability especially performance composability and functional orthogo-

nality. This requires to query relevant state of some objects.

Writing distributed libraries offers a large number of possibilities because
spatial resource sharing can be used in addition to temporal sharing with mul-
tiple actors. We identify the following main library types that are commonly
used today: (1) spatial libraries use a subset of processes to implement a certain
functionality and leave the remaining processes to the user (e.g., ADLB [15]),
(2) collective loosely-synchronous libraries are called “in order” (but not syn-
chronously) from a statically specified process group, and (3) collective asyn-
chronous libraries are called by a static group of processes but perform their
functions asynchronously.

2.1 A Taxonomy for Parallel Libraries

We classify existing parallel application libraries into four groups:

Computational Libraries provide full computations to the user, for exam-
ple the solution of PDEs, n-body interactions, or linear algebra problems.
Example libraries include PETSc [1], ScaLAPACK, PMTL [14], PBGL [4],
PPM [20].

Communication Libraries offer new high-level communication functions
such as new collective communications (e.g., LibNBC [11]), domain-specific
communication patterns (e.g., the MPI Process Group in PBGL), or Active
Messages (e.g., AM++ [23]).

Programming Model Libraries offer a different (often limited) program-
ming model such as the master/slave model (e.g., ADLB [15]) or fine-grained
objects (e.g., AP [24]).

System and Utility Libraries offer helper functionality to interface differ-
ent architectural subsystems that are often outside the scope of MPI (e.g.,
LibTopoMap [10], HDF5 [3]) or language bindings (e.g., Boost.MPI, C# [5]).

Some of the example libraries and their used abstractions are discussed in
the next section.
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2.2 Example of Libraries

We now describe some example libraries that we categorized in our taxonomy
that either utilize MPI to implement parallelism or integrate with MPI to provide
additional functionality. This collection is not supposed to be a complete listing
of all important parallel libraries. It merely illustrates one example for each type
of parallel library and shows which abstractions have been chosen to implement
parallel libraries with MPI.

PETSc The PETSc library [1] offers algorithms and data structures for the
efficient parallel solution of PDEs. PETSc provides abstractions of distributed
datatypes (vectors and matrices) that are scoped by MPI communicators and
hides the communication details from the user. The passed communicator is
copied and cached as attribute to ensure isolation. PETSc uses advanced MPI
features such as nonblocking communication and persistent specification of com-
munication patterns while hiding the message passing details and data distribu-
tion from the user. It also offers asynchronous interfaces to communication calls,
such as VectScatterBegin() and VecScatterEnd() to expose the overlap to the
user.

PBGL The Parallel Boost Graph Library [4] is a generic C++ library to im-
plement graph algorithms on distributed memory. The implementation bases on
lifting the requirements of a serial code to base a parallel implementation on
it. The main abstractions are the process group to organize communications,
the distributed property map to implement a communication abstraction, and a
distributed queue to manage computation and detect termination. The library
offers a generic interface to the user and uses Boost.MPI to interface MPI.

PMTL The Parallel Matrix Template Library [14] is, like the PBGL, a generic
C++ library. It uses distributed vectors and matrices to express parallel linear
algebra computations. As for PBGL, the concepts completely hide the underlying
communication and enable optimized implementations.

PPM The Parallel Particle Mesh Library [20] provides domain decomposition
and automatic communication support for the simulation of continuous systems.
The library offers a high-level application oriented interface which is close to a
domain-specific language for such simulations. It offers support for advanced
functions of MPI.

ADLB The Asynchronous Dynamic Load Balancing Library, developed at Ar-
gonne [15], offers a simplified programming model to the user. The master/slave
model consists of essentially three function calls and the scalable distribution of
work and parallelization of the server process is done by the library. The library
expects an initialized MPI and uses communicators during its init call to divide
the job into master and slave groups. The master group “stays” within ADLB
while the user has full access to the slave group to issue ADLB calls to the mas-
ter. The library has been used with multi-threaded processes on BlueGene/P to
achieve 95% on-node speedup.
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LibNBC LibNBC [11] is an asynchronous communication library that provides
a portable implementation of all MPI-specified collective operations with a non-
blocking interface. It uses advanced MPI features to provide a high-performing
interface to those functions and faces several of the issues discussed in Sec-
tions 3.3 and 3.4. LibNBC also offers an InfiniBand-optimized transport layer [9]
that faces problems described in Section 3.5.

LibTopoMap LibTopoMap [10] provides portable topology mapping function-
ality for the distributed graph topology interface specified in MPI-2.2 [18]. It
replaces the distributed graph topology interface on top of MPI and caches the
new communicator and new numbering as attribute of the old communicator.
This shows that a complete modular implementation of the Topology function-
ality in MPI is possible.

HDF5 The HDF5 library [3] offers an abstract data model for storing and
managing scientific data. It offers support to specify arbitrary data layouts and
its parallel version relies heavily on MPI datatypes and MPI-IO. As a system
library, it faces several problems as discussed in Section 3.4.

2.3 Common Requirements of Parallel Libraries

Based on the survey of libraries, we distill the common requirements for a par-
allel runtime environment such as MPI. Parallel libraries require performance,
scalability, usability, error handling, isolation (a “safe and private” communi-
cation space) for point-to-point and collective communication, and virtualized
process naming (e.g., topologies or a virtual one-dimensional namespace). In
addition, high-quality programming frameworks may offer topology mapping,
fault-tolerance, and data management support to libraries.

3 The Loosely Synchronous Model in MPI

We now discuss how MPI supports parallel libraries by providing many of the
required features listed in Section 2.3. The loosely synchronous model for parallel
libraries is specified in Section 6.9 of the MPI standard [18]. In this model, all
processes in a communicator invoke parallel subroutines in the same order. Those
processes do not have to synchronize before the invocation.

We now discuss the main concepts in MPI that support the development of
parallel libraries.

Communication Contexts in the form of MPI communicators are the most
important concept for libraries. Communicators offer spatial and temporal isola-
tion because they can specify disjoint process groups and isolate communication
on overlapping process groups. This “communication privatization” is similar
to the important “data privatization” in object oriented languages. Section 3.2
discusses potential issues with reentrant libraries. Each communicator has an
associated Process Group that offers a virtual one-dimensional namespace for
processes. Communicators also provide a scope for collective communication and
support the concept of “functional and spatial composability” [16].
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Virtual Topologies allow for domain-specific process naming schemes that can
be passed to and queried by libraries. This extends the simple one-dimensional
naming of process groups to arbitrary Cartesian naming schemes or general
graph topologies (which can be enumerated by graph traversals, such as Breadth
First Search).

Attribute Caching can be used to associate state to communicator objects.
MPI allows to attach arbitrary data to communicators, windows, and datatypes
in order to pass context or state information between library calls. MPI guar-
antees that this information can be quickly retrieved and is consistent. It also
offers functionality to strictly control the inheritance of attributes in communi-
cator copy functions. This allows to mimic the concept of “inheritance” [16] of
general object oriented programming.

Datatypes defines an interface to exchange the layout of data structures for
communications between libraries and user applications. MPI offers the required
functions to create private copies of datatypes (MPI Type dup) and manipulate
them. It also offers functions to query the composition of existing datatypes and
serialize or deserialize (MPI Pack/MPI Unpack) them into/from buffers. Those
abstractions support the abstract definition of datatypes in libraries.

MPI’s Modular Design allows to implement full sections of the MPI standard
as separate libraries (e.g., Sections 5 (Collective Communication), 7 (Process
Topologies), and 13 (I/O) can solely be implemented with the core function-
ality of MPI 1). This supports and encourages the implementation of external
communication libraries, such as LibTopoMap or LibNBC.

3.1 Where it Breaks

MPI’s support for parallel libraries is comprehensive. However, library writers
have to exercise care when using several functionalities in MPI and define exter-
nal contracts with the users of the library.

The most prominent example is multi-threading. If a library requires a certain
thread level, e.g.,MPI THREAD MULTIPLE, then the user must ensure that MPI
is initialized with this thread level. This can be tricky if multiple parallel libraries
are used in a single program and can lead to performance degradation if the
thread support is only needed for small parts of the code.

A second limitation applies to theMPI Info values that can be specified during
the creation of several objects. Specified values cannot be queried or reset by
libraries and need to be communicated out-of-band or enforced via external
“contracts”. This can influence performance, or even correctness if specified info
arguments change the object’s semantics (e.g., no locks).

In the following sections, we discuss several application-specific issues and
limitations that library-writers may be confronted with.

3.2 Reentrant Libraries

A parallel library invocation will be passed a communicator argument that in-
dicates the group of processes performing the call. A well designed library will
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pass this communicator as an explicit argument. The library needs a communi-
cation context that is distinct from the communication contexts of the invoking
code. This is usually done by creating a communicator private to the library
that is a duplicate of the argument communicator shows how this private com-
municator can be cached with the communicator argument, so that the private
communicator is created only at the first invocation.

This method provides a static communication context, shared by all library
instances. It ensures that sends inside the library cannot match receives outside
the library, and vice-versa; but it does not ensure that a send performed by
one instance of the library be matched by a receive in another instance.. Such
a library is nonreentrant : it requires that only one invocation instance be active
on a communicator at the same time (no recursion, no new invocation before a
previous one completed at all processes). : One can build reentrant libraries in
various ways: E.g., by having a barrier, either at entry or at exit (which may
have severe impact in performance due to unnecessary synchronization), by cre-
ating a new communicator instance for each invocation (several communicators
could be pre-dup’d and managed in a stack-like manner as attributes), or by im-
posing a communication discipline that avoids out-of-order message matching:
no wildcard source receives (MPI ANY SOURCE), no cancel operations and mes-
sages produced within a dynamic scope are consumed within the same dynamic
scope.

3.3 Nonblocking Libraries

Nonblocking or asynchronous libraries pose the challenge of progress and con-
trol transfer. We differentiate between “manual” progress (the user periodically
transfer control to the library, for the library to progress, cf. coroutines) and
“asynchronous” progress (the library spawns an asynchronous activity, e.g., a
thread) [8]. Manual progress is required on some HPC systems because of limi-
tations on multithreading, limitations on signaling between the communication
hardware and (user) threads, and lack of an appropriate scheduling policy.

MPI-2.2 offers generalized requests to integrate completion checks of opera-
tions in nonblocking library routines with the usual MPI completion calls (e.g.,
MPI Test). However, the specification requires asynchronous progress and does
not work on systems where manual progress is needed. A simple fix for this,
which adds manual progress facilities to generalized requests, has been proposed
for MPI-3 [13].

The parallel invocation method described in Section 3.3 requires that the
communicator argument be duplicated, at least at the first library invocation
on the communicator. However, MPI Comm dup is a blocking collective rou-
tine and may require synchronization. This makes it impossible to implement
pure nonblocking collective libraries. The alternative of Initializing each com-
municator before using it with a library is an unnecessary burden for library
users even though it is common practice (e.g., in ScaLAPACK). A nonblocking
MPI Comm dup call would solve this problem.
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3.4 Complex Communication Operations

Libraries are often used to implement new, higher-level communication opera-
tions. We already discussed issues with nonblocking interfaces of such libraries,
however, implementers need to consider two more potential hurdles.

If the library on top of MPI-2.1 was to perform a reduction with either a
predefined or user-defined MPI operation, then the library needed to implement
the reduction operation itself (since the new library cannot access the function
pointer associated with an MPI Op). MPI-2.2 introduces MPI Reduce local to
solve this problem. MPI Reduce local performs a single binary reduction with an
MPI Op handle as it would be performed by a collective reduction operation. It
is recommended to use this functionality to implement reduction communication
operations, such as nonblocking MPI Reduce on top of MPI.

3.5 Process Synchronization Outside of MPI

The MPI standard does not specify the interaction of MPI with other, poten-
tially synchronizing, communication mechanisms outside of MPI. This can pose
problems when such operations are mixed, e.g., if communication libraries are
tuned for low-level transport interfaces [9]. The implementer has to ensure that
all communication interfaces make progress. However, MPI may require man-
ual progress but does not offer an explicit progress call. This may be emulated
(rather inelegantly) by calling MPI Iprobe in a progress loop.

4 Hybrid Programming

Hybrid Programming mixes MPI with other programming models such as
Pthreads, OpenMP, or PGAS models. The implementations of runtimes for those
models often use external communication layers and may suffer from issues dis-
cussed in Section 3.5. However, the interaction between different parallelization
schemes can have more complex effects. We discuss two issues with the interac-
tion of MPI and threads. We remark that the discussion is not limited to threads
and applies to other models, such as PGAS, or languages, such as C#.

4.1 Thread-safe Message Probing

MPI offers a mechanism (MPI Probe/MPI Iprobe) to peek into the receive queue
and query the size of found messages before posting the receive. This enables the
reception of dynamically-sized messages. However, this also creates problems in
the context of multiple threads [5] since one thread can query the message and
another thread can receive it (the queue is a global shared object). A matched
probe call that removes the message from the queue while peeking has been
proposed to MPI-3 to solve this problem [7]. This addition enables low-overhead
probing for threaded libraries and languages.

4.2 Control Transfer and Threading

Threaded libraries pose additional problems for the interfaces. This is because
threaded libraries encapsulate resource requirements in addition to functionality.
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For single-threaded libraries, the control is handed from a single thread running
on a single processing element (PE) to a single thread. In multi-threaded envi-
ronments, we differentiate four scenarios:

1. A single application thread calls a single-threaded library.
2. A single application thread calls a multi-threaded library.
3. Multiple application threads call a single-threaded library.
4. Multiple application threads call a multi-threaded library.

Scenario 1 is identical to the single-threaded case while all other scenarios
require some kind of resource management. Scenario 2 is simple because the
library is the only consumer of PE resources, while Scenario 3 can solved by
synchronizing all threads before the library is called (this is commonly used
today, e.g., in [15]). Scenario 4 is most tricky and requires advanced resource
management.

Resource management can either be performed by the operating system (time
multiplexing) or explicitly by the user with ad-hoc mechanisms such as querying
the number of available cores and thread-pinning. A promising OS-based space
multiplexing (core allocation) approach is proposed in [19].

4.3 Communication Endpoints

Special care has to be taken if the communication layer requires multiple client
threads per node in order to achieve full performance. This has to be addressed
in hybrid programming by either using multiple threaded MPI processes per
node, or a scheme similar to Scenario 4. A proposal for MPI-3.0 [22] shows an
extension for MPI to provide multiple logical network endpoints in a threaded
hybrid MPI application.

5 Guidelines for Library Designers

We now conclude this work by providing some hints and guidelines for MPI li-
brary developers. All those guidelines are in addition to the well-known serial
library design rules, such as privatization and abstraction. In general, libraries
should utilize the features provided by MPI while paying attention to the pit-
falls discussed above. In particular, libraries should use communicators to specify
spatial decomposition of the process space and to present safe communication
contexts for temporal decomposition. Created communicators and library in-
ternal state and data-structures should be cached with the user communicator
(which then becomes the central communication object that needs to be passed
to every library call, special care has to be taken for reentrant libraries, cf. Sec-
tion 3.2). Libraries should take advantage of virtual topologies to specify process
topologies and possibly perform topology mapping (this may conflict with the
user program or other stacked libraries). If library-specific structures are passed
to communication functions and from or to the user, then those should be spec-
ified with MPI datatypes. Parallel libraries should also handle errors internally
and provide library-specific error messages to the user. This can be achieved by
attaching a library-specific error handler to the library’s private communicator.
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Library and communicator initialization can either be done explicitly or im-
plicitly (at first invocation). Communicator initialization must be done collec-
tively and we discuss issues with nonblocking communication in Section 3.3.

5.1 What to Avoid!

Libraries should never use the passed communicators directly (just attached at-
tributes); this includes the global communicator MPI COMM WORLD. Synchro-
nization or draining messages at entry or exit from a library call may impose
unnecessary overheads and should be avoided. Libraries also don’t need to limit
themselves to disjoint process groups. Overlapping communicators are managed
well within MPI.

5.2 Progress

There is no generally good strategy for highly-performance library progress: The
use of asynchronous progress may be too inefficient or even impossible, while
the use of manual progress breaks isolation and may lead to deadlock when
multiple libraries are composed, with no systematic use of manual progress at
each interface. Thus, progress should be ensured for each library separately. Also,
repeated library invocations for manual progress add a superfluous overhead on
systems with asynchronous progress. The cleaner solution would be to provide
adequate asynchronous progress on all systems. Baring this, it is very desirable
to provide manual progress calls that are macro-expanded into noops on systems
that do not need them.

6 Summary and Conclusions

In this paper, we showed principles for designing parallel libraries, described a
taxonomy of existing libraries and several library examples. We then derived
general requirements for parallel libraries and described how they are supported
in MPI. Furthermore, we show issues with the current MPI specification that
may present pitfalls to developers. Finally, we summarize current practice and
good practices for designing parallel libraries.

We conclude that MPI is very well suited to support the development and
use of parallel libraries. It offers mechanisms for space- and time-multiplexing
processes and an object-oriented interface. It is crucial that other parallel pro-
gramming environments, such as upcoming PGAS languages, provide a similar
level of support for library development.
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