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Abstract

Accurate, reproducible and comparable measurement

of collective operations is a complicated task. Although

Different measurement schemes are implemented in well-

known benchmarks, many of these schemes introduce differ-

ent systematic errors in their measurements. We character-

ize these errors and select a window-based approach as the

most accurate method. However, this approach complicates

measurements significantly and introduces a clock synchro-

nization as a new source of systematic errors. We analyze

approaches to avoid or correct those errors and develop a

scalable synchronization scheme to conduct benchmarks on

massively parallel systems. Our results are compared to the

window-based scheme implemented in the SKaMPI bench-

marks and show a reduction of the synchronization over-

head by a factor of 16 on 128 processes.

Keywords: benchmarking, collective operations,

MPI, time synchronization, scalable synchronization

1 Introduction

Collective operations, i.e., operations that are defined

on a group of processes rather than a single process, are

an important part of parallel scientific computing. Their

advantages comprise the separation of communication and

computation which enables machine specific communica-

tion optimization, performance portability among different

parallel machines, better programmability and the reduction

of implementation errors. All those benefits have been rec-

ognized by the scientific community and collective opera-

tions play an important role in many parallel applications

(cf. [21]). Thus, the performance, i.e., latency, of the col-

lective operations is crucial for the performance and running

time of numerous applications.

However, the complex interaction between communica-

tion and computation in real-world applications requires

models to understand and optimize parallel codes. Serial

computation models, such as Modeling Assertions [2], have

to be combined with network models such as the LogP [4].

Unfortunately, today’s systems are too complex to be de-

scribed entirely by an execution or communication model.

It is necessary to assess the model parameters for every real-

world system, in the serial execution case in [2] as well as

in the communication case in [5, 8, 12]. Pjesivac-Grbovic

et al. showed in [20] that the latency of collective operations

that are implemented on top of point-to-point messages can

be modeled with the LogP model family and we showed

in an earlier work [7] that it is also possible to predict ap-

plication performance by modeling the communication and

computation separately. Thus, it is crucial to the modeling

of parallel applications to have accurate models for the la-

tency of collective operations. Several benchmarking stud-

ies have been done for different systems [3, 19, 22].

In this paper, we discuss and analyze different estab-

lished measurement methods for collective operations on

parallel computing systems and point out common system-

atic errors. Our measurement method is derived from the

SKaMPI benchmarks [25] and is universal and not limited

to point-to-point based methods or specific algorithms. The

following section discusses established benchmark meth-

ods.

1.1 Related Work

Different benchmark schemes have been proposed. Cur-

rently known methods can be divided into three groups. The

first group synchronizes the processes explicitly with the

use of synchronization routines (i.e., MPI Barrier). The

second scheme, presented in [25], establishes the notion

of a global time and the processes start the operation syn-

chronously. The third scheme assesses the quality of a col-



MPI Gather(...); /∗ warmup ∗/

MPI Barrier(...); /∗ synchronization ∗/

t0 = MPI Wtime(); /∗ take time ∗/

for (i=0; i<reps; i++) {
MPI Gather(...); /∗ execute benchmark ∗/

}
t1 = MPI Wtime(); /∗ take time ∗/

MPI Barrier(...);

time = t1−t0;

Listing 1. MPPTEST Benchmark Scheme

t0 = TIMER(); /∗ take time ∗/

for (i=0; i<reps; i++) {
MPI Alltoall(...); /∗ execute benchmark ∗/

}
t1 = TIMER(); /∗ take time ∗/

MPI Barrier(...);

time = t1−t0;

Listing 2. MPBench Benchmark Scheme

lective implementation by comparison to point-to-point op-

erations [23] and is thus limited to algorithms using point-

to-point messages. We investigate several publicly available

benchmarks in the following and characterize them in the

three groups.

MPPTEST implements the discussions on reproducible

MPI performance measurements [6]. As described in the

article, the operation to measure is executed in a warm-up

round before the actual benchmark is run. The nodes are

synchronized with a single MPI Barrier operation before

the operation is run N times in a loop. A pseudo-code is

shown in Listing 1. Only the time measurements at rank 0

are reported to the user.

MPBench was developed by Mucci et al. [16]. MPBench

does not synchronize at all before the benchmarks. Rank 0

takes the start time, runs N times the collective operation to

benchmark and takes the end time. A pseudo-code is shown

in Listing 2. The timer can use the RDTSC CPU instruction

of gettimeofday(). Time measurement is only performed

and printed on rank 0.

Intel MPI Benchmarks (formerly Pallas MPI bench-

marks [18]), measure a wide variety of MPI calls includ-

ing many collective functions. The code issues a definable

number of MPI Barrier operations before every benchmark

and measures the collective operation in a loop afterwards.

The time needed to execute the loop is taken as a measure-

ment point. The scheme is shown in Listing 3. The bench-

mark prints minimum, maximum and average time over all

processes.

SKaMPI The SKaMPI benchmark uses a time-window

based approach, described in [25], that ensures that all pro-

cesses start the operation at the same time. No explicit syn-

for(i=0; i<numbarr; i++) MPI Barrier(...);

t0 = MPI Wtime(); /∗ take time ∗/

for (i=0; i<reps; i++) {
MPI Alltoall(...); /∗ execute benchmark ∗/

}
t1 = MPI Wtime(); /∗ take time ∗/

time = (t1−t0)/reps;

Listing 3. Intel MPI Benchmark Scheme

chronization is used and the times are either reported per

process or cumulative.

1.2 Systematic Errors in Common Mea-
surement Methods

Benchmarking collective operations is a controversial

field. It is impossible to find a single correct scheme to mea-

sure collective operations because the variety of real-world

applications is tremendously high. Thus, every benchmark

may have its justification and is not erroneous in this case.

However, microbenchmarks are often used to compare im-

plementations and to model the influence of the communi-

cation several applications. This is why a benchmark should

represents the “average” or at least the majority of applica-

tions. Our model application for this work is a well bal-

anced application that issues at least two different collective

operations in a computational loop (cf. [21]). This model

application would benefit from well balanced collective op-

erations that do not introduce process skew. The following

paragraphs describe common systematic errors done in the

measurement of collective operations. This section is con-

cluded with the selection of a benchmark method.

Implementation Assumptions The implementation of col-

lective communication operations is usually not standard-

ized to provide as much optimization space as possible

to the implementer. Thus, any point-to-point algorithm

or hardware supported operation that offers the function-

ality defined in the interface is a valid implementation.

Some research groups used elaborate techniques (e.g., hard-

ware optimization and/or specialized algorithms) to opti-

mize collective communication on different systems (cf.

[11, 24, 26]). A portable benchmark that uses the collective

interface, for example MPI, can not make any assumptions

about the internal implementation.

Results on multiple processes A second problem is that

benchmarks are usually providing a single number to the

user, while all processes benchmark their own execution

time. Some benchmarks just return the time measured on

a single node (e.g., the rank 0), some use the average of all

times and some the maximum time of all processes. The

decision which time to use for the evaluation is not trivial

it is even desirable to include the times of all ranks in the

evaluation of the implementation. Worsch et al. define three

schemes to reduce the times to a single number, (1) the time



needed at a designated process, (2) maximum time on all

processes and (3) the time between the start of the first pro-

cess and the finish of the last. This list can be extended

further, e.g., (4) the average time of all processes or (5) the

minimum time might play a role and is returned by certain

benchmarks.

A simplified LogPmodel derived from [4] is used to model

the network transmissions and effects in collective commu-

nication. The LogP model uses four parameters to describe

a parallel system. The parameter L models the network

latency and g is the time that has to be waited between

two packets. The CPU overhead o does not influence the

network transmission and is thus omitted in our simplified

model. The number of participating processes P is con-

stantly four in our examples.

Pipelined Measurements A second source for systematic

errors are pipelining effects that occur when many opera-

tions are executed in a row. A common scheme is to exe-

cute N operations in a loop, measure the time and divide

this time by N . This scheme was introduced to avoid the

relative high inaccuracy of timers when short intervals are

measured. We show in Section 2 that this is not neces-

sary for high precision timers. An example LogP model-

ing for MPI Bcast with root 0, implemented with a linear

scheme, is shown in Figure 1. A single execution is much
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Figure 1. Pipeline Effects for a linear Broad-

cast Implementation

more likely to model the behavior of real applications (mul-

tiple successive collective operations should be merged into

a single one with more data). Both schemes result in differ-

ent execution times, e.g., the worst-case (maximum among

all nodes) returned latency for a single execution is L + 2g
for a single operation and (8g + L)/3 for three successive

operations. The pipelined measurement tends to underesti-

mate the latency in this example.

Process Skew The LogP models in the previous paragraph

assumed that the first operation started at exactly the same

(global) time. This is hardly possible in real parallel sys-

tems. The processes arrive at the benchmark in random or-

der and at undefined times. Process skew is influenced by

operating system noise [1, 14] or other collective operations

(cf. Figure 1 where rank 0 leaves the operation after 2g and

rank 3 finishes only after L + 2g). A LogP example for the

influence of process skew is shown in Figure 2. The left
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Figure 2. Influence of Process Skew on a

Broadcast Benchmark

side shows a random skew pattern where rank 1 and 2 ari-

ive relatively late and do not have to wait for their message

while the right side shows a situation where the root (rank 0

in this example) arrives late and all ranks have to wait much

longer than usual. Process skew can not be avoided and

is usually introduced during the runtime of the parallel pro-

gram. This effect is well known and several benchmarks use

an MPI Barrier before the measurement to correct skew.

Synchronization Perturbation and Congestion The

MPI Barrier operation has two problems, the first one is

that this operation may be implemented with any algorithm

because it only guarantees that all processes arrived before

the first leaves the call but not that the processes leave at the

same time (i.e., the barrier operation may introduce process

skew). The second one is that it may use the same network

as other collective operations which may influence the mes-

sages of the investigated collective operation. An example

with a linear barrier is shown in Figure 3.

Network Congestion Network congestion can occur if

multiple operations are started successively or synchroniza-
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Figure 3. Possible Effect of Barrier Synchro-
nization on Measurements

tion messages interfere with the measurement. This influ-

ences the measured latencies.

1.3 Selecting a Benchmark Scheme

The SKaMPI benchmarks avoid most of the system-

atic errors with the window-based mechanism [25]. This

mechanism relies heavily on the assumption, that the dif-

ference between the local clocks does not change (drift) or

changes in a predictable way (can be corrected). We analyze

the clock drift in the following sections. Another problem

might be the variation in the latency of point-to-point mes-

sages. This variation is also analyzed and a new fast point-

to-point synchronization scheme is presented. Furthermore,

we propose and implement a new scalable group synchro-

nization algorithm which scales logarithmically instead of

the linear SKaMPI approach.

2 Measurements in Parallel Systems

Several restrictions apply to measurements in parallel

systems. One of the biggest problems is the missing time

synchronization. Especially in cluster systems, where ev-

ery node is a complete and independent system with its

own local time source, one has to assume that potentially

all processes of a parallel job run at slightly different clock

speeds. However, to perform the necessary measurements,

we need to synchronize all clocks or have at least the time

offsets of all processes to a global time. It can also not be

assumed that the processes start in any synchronous state.

To ensure portability, MPI mechanisms have to be used to

synchronize. However, collective operations semantics do

not guarantee any timing, thus, we need to synchronize the

processes with point-to-point operations. Those operations

do not guarantee timing either but are less complex than

collective operations (no communication patterns). We an-

alyze local time sources and their accuracy in the following.

This is followed by an analysis of the clock skew in parallel

systems and the distribution of latencies. This analyses are

used to derive a novel and precise synchronization scheme

in the next section.

2.1 Local Time Measurement

All time sources in computing systems work in a sim-

ilar way: They use a crystal that oscillates with a fixed

frequency and a register that counts the number of oscil-

lations since a certain point in time (for example the system

startup). However, the way to access this information can

be different. Some timing devices can be configured to is-

sue an interrupt when the register reaches a certain value or

overflows and others just enable the programmer to read the

register.

A very important timer in a modern PC is the Real Time

Clock (RTC) which is powered by a battery or capacitor so

that it continues to tick even when the PC is turned off. It

is used to get the initial time of the day at system startup,

but since it is often very inaccurate (it is optimized for low

power consumption, not for accuracy), it should not be used

to measure short time differences, like they might occur in

benchmarking scenarios.

Another time-source is the Programmable Interval Timer

(PIT). It can be configured to issue interrupts at a certain fre-

quency (Linux 2.6 uses 1000.15 Hz). These interrupts are

used to update the system time and perform several operat-

ing system functions. When using the system time (for ex-

ample via gettimeofday()) one must be aware that the

returned value might be influenced by ntp or other time-

synchronization mechanisms and that there is a whole soft-

ware stack behind this simple system call which might add

additional perturbation (i.e., interrupts, scheduling, etc.).

The resolution of the discussed time sources is not very

high and not accurate enough for the benchmarking of

fast events like single message transmissions. Thus, many

instruction set architectures (ISA) offer calls to read the

CPU’s clock register which is usually incremented at ev-

ery tick. For example the x86 and x86-64 ISAs offer the

atomic instruction RDTSC call [13] to read a 64 bit CPU

tick register. In fact most modern ISAs support similar

features. The resolution of those timers is usually very

high (e.g., 0.5ns on a 2GHz system). It has to be noted

that this mechanism introduces several problems on modern

CPUs. The first issue is caused by techniques that dynami-

cally change the CPU frequency (e.g., to safe energy) such

as “Intel-SpeedStep” or “AMD-PowerNow”. Changing the

CPU clock results in invalid time measurements. Thus, we

recommend to disable those mechanisms in cluster systems.

A second problem, called “process hopping”, may occur on



multi-processor systems where the process is re-scheduled

between multiple CPUs. The counters on the CPUs are not

necessarily identical. This might also influence the mea-

surement. This problem is also minor because most modern

operating systems (e.g., Linux 2.6) offer interfaces to bind

a process to a specific CPU (e.g., CPU affinity), and in fact,

most operating systems avoid “process hopping” by default.

2.2 Clock Skew and Network Latencies

As you can imagine the crystals used for hardware timers

are not ideal with respect to their frequency. They may be

a little bit slower or faster than their nominal rate. This

drift is also temperature dependent and has been analyzed

in [15] and [17]. It was shown that this effect is significant

enough to distinguish / identify single computers and some-

times even the timezone which they are located in. Due to

other effects, such as the NTP daemon that synchronizes

every 11 minutes (local time!) by default, the clock dif-

ference between two nodes may behave very unpredictable,

which will lead to erroneous results. Therefore the usage

of a software independent clock like the TSC is generally

a viable alternative. Of course those effects could have a

negative influence on collective benchmarks which rely on

time synchronization, especially if the synchronization is

done only once before a long series of benchmarks. In our

experiments it turns out that two clocks (even on identical

hardware) always run at slightly different speeds. There-

fore we analyzed the clock skew between various nodes in

a cluster system over a longer period of time.

Similar to the clocks, that do not run totally syn-

chronously, we do also expect a variance in the network

transmission parameters for different messages. The most

important parameter for benchmarks and synchronization is

the network latency (or round-trip-time (RTT) in ping-pong

benchmarks). Thus, we have to analyze the variance of RTT

for different networks.

We used a simple ping pong scheme to determine the

RTT: Rank 1 sends its local time t1 as an eight byte mes-

sage with a blocking send to rank 2. As soon as rank 2 has

completed the corresponding recv, it sends its local time t2
back to rank 1. After rank 1 is finished receiving that times-

tamp it checks his local time t3. To use a portable high-

precision timing interface and to support many network in-

terconnects, the benchmark scheme was implemented in the

Netgauge performance measurement framework [10]. A

pseudo-code is shown in Listing 4. The difference between

the first and the second timestamp obtained by node 1 is

the roundtrip time (trtt ← t3 − t1). On our x86 systems,

we used RDTSC in the take time() macro because this

gives us a very high resolution and accuracy. However, we

double-checked our findings with MPI Wtime (Which uses

gettimeofday() or similar functions) to avoid common

pitfalls described in Section 2.1.

This measurement was repeated 50,000 times, once ev-

if (rank == 0) {
t1 = take time();

module→ send(1, &t1, 8);

module→ recv(1, &t2, 8);

t3 = take time();

} else {
module→ recv(0, &t1, 8);

t2 = take time();

module→ send(0, &t2, 8);

}

Listing 4. The RTT Benchmark

ery second over a period of 14 hours. We gather data to get

information about the RTT distribution and also the clock

skew between two nodes. Thus, we define the difference

between t1 and t2 as clock-difference (tdiff ← |t1 − t2|)
and collect statistical data for the clock differences too.

The benchmark results, a historgram of 50,000 RTT

measurements in 200 uniform bins, for the latency (RTT/2)

distributions of InfiniBand, Myrinet and Gigabit Ethernet

are shown in Figure 4.
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The clock skew results of 6 different node pairs on our

test systems are shown in Figure 5. We see that the clock

difference behaves relatively linear and can thus be cor-

rected by a linear error function. That way synchroniza-

tion error below 1 ppm (parts per million) can be achieved.

Without linear error correction the error can be up to 300

ppm. The detailed methodology that was used to determine

the clock difference is described in the next section.

3 Time Synchronization

We describe a new time synchronization schemes that

base on our analysis of clock skew and latency variation.

We begin by defining a scheme to synchronize two pro-

cesses and derive a scalable scheme to synchronize large

process groups. We used this schemes to synchronize the

processes in our collective benchmark NBCBench [9] that
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uses a window-based benchmark scheme.

3.1 Synchronizing two Processes

A clock synchronization between two peers is often ac-

complished with a ping pong scheme similar to the one de-

scribed above: Two nodes calculate their clock difference

so that the client node knows his clock offset relative to the

server node. This offset can be subtracted from the clients

local time when clock synchronization is required. How-

ever this procedure has certain pitfalls one has to be aware

of.

Many implementations of the scheme described above,

for example the one found in the SKaMPI code, use

MPI Wtime to acquire timestamps. This is of course the

most portable solution and works for homogeneous nodes

as well heterogeneous ones. But you can not be sure which

timing source is used by MPI Wtime, for example the us-

age of gettimeofday() is, due to it’s portability, quite

likely. But the clock tick rate of this clock can vary (cf. Sec-

tion 2.1). We showed in Section 2 that a linear correction

can be used for nodes running at different clock speeds if

software errors (e.g., NTP) are avoided.

We also showed in Section 2 that measured network la-

tencies are varying with an unpredictable distribution. The

effect of this pseudo-random variation of the latency to the

clock synchronization has to be minimized. Using the aver-

age or median of the clock difference, like many codes do

today, is not a viable option because, as you can see in the

histograms, they vary a lot. A better approach is the mea-

surement of roundtrip time and clock difference at the same

time and only use the clock differences obtained in mea-

surements which showed a latency below a certain thresh-

old.

The distribution of roundtrip times can not be known in

advance. That implies that the threshold can not be selected

easily. We chose a different approach to ensure accurate

measurements. For the measurements in Section 2, we used

only the 25% of the results that had the smallest roundtrip

time. However, this requires a fixed number of measure-

ments to be conducted every time which makes this scheme

unusable for online measurements. For this purpose, we de-

veloped another approach. We conduct as many measure-

ments as we needed so that the minimal observed roundtrip

time does not become smaller for N consecutive measure-

ments.

While this scheme is guaranteed to converge, it is not

possible to predict how many measurements have to be con-

ducted for a certain N . It is also not possible to select an

N mathematically that ensures a certain quality of the ob-

served “minimal” roundtrip time. Thus, we performed a

simulation to find suitable values for N for different inter-

connection networks.

The simulation takes a random roundtrip time from our

list 1 an checks if it was bigger than the smallest one ob-

served in this run. If this condition is met N consecutive

times the run is completed and we compute the difference

between the smallest RTT in our whole dataset and the one

observed in the current run. The averaged values for sev-

eral networks are graphed in Figure 6. It shows that the

quality of the measurement and the measurement costs (i.e.,

the number of measurments) grow relatively independent

of the network with N (the costs for the different networks

look nearly identical on the double-logarithmic plot, thus

we plotted it only once). However, the quality of the re-

sults grows pretty fast for small N and seems to “saturate”

around 5%. To support every network, we chose N = 100,

which has an error of less than 10% for our tested networks

and converges after approximately 180 measurements.
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3.2 Scalable Group Time Synchronization

Collective time synchronization means that all nodes

know the time difference to a single node so that every node

1we used the 50,000 RTTs gathered as described in Section 2



can compute a global time locally. Rank 0 is conveniently

chosen as global time source, i.e., after the time synchro-

nization, every rank knows the difference between its own

clock and rank 0’s clock. This enables globally synchronous

events initiated by rank 0. For example, rank 0 can broad-

cast a message that some function is to be executed at its

local time x. Every rank can now calculate its local time

when this operation has to be executed.

A common scheme to synchronize all ranks is start the

point-to-point synchronization procedure between rank 0

and every other rank. This disadvantage of this scheme is

that it takes P − 1 synchronization steps to synchronize P
processes. We propose a new and scalable time synchro-

nization algorithm for our scalable benchmark. Our algo-

rithm uses ⌈log2P ⌉ communication steps to synchronize P
processes.

The algorithm divides all ranks in two groups. The first

group consists of the maximum power of two ranks, t =
2k ∀ k ∈ N , t < P beginning from rank 0 to rank t − 1.

The second group includes the remaining ranks t to P − 1.

The algorithm works in two steps, the first group syn-

chronizes with a tree-based scheme in log2t synchroniza-

tion rounds. The point-to-point scheme, described in Sec-

tion 3.1 is used to synchronize client and server. Every rank

r in round r acts as a client if r mod 2r = 0 and as a server

if r mod 2r = 2(r−1). All clients r use rank r+2(r−1) as

server and all servers rank r− 2(r− 1) as client. All client-

server groups do the point-to-point synchronization scheme

in parallel. Every server gathers some time difference data

in every round. This gathered data has to be communicated

at the end of every round. To be precise, a server com-

municates 2(r − 1) − 1 time differences to its client at the

end of every round. The clients receive the data and update

their local differences to pass them on in the next step. Af-

ter log2t rounds, rank 0 knows the time differences to all

processes in group 1.

In the second step, all processes in group 2 choose peer

r − t in group 0 to synchronize with. All nodes in group

2 synchronize in a single step with their peers and send the

result to rank 0 which in turn calculates all the time offsets

for all nodes and scatters them accordingly. After this step,

all nodes are time synchronized, i.e., know their time differ-

ence to the global clock of rank 0. The whole algorithm for

an example with P = 7 is shown in Figure 7.

Figure 8 shows the difference in synchronization time

between a linear scheme and the proposed tree-like algo-

rithm. The benchmark, which measures the synchronization

time at rank 0, was run on the odin cluster at Indiana Uni-

versity, the cluster consists of 128 Dual Opteron dual-core

nodes. To simulate a real application, we used all available

cores of the machine. The synchronization time is greatly

reduced (up to a factor of more than 16 for 128 processes)

with the new scheme. The gain of the new method is even
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Figure 7. Synchronization Method

higher for Gigabit Ethernet but graphs have been omitted

due to space restrictions.
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4 Conclusions

In this work, we analyzed different schemes to bench-

mark the latency of collective operations. We defined cer-

tain systematic errors in common methods and proposed a

new and scalable scheme that bases on the window mecha-

nism used in SKaMPI. Therefore, we propose and analyze

a new scalable group synchronization method for collective

benchmarks. Our method is more than 16 times faster on

128 processes and promises to be more accurate than cur-

rently used schemes. We implemented the network analy-

sis benchmark in the open source performance analysis tool

Netgauge. The described scheme to benchmark collective



operations has been implemented in the open source tool

NBCBench.

Future work on this area includes the application of this

new scheme to measure latency and communication/com-

putation overlap of non-blocking collective operations.
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