
Efficient MPI Support for Advanced Hybrid

Programming Models

Torsten Hoefler1⋆, Greg Bronevetsky2, Brian Barrett3, Bronis R. de Supinski2,
and Andrew Lumsdaine4

1 University of Illinois at Urbana-Champaign, Urbana, IL, USA,
htor@illinois.edu

2 Lawrence Livermore National Laboratory, Center for Applied Scientific Computing,
Livermore, CA, USA

{bronevetsky1,bronis}@llnl.gov
3 Sandia National Laboratories, Albuquerque, NM, USA

bwbarre@sandia.gov
4 Indiana University, Open Systems Lab, Bloomington, IN, USA,

lums@cs.indiana.edu

Abstract. The number of multithreaded Message Passing Interface
(MPI) implementations and applications is increasing rapidly. We dis-
cuss how multithreaded applications can receive messages of unknown
size. As is well known, combining MPI Probe/MPI Recv is not thread-
safe, but many assume that trivial workarounds exist. We discuss those
workarounds and show how they fail in practice by either limiting the
available parallelism unnecessarily, consuming resources in a non-scalable
way, or promoting global deadlocks. In this light, we propose two funda-
mentally different efficient approaches to enable thread-safe messaging
in MPI-2.2: fine-grained locking and matching outside of MPI. Our ap-
proaches provide thread-safe probe and receive functionality, but both
have deficiencies, including performance limitations and programming
complexity, that could be avoided if MPI would offer a thread-safe (state-
less) interface to MPI Probe. We propose such an extension for the up-
coming MPI-3 standard, provide a reference implementation, and demon-
strate significant performance benefits.

1 Introduction

Current processor trends are leading to an abundance of clusters composed of multi-
core nodes. While the Message Passing Interface (MPI [1]) remains a viable program-
ming model to use all processors in these systems, multi-core systems naturally lead
to increased use of shared memory programming models based on threading. Hybrid
MPI/threaded programs can decrease the surface to volume ratio between MPI pro-
cesses, which can result in more efficient use of the interconnection network [2]. Thus,
these hybrid programs are becoming increasingly common [3]. As a result, it is critical
for MPI to support the model well.

MPI-2 includes a mechanism to request a level of thread support. Previously, most
hybrid programs could conform to the MPI THREAD FUNNELED level. With the in-
crease in hybrid programs, applications that use shared memory task parallelism and,

⋆ The first author performed most of this work at Indiana University.



thus, require MPI THREAD MULTIPLE support, are more likely. This trend not only
motivates the implementation of that support [4] but also an examination of how well
the MPI standard supports those programs. We find that the support is generally suf-
ficient [5] although one glaring weakness exists: The semantics of probing for messages
(e.g., in order to receive messages of unknown size) does not interact properly with
realistic uses in threaded programs.

In this work, we discuss the issue of receiving messages of unknown size in multi-
threaded MPI programs. We explain the problem and show why obvious approaches to
its solution are not feasible. We then discuss two elaborate techniques that would work
with MPI-2.2. Despite the complex implementation of such techniques, which could be
done in a library, we show that all proposed solutions limit performance significantly.
Finally, we discuss an addition to the MPI standard that would enable the desired
functionality. We describe a reference implementation, discuss issues in the context of
hardware-optimized implementations, and present benchmark results which show the
benefits of this approach.

2 Multithreaded MPI Messaging

We discuss several options for MPI version 2.2 to receive messages of unknown size
in multithreaded environments. Unknown size messages in MPI are received with the
sequence of probe (determine the size), malloc (reserve buffer), and receive (receive
message). We investigate the issue of false matching, in which two threads perform a
probe, malloc and a subsequent receive concurrently. Two actions happen concurrently
if they happen completely independently (e.g., without synchronization or code flow
dependencies) so that they could interleave in any way. Assume that two threads, A
and B, perform a probe, malloc, and receive, denoted by Ap, Am, Ar and Bp, Bm, Br

respectively. If those calls happen concurrently, then they could interleave as the series:
Ap, Bp, Bm, Br, Am, Ar that leads to incorrectly matching a message in thread B that
was probed in thread A. We show that simple workarounds either limit parallelism
unnecessarily or require structural changes to the application. Therefore, we propose
two more sophisticated approaches and advocate for extensions or changes to the MPI
standard to improve support for probing in threaded environments.

Separating threads with tags or communicators False matching could be
avoided by using different virtual channels to address each thread in each process.
A virtual channel in MPI is uniquely identified by the tuple (c, s, τ ) (communicator,
source, tag) on the receiver side and (c, r, τ ) (communicator, receiver, tag) on the sender
side. False matching can be avoided by using different tags (or communicators) for each
thread. However, one would need t · p communicators (or tags) in order to address all
threads in an MPI universe with p processes, each with t threads. This mechanism is
not scalable (binds Ω(p) resources) and not flexible enough for many applications. For
example, a multithreaded master in a master/worker implementation can no longer
use automatic load-balancing in which any idle thread probes and receives the next
message to arrive. Similarly, a reentrant library that calls MPI with a variable (not
predetermined) number of threads cannot use tag-based thread-addressing. Thus, such
thread-addressing schemes seem unsuitable for most applications.

2.1 A Fine-grained Locking Mechanism

Clearly, with MPI’s matching semantics, coarse-grained locking (e.g., protecting the
access to probe/malloc/recv at the communicator) overly limits parallelism. For exam-



ple, a probe/receive pair with tag=4 and src=5 does not conflict with a probe/receive
pair with tag=5 and src=5. However, another probe/receive pair with tag=4, src=5
would conflict with the first pair. Thus, we could lock each possible (communicator,
source, tag) tuple separately. In the following, we assume that each lock is associated
with a specific communicator and we limit the discussion to (source, tag) pairs.

One could arrange locks for (source, tag) pairs in a two-dimensional matrix. How-
ever, storing a max(source) ·max(tag) matrix in main memory is infeasible. A sparse
matrix representation with a hash table or map [(source, tag) → lock] seems much
more efficient.

We show a simple locking strategy that minimizes the critical region with a non-
blocking receive in Listing 1.1. However, this strategy does not cover wildcard receives.

lock map(src,tag)

probe(src, tag, comm, stat)

buf = malloc(get_count(stat)*sizeof(datatype))

irecv(buf, get_count(stat), datatype, src, tag, comm, req)

unlock map(src,tag)

wait(req)

Listing 1.1. Simple (limited) receive locking protocol.

Probe/receive pairs with wildcards must be performed mutually exclusively within
a set of channels. Thus, if a wildcard is used, we must lock a full row or column of the
matrix. If both fields are wildcards, we must lock the whole matrix. As a result, we
consider four (source, tag) cases in order to implement a fine-grain locking strategy: (1)
(int,int), (2) (any src,int), (3) (int,any tag), and (4) (any source,any tag). We denote
any src or any tag with an asterisk (*) in the following. In order to support each case
fully, we need a sparse two-dimensional (src, tag) and thread-safe data structure with
the following operations:

(un)lock(x,y) acquires/releases (x,y)
(un)lock(x,*) acquires/releases all entries on src x
(un)lock(*,y) acquires/releases all entries on tag y
(un)lock(*,*) acquires/releases the whole matrix

Our sparse two-dimensional locking protocol differentiates among these four cases,
using three levels of locks: A two-dimensional map of locks for all points (source, tag),
two one-dimensional maps of locks for each source and tag line, and one lock for the
whole matrix. It uses lists of held locks per (source, tag) pair, for each source and each
tag and for the whole matrix. Listing 1.2 shows a possible algorithm that implements
a sparse two-dimensional locking structure. The code shown in Listing 1.2 is a critical
region that is protected with locks itself!

if (source != MPI_ANY_SOURCE and tag != MPI_ANY_TAG)

check if either whole matrix, source, tag, (source, tag) is locked

if (nothing is locked)

lock (source, tag) and increase usage count of source, tag, matrix

if (source != MPI_ANY_SOURCE and tag == MPI_ANY_TAG)

check if either whole matrix or source is locked

check if any_source or some tag for source is in use

if (nothing is locked/used)

lock source and increase usage count of source and matrix



if (source == MPI_ANY_SOURCE and tag != MPI_ANY_TAG)

check if either whole matrix or tag is locked

check if any_tag or if some source for tag is in use

if (nothing is locked/used)

lock tag and increase usage count of tag and matrix

if (source == MPI_ANY_SOURCE and tag == MPI_ANY_TAG)

check if whole matrix is locked or in use

if (nothing is locked/used)

lock matrix

Listing 1.2. Function to lock the 2d sparse map. Unlock is equivalent.

However, while this local locking scheme ensures correct and parallel message recep-
tion, it can unexpectedly influence global synchronization. For example, rank 0 sends
two messages to rank 1 in which sending of the second message depends on a reply
to the first message. The first message has tag 1, and the second message has tag 2.
The receiver, rank 1, has two threads A and B. Thread A receives from channel (0, 2)
and thread B from channel (0, any tag). Thread A sends the needed reply after the
message is received. We show pseudo-code for rank 0 in Listing 1.3 and for rank 1 in
Listing 1.4.

A:

send(..., 1, 1, comm)

recv(..., 1, 1, comm)

send(..., 1, 2, comm)

...

Listing 1.3. Rank 0

A:

probe/recv(0, 2, comm)

B:

probe/recv(0, ANY_TAG, comm)

send(..., 0, 1, comm)

Listing 1.4. Rank 1

This program must terminate in a correct MPI implementation that supports MPI -

THREAD MULTIPLE. However, if A locks (0, 2) first and enters MPI Probe then B can-
not lock (0, any tag). Thus, ranks 0 and 1 cannot proceed and the presented algorithm
can cause spurious deadlocks.

In general, a receive with an explicit (integer) source and tag can block ones with
wildcards, for example, receiving on channel (0, 1) blocks receives on (any src, 1), (0,
any tag), and (any src, any tag). Thus, wildcard probes and receives must dominate
more specific ones, which requires that MPI Probe has not yet been called for the
more specific one. Since MPI calls cannot be aborted, we must poll with multiple
probes/receives. Only the most general probe/receive (any src, any tag) is allowed to
block. We can implement the required polling with the same two-dimensional locking
scheme to enable maximum concurrency. Listing 1.5 shows the polling (nonblocking)
algorithm.

while(!stat)

lock 2d_sparse_map(src,tag) /* see previous listing */

iprobe(src, tag, comm, stat)

if(stat)

buf = malloc(get_count(stat)*sizeof(datatype))

irecv(buf, get_count(stat), dtatype, src, tag, comm, req)

unlock 2d_sparse_map(src,tag)

if(stat) wait(req)

Listing 1.5. Polling receive locking protocol.



We note that requiring polling is a fundamental problem that prevents an efficient
implementation of many multithreaded implementations.

Most parallel MPI applications only use a subset of the possible parameter combi-
nations during a program run. For example, an application might not use any src or
any tag at all, which enables the use of the simple locking scheme described in List-
ing 1.1. Other applications might use any tag in all probes and receives, and enable
a much simpler, one-dimensional locking of source (even though this limits possible
parallelism).

Table 1 lists all combinations and possible optimizations. An x in the column
any src or any tag means that any src or any tag is used during the program run.
An x in “direct” indicates that at least one call does not use any src and any tag. For

Scenario any src any tag Specific Strategy

1 - - x simple 2d, blocking

2 - x - simple 1d, blocking

3 - x x 2d lock, polling

4 x - - simple 1d, blocking

5 x - x 2d lock, polling

6 x x - 2d lock, polling

7 x x x 2d lock, polling
Table 1. Possible parameter combinations.

example, under scenario 4, all calls use any src as an argument and thus a simple one-
dimensional locking scheme can be used. Scenario 7, the most general one under which
a program run could use all combinations, requires the polling scheme (Listing 1.5).
Different scenarios can be defined for each communicator. Thus, performing all calls
with various wildcards on distinct communicators simplifies locking requirements but
might lead to other problems as discussed in the introduction.

Further, although most applications only use a subset of the possible parameter
combinations, which allows for a specialized implementation, a library-based solution
must provide the general implementation. Similarly, an implementation of language
bindings such as MPI.NET [6] must assume the general case (scenario 7) so using the
fine grained locking approach likely entails a high cost.

2.2 Matching Outside of MPI

If polling is infeasible, we can instead perform MPI source/tag matching outside of the
MPI library in order to provide correct threaded semantics for MPI Probe. This solution
uses a helper thread that repeatedly calls MPI Probe with any src and any tag. When
MPI Probe returns, the thread allocates a message buffer, into which it then receives
the probed message with MPI Irecv. The associated MPI Request is stored in a data
structure for use when an application thread issues a matching receive operation. This
data structure is similar to the two-dimensional locking structure from Listing 1.2. For
each (source, tag) pair (including wildcards) it maintains the count of threads that are
waiting to receive a messages with that pair as well as two lists of messages. The first
list tracks “expected” messages – newly arrived messages that match this (source, tag)
pair and have been matched to waiting threads but not yet been picked up by those
threads. The second list tracks “unexpected” messages – newly arrived messages for
which a receiver thread has not yet been identified. Since all such messages match four



different (source, tag) pairs (including wildcards), each is placed into four such lists,
one for every pair. The data structure maintains a lock and a condition variable for
each pair to synchronize access to the count and the message lists.

This method can also take advantages of the previously described matching lock
mechanism. However, it requires implementation of the complete matching semantics in
a thread-safe way (including thread synchronization) on top of MPI and introduces ad-
ditional buffering, which is clearly suboptimal. The implementation would also require
eager and rendezvous protocols for performance reasons and would also lose potential
optimizations such as matching in hardware. Thus, such an implementation is highly
undesirable from a user’s perspective.

3 Extending the MPI Standard: Matched Probe

We have discussed issues with tread-safe matching in MPI and pointed at a problem
in the specification. We have shown that all simple workarounds are either infeasible
or incorrect (deadlock). Although our two mechanisms support correct semantics of
MPI Probe in threaded environments, they are nontrivial and limit either performance
or concurrency significantly in the general case (any src and any tag possible). Thus, a
general library implementation, as is required for new language bindings, cannot limit
those scenarios and must pay the cost of general support. Further, both mechanisms
duplicate work that an MPI implementation performs internally and limit hardware
offload capabilities.

For these reasons, we must modify the MPI standard to eliminate the need to use
these mechanisms, which would entail deprecating the existing probe operations. One
possible solution would replace those operations with thread-safe versions that return
a request that the application can later complete (in the original thread or not, but
under application control) [7]. While in MPI-2.2, matching is done in probe and then
again in receive, we decouple matching and receiving. We propose to add two new calls,
mprobe and mrecv (and their nonblocking versions) to the MPI standard. We sketch
the proposal here; a detailed version is available elsewhere [7]. The proposed mprobe

returns a message handle that identifies a message (which is then unavailable in
any other matching context). The proposed mrecv can then receive such a matched
message. Listing 1.6 shows an example for thread-safe matching with a matched probe.

MPI_Message msg; MPI_Status status;

/* Match a message */

MPI_Mprobe(MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &msg, &status);

/* Allocate memory to receive the message */

int count; MPI_get_count(&status, MPI_BYTE, &count);

char* buffer = malloc(count);

/* Receive this message. */

MPI_Mrecv(buffer, count, MPI_BYTE, &msg, MPI_STATUS_IGNORE);

Listing 1.6. Matched probe example.

This mechanism reduces the user burden and minimizes the total number of locks
required. We also enable efficient hardware matching and eager protocols. We discuss
an implementation and possible issues in the following.



3.1 A Reference Implementation of Matched Probe

The matched probe proposal has been implemented as a proof of concept using
Open MPI. Open MPI provides two mechanisms for message matching: One in which
matching occurs inside the MPI library (used with network APIs such as Open Fabrics,
TCP, and shared memory) and one in which matching occurs either in hardware or
in a lower-level library (used with network APIs such as Myrinet/MX and Portals).
The implementation of matched probe presented in this paper is based on MPI-level
message matching. Issues with hardware level matching are discussed in Section 3.2.

The matched probe implementation does not significantly change the message
matching and progression state machine of Open MPI. It adds an exit state from
message matching (MPROBE in addition to PROBE and RECV), and adds an entry
point back into the state machine. Open MPI tracks all unexpected messages (those
that the matched probe operation can impact) as a linked list of message fragment
structures, which includes source and tag. Communicators are separate channels and
use separate lists. The list of unexpected messages is walked in an identical fashion for
a probe and a receive. However, the fragment is removed from the unexpected message
list and processed in the receive case.

Fig. 1. High-level state diagram of MPI receive matching.

In the case of matched probe, the message fragment is removed from the unex-
pected message list (similar to a receive). It is then stored in the MPI Message struc-
ture returned to the user. When the user calls MPI Mrecv or MPI Imrecv, the message
fragment is retrieved from the MPI Message structure that the user provided and the
normal receive state machine is started from the point right after message matching.

3.2 Low-level Message Matching

The previously described implementation of Matched Probe for MPI-level matching,
while straightforward, will not work if the lower level communication API provides mes-
sage matching (such as Portals on the Cray XT line, Myrinet/MX, TPorts on Quadrics,
and PSM on Qlogic). In these cases, the message matching state engine is not exposed
to the MPI implementation, and may be executed on NIC hardware. In these cases, we
must extend the interface of the lower-level API to support Matched Probe, likely with
an implementation of similar complexity to the Open MPI implementation. Likewise,



firmware based hardware matching (TPorts and Accelerated Portals), adding entry
points out-of and back in-to the firmware state machine should be straightforward.

Hardware assisted matching presents a more complicated situation. Hardware de-
signs would require modifications to support a matched probe. In addition, carrying
the extra state to restart the state machine for a partially matched message could be
cumbersome in hardware. However, since these designs are not in use, such designs
have no bearing on the practical cost of this MPI extension. Thus, adoption of our
extension requires a trade off between the benefits of making future designs of this
type compatible our extension.

4 Performance Evaluation

We use two benchmarks that assess the performance and concurrency of the differ-
ent mechanisms for thread-safe message reception. Both benchmarks and the two-
dimensional locking (Section 2.1) are integrated in the publicly available Netgauge
tool [8]. The benchmarks were run on Sif at Indiana University. Sif consists of Xeon
L5320 1.86 GHz CPUs with a total of 8 processing cores per node running Linux
2.6.18 connected with Myrinet 10G. We used Open MPI revision 229735 using the
TCP transport layer, configured with --enable-mpi-thread-multiple.

4.1 Receive Message Rate

Our first benchmark compares the message receive rate at a multithreaded receiving
process with two-dimensional locking (2D, cf. Section 2.1) and matching outside MPI
(OUT, cf. Section 2.2) for MPI-2.2 and the new matched probe (MPROBE, cf. Sec-
tion 3) mechanism. In this test, 8 processes send to process 0, which uses 8 threads to
receive the messages. Each process i sends its messages with tag i and each thread j

either receives messages from process j + 1 or any src, with tag j + 1 or any tag.

0
.0

0
0

.0
5

0
.1

0
0

.1
5

Datasize [bytes]

O
p

e
ra

ti
o

n
s
 p

e
r 

s
e

c
o

n
d

 [
m

ill
io

n
]

1 2 4 8 32 128 512 2048 8192 65536

2D OUT MPROBE

(a) directed

0
.0

0
0

.0
5

0
.1

0
0

.1
5

Datasize [bytes]

O
p

e
ra

ti
o

n
s
 p

e
r 

s
e

c
o

n
d

 [
m

ill
io

n
]

1 2 4 8 32 128 512 2048 8192 65536

2D OUT MPROBE

(b) any,any

Fig. 2. Message rate of different options for Open MPI on Sif.

Figure 2 shows the different message rates achieved by the two locking schemes
and wrong matching with 8 processes sending to 8 threads on process 0. Figure 2(a)
shows results for directed (i.e., neither any src nor any tag) and Figure 2(b) shows
any (any src and any tag). The OUT and 2D implementations exploit knowledge of
which wildcard pattern (any,any or directed) to expect (cf. Table 1). Both figures show

5 available at: http://svn.open-mpi.org/svn/ompi/tmp-public/bwb-mprobe



significant performance differences between the approaches for small message-sizes.
The rate of larger messages is bandwidth-bound and thus similar for all approaches.
The two-dimensional locking scheme is faster than the matching outside of MPI, which
must copy each message. However, our matched probe implementation outperforms
both approaches and achieves the highest message rates.

4.2 Threaded Roundtrip Time

Our threaded roundtrip time (RTT) benchmark measures the time to transmit n mes-
sages between two processes with t threads each. It is thus somewhat similar to the
overhead benchmark proposed by Thakur et al. [9]. Process 0 synchronizes its t threads
with pthread barrier wait before each thread j ∈ {0..t − 1} sends n messages with
tag j to process 1. The t threads at process 1 receive and send n messages from/to
process 0 and each thread in process 0 receives n messages. The receives either use a
specific tag j ∈ {0..t − 1} or any tag and a specific source s ∈ {0, 1} or any src.

Figure 3 shows the latency overhead of the different locking schemes. For the

2
0

5
0

1
0

0
2

0
0

5
0

0

Datasize [bytes]

L
a

te
n

c
y
 [

m
ic

ro
s
e

c
o

n
d

s
]

1 2 4 8 32 128 512 2048 8192 65536

OUT 2D MPROBE

(a) any,any

2
0

5
0

1
0

0
2

0
0

5
0

0

Datasize [bytes]

L
a

te
n

c
y
 [

m
ic

ro
s
e

c
o

n
d

s
]

1 2 4 8 32 128 512 2048 8192 65536

OUT 2D MPROBE

(b) directed

Fig. 3. Latency of different options for Open MPI on Sif.

any,any case in Figure 3(a), the current implementation of MProbe results in higher
latency than both the 2D locking and matching outside MPI schemes. Latency in-
creases mainly due to 2d-locking and outside MPI locking only using a single lock (cf.
Table 1) based on the knowledge that only any,any receives are used while the matched
probe implementation in MPI must handle the general case. As an aside, this exam-
ple demonstrates the potential of additional info objects in MPI in which users could
specify such constraints.

Figure 3(b) shows the latencies for the directed case (using integer tag and src
values). For small messages, Mprobe is faster than 2-d locking due to the explicit
removal from the queue (it only needs to be locked once). The outside MPI version is
even faster for small messages because it receives the messages immediately and the
copy overhead is low. However, for large messages, the copy overheads are dominating.

In Open MPI itself, there are two sources of unnecessary latency in the current
MProbe implementation that we could remove with further development: creation of
an additional request structure and an additional call to the progress engine. The ex-
tra request structure results in a small overhead, approximately 10 ns. The significant
latency hit is from the additional progress engine calls, which could probably be mit-
igated through additional optimization. The issue is exacerbated by the high cost of
entering Open MPI’s progress engine when multithreaded support is enabled.



5 Summary and Conclusions

In this paper we describe the problem of receiving messages of unknown size in threaded
environments. We show that often assumed simple solutions to the problem either
introduce significant overheads or may lead to spurious deadlocks. We propose two
advanced protocols to solve the problem in MPI-2.2. However, both protocols add
various overheads to the critical paths. We then propose an extension of the MPI-3
standard that solves the matching problems. We show a reference implementation in
Open MPI and discuss issues that might arise in hardware implementations.

Our performance analysis shows the benefits with regard to the message rates of
the matched probe approach over the other protocols. We also analyze latencies for a
multithreaded ping-pong benchmark. This analysis demonstrates that protocols on top
of MPI can take advantage of special domain knowledge (only any,any calls), which
serves as another good example for adding user assertions to the MPI standard.

Acknowledgments The authors thank all members of the MPI Forum that were
involved in the discussions about matched probes, Douglas Gregor (Apple), and the
anonymous reviewers. Sandia National Laboratories is a multiprogram laboratory op-
erated by Sandia Corporation, a Lockheed Martin Company, for the United States
Department of Energy’s National Nuclear Security Administration under contract DE-
AC04-94AL85000. This work was partially performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344. (LLNL-CONF-434306).

References

1. MPI Forum: MPI: A Message-Passing Interface Standard. Version 2.2 (September
4th 2009) http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf.

2. Itakura, K., Uno, A., Yokokawa, M., Ishihara, T., Kaneda, Y.: Scalability of Hybrid
Programming for a CFD Code on the Earth Simulator. Parallel Comput. 30(12)
(2004) 1329–1343

3. Rabenseifner, R.: Hybrid Parallel Programming on HPC Platforms. In: Proc. of
the Fifth European Workshop on OpenMP, EWOMP’03, Aachen, Germany (2003)

4. Gropp, W.D., Thakur, R.: Issues in Developing a Thread-Safe MPI Implementation.
In: Recent Advances in Parallel Virtual Machine and Message Passing Interface,
13th European PVM/MPI User’s Group Meeting, Proceedings. (2006)

5. Balaji, P., Buntinas, D., Goodell, D., Gropp, W., Thakur, R.: Toward Efficient
Support for Multithreaded MPI Communication. In: European PVM/MPI Users’
Group Meeting. (2008) 120–129

6. Gregor, D., Lumsdaine, A.: Design and Implementation of a High-Performance MPI
for C# and the Common Language Infrastructure. In: Proceedings of PPoPP 2008,
New York, NY, USA (February 2008) 133–142

7. Gregor, D., Hoefler, T., Barrett, B., Lumsdaine, A.: Fixing Probe for Multi-
Threaded MPI Applications (Revision 4). Technical report, Indiana University
(January 2009)

8. Hoefler, T., Mehlan, T., Lumsdaine, A., Rehm, W.: Netgauge: A Network Perfor-
mance Measurement Framework. In: High Performance Computing and Communi-
cations, HPCC. Volume 4782. (9 2007) 659–671

9. Thakur, R., Gropp, W.: Test Suite for Evaluating Performance of MPI Implemen-
tations That Support MPI THREAD MULTIPLE. In: European PVM/MPI User’s
Group Meeting, Proceedings. (2007)


