
Modeling Communication in Cache-Coherent SMP
Systems - A Case-Study with Xeon Phi∗

Sabela Ramos
Computer Architecture Group

University of A Coruña
Spain

sramos@udc.es

Torsten Hoefler
Scalable Parallel Computing Lab

ETH Zurich
Switzerland

htor@inf.ethz.ch

ABSTRACT

Most multi-core and some many-core processors implement
cache coherency protocols that heavily complicate the design
of optimal parallel algorithms. Communication is performed
implicitly by cache line transfers between cores, complicat-
ing the understanding of performance properties. We devel-
oped an intuitive performance model for cache-coherent ar-
chitectures and demonstrate its use with the currently most
scalable cache-coherent many-core architecture, Intel Xeon
Phi. Using our model, we develop several optimal and opti-
mized algorithms for complex parallel data exchanges. All
algorithms that were developed with the model beat the per-
formance of the highly-tuned vendor-specific Intel OpenMP
and MPI libraries by up to a factor of 4.3. The model can
be simplified to satisfy the tradeoff between complexity of
algorithm design and accuracy. We expect that our model
can serve as a vehicle for advanced algorithm design.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Modeling techniques

Keywords

Cache coherency; Communication modeling; Shared mem-
ory systems; Intel Xeon Phi

1. MOTIVATION
The recent stop of frequency and Dennard scaling while

Moore’s law still holds, caused processor manufacturers to
move into the direction of multi- and many-core architec-
tures. Eight- or sixteen-core CPUs are standard in today’s
commodity machines, and the number of cores is growing,
for example in graphics processing units (GPUs) which are
exceedingly used for general purpose computations. How-
ever, programming GPUs requires a deviation from tradi-
tional latency-optimized programming to stream-optimized

∗This work was performed during a visit of S. Ramos at
ETH, financed by HiPEAC

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HPDC’13 June 17–21, 2013, New York, NY, USA.
Copyright 2013 ACM 978-1-4503-1910-2/13/06 ...$15.00.

computing. Thus, it is considered viable to push the stan-
dard architectures, e.g., x86 into the many-core era. Those
architectures typically offer automated cache coherency to
the user, a mechanism where changes in one cache are au-
tomatically transferred to other caches. Indeed, coherency
protocols are usually the only means of communication be-
tween cores. Cache-coherency protocols are often imple-
mented using fully connected crossbars and broadcast proto-
cols for smaller numbers of cores. However, crossbar switches
and broadcast protocols do not scale to larger numbers of
cores and are commonly replaced by directory-based ap-
proaches.

Some ISA’s, e.g. x86, do not offer explicit communica-
tion functions between cores, thus, communication must be
implemented through loads and stores, essentially relying on
the underlying cache-coherency protocol. The growing num-
ber of cores makes it increasingly important to understand
the performance characteristics of such protocols. Analytic
performance models, a formalization of such performance
characteristics, can be used to design intelligent and scal-
able multi-core algorithms.

Current broadcast- and directory-based cache coherency
protocols are implemented using a rather complex state ma-
chine where every cache line (a fixed unit of memory cells)
can be in a different state in cache. In this work, we create
a complete performance model for communication in cache-
coherent systems by assigning a cost to each transition for
a cache line in different caches. We then show how to re-
duce the complexity of the full model to enable its use for
algorithm design. We demonstrate how to use this model
mechanically for optimizing algorithms as well as the devel-
opment of optimal algorithms. Our target architecture is
the Intel’s Xeon Phi accelerator, the currently most scalable
cache-coherent single-chip architecture. Our developed al-
gorithms are up to 4.3 times faster than Intel’s hand-tuned
implementation in high-performance libraries and compilers
(MPI and OpenMP).

In summary, the main contributions of this work are:

• We propose a novel state-based modeling approach for
memory communication in cache-coherent systems.

• We demonstrate the applicability of the model to In-
tel Xeon Phi and show how it can be simplified for
algorithm design.

• We demonstrate how our model can be used to design
and optimize algorithms far beyond previous hand-
optimized versions.

Furthermore, based on those insights, we argue that the
addition of explicit communication interfaces for on-chip
communication could enhance the performance of parallel
algorithms significantly.

2. A PERFORMANCE MODEL FOR COM-

MUNICATION IN CACHE-COHERENT

SYSTEMS
In most multi-core systems, the only way to communicate

data from one thread, T0, to another thread, T1, is to issue
load and store instructions from and to main memory. For
example, if T0 wants to send a word (initially in a register)
to T1, it would store it to a specific memory location which
is then read by T1 (assuming appropriate synchronization).
Early multi-core systems, using the MESI protocol [13],

would perform this communication through main memory,
i.e., the line would be evicted from T0’s cache to main mem-
ory and loaded into T1’s cache from memory. However,
the costs to communicate the line to memory and back are
significantly more expensive than on-chip transfers. Thus,
more recent cache-coherency protocols [10] such as MOESI,
MESIF, and extended MESI [1, §2.1.3] protocols allow direct
cache-to-cache transfers.
We discuss the MESI protocol as an example and note that

it can be extended with additional states to model advanced
protocols. Table 1 summarizes the MESI states and their
semantics.

Table 1: MESI protocol states

Who may own it
This core Other cores Is it Modified?

M Modified Yes No Yes
E Exclusive Yes No No

S Shared Yes Yes No1

I Invalid No Yes -

Since memory is generally arranged in blocks (or lines),
we will argue in terms of cache lines in the following. First
we assume that the communicated data fits in one line and
then we will extend the model to cover multi-line transfers.
The cache coherency protocol state will determine the lo-

cation of each cache line2 and the operations needed in order
to fetch it, thus the latency of reading or writing will depend
on the state of the requested line.
When communicating a cache line, it is always transferred

between the caches of two cores running threads T0 and T1,
respectively. We assume the most general model where the
line may be in any state in each cache. Let us assume that
T0 wants to communicate a line that is in state invalid (I)
before the communication. Thread T0 will write the send
data and the line would transition from I → M in its local
cache. The following read by T1 would transfer the line to
T ′
1s cache and transition it in both caches into the shared

state. We assume that each state update and line transfer
has a specific cost associated with it.
A program P now defines a set of transitions for each

used cache line in each cache of the parallel computation.
1This state can be extended to allow sharing of modified
lines as we describe later.
2we use “cache line” and “cache line data” synonymously if
the meaning can easily be inferred

The possible transitions for each cache line (as mandated by
P) can be modeled with a finite automaton with an initial
state I (invalid).

We can now model the state changes and costs for all
pairs of line states in T0 and T1. Figure 1 shows our initial
cost model for the transfer of one cache line from T0 to T1.
Let both threads be running in two different cores using an
extended MESI protocol in which a modified line can be
shared (other protocols would require slightly different but
conceptually identical transition cost graphs). Each vertex
represents the state of the line in each of the two cores,
while edges represent the transitions. The possible states of
a line in one core are M (modified), E (exclusive), S (shared)
and I (invalid). Each vertex would be composed by the
combination of two of these states to represent the cache
line in each of the two cores. Vertices that are not shown
represent invalid combinations of protocol states (e.g., the
same line cannot be exclusive to two caches!).

Figure 1: Transition diagram for the MESI protocol for com-
municating one cache line with two cores. The vertices form
combinations of states (see Table 1), and the edges show
actions that cause transitions and the associated costs.

Each transition is labeled with the required action (in the
form Ti, action) and the cost associated. Dotted edges either
represent external actions taken by a third thread (T2) that
runs in another core, or local capacity evictions. Thus, those
edges do not have any associated cost. The actions can be
read, RFO (request for ownership) and evict. When several
actions appear at one edge, it indicates that any of them can
be taken to transition to the target vertex.

The costs for all line transfers can be modeled in terms of
line reads since a cache line is read into the local cache for
both, load and store operations. Line writes only happen
if lines are evicted to main memory and are thus outside of
our cache-to-cache communication model. We denote the
costs for reading lines as RL,S , where L is the location of
the line (Local for the own cache of the thread performing
the action, and Remote if the line is in other core cache),
and S is the state of the line before the transition (M, E, S,

or I). If S = I, the location is not relevant since the line has
to be fetched from main memory.
The symbol ∗ preceding some of the costs indicate that

there can be an overhead as a consequence of the need to
invalidate the line in other caches. This occurs, for example,
with an RFO of a shared line: with a modified or exclusive
line the target of invalidation is well-defined (the current
owner), but with a shared line there can be multiple cores
holding the line.
All costs (RL,S) in the model can be benchmarked with a

methodology similar to the one proposed by Molka et al. [18].
Due to space limitations, we only discuss the most scalable
and thus most interesting architecture, Intel Xeon Phi, in
the following. The extended technical report version of this
paper [22] contains model parameters for other architectures
as well.

2.1 Intel Xeon Phi Architecture
The Intel Xeon Phi coprocessor is a many-core system

based on the Intel MIC (Many Integrated Core) architec-
ture. Its cores are arranged on a bidirectional ring bus that
provides high scalability. Figure 2 represents the basic ar-
chitecture of the Xeon Phi including the cores, the bus, the
memory controller and the tag directories. The current com-
mercial Xeon Phi (5110P) has 60 simplified Intel CPU cores
running at 1056 MHz and supports 4 threads per core with
hyperthreading (thus, 240 threads in the die). The cores
have a vector unit with 64 byte registers featuring a new
vector instruction set known as Intel Initial Many Core In-
structions (IMCI). Each core has a 32 kb L1 data cache,
32 kb L1 instruction cache, and a private 512 kb L2 unified
cache which is kept coherent by a distributed tag directory
system (DTDs). There are 64 tag directories connected to
the ring and the address-mapping to the tag directories is
based on hash functions over the memory addresses, leading
to an even distribution around the ring. The bidirectional
ring to which cores and DTDs are connected has three inde-
pendent rings in each direction [7]: the data block ring (64
bytes wide), the address ring (send/write commands and
memory addresses) and the acknowledgment ring (flow con-
trol and coherence messages). The memory controllers, also
connected to the ring, provide access to the GDDR5 memory
(8 GB of global memory). The coprocessor runs a simplified
Linux-based OS in one of the cores.

Figure 2: Architecture of the Intel Xeon Phi coprocessor

The main advantage of the Xeon Phi over other acceler-
ators or coprocessors is that it provides the well-known x86

ISA and memory model, hence the programming effort is
just focused on how to better exploit performance, but it
can be done with known techniques and languages such as

OpenMP or MPI. Xeon Phi can be used as a mere coproces-
sor in which the host offloads code to be accelerated, or as
an independent unit that runs a whole application or that
communicates in a symmetric manner with the host [1, §6].

2.1.1 Directory-Based Cache Coherency

The cache coherency on Intel Xeon Phi chips is imple-
mented using an extended MESI protocol [1, §2.1.3]. The
main difference to standard MESI-based systems is that the
shared (S) state was extended with a directory-based cache
coherency protocol called GOLS (Globally Owned, Locally
Shared) in order to avoid broadcast storms on the address
buses. GOLS extends the shared state to allow modified as
well as unmodified lines. Each cache needs to consult the
GOLS protocol to determine if a line is in modified state or
not.

The global coherency is maintained via Distributed Tag
Directories (DTDs) that hold the GOLS coherency state of
each line. Lines are assigned to each DTD using a hash
function based on the address of the line. This results in
an even load distribution (assuming an even distribution of
memory addresses) but does not take advantage of locality in
the network. This means that the DTD which is responsible
for a line held by a specific core is not local to the core, in
fact, on average, it will be at a distance of 15 cores due to
the ring topology. Table 3 describes the different states of
the GOLS directory protocol.

Table 3: GOLS protocol states

Number of Is it
owners Modified?

GOLS Globally Owned Several Yes
Locally Shared

GE Globally One Yes or No
/GM Exclusive (the core has

/Modified M or E)
GS Globally Shared Several No
GI Globally Invalid None -

When a core encounters a cache miss, it requests the line
from the according DTD that will answer depending on the
GOLS state and will either request the memory or the core
owning the line to answer with the line data. If a core owns
the line, it will acknowledge the DTD and send the data to
the requester cache, which will then acknowledge the DTD
that it has received the line, for the DTD to update the
line state. In addition, any eviction has to notify the DTD
before evicting the line.

A direct consequence of having a distributed directory
protocol based on line addresses is that there are high dif-
ferences in access latencies that are not dependent on the
distance among cores but on the DTD that is holding the
line. Since we cannot control the address mapping onto
DTDs, we will use randomized accesses and work with av-
erages and standard deviations to avoid DTDs bias in the
benchmarking results and, thus, in the modeling. In fact,
we observed up to a 5x variation in latency when not using
randomization.

The protocol states are rather similar to MESI, the only
difference lies in the fact that some reads are more expensive
due to interaction with the DTDs and the extended shared
state. However, the extended MESI model developed in the
previous section is sufficient to model all transitions.

Same Adjacent Middle Largest
core cores distance distance

avg stdev avg stdev avg stdev avg stdev
M 8.6 0.2 241.2 21.7 234.7 25.6 240.1 10.4
E 8.6 0.2 227.4 20.6 235.8 25.5 237.4 27.7
S 8.7 0.9 232.0 10.2 233.4 35.0 233.4 22.5
I 277.7 34.0 274.3 25.2 278.8 34.4 284.5 29.6

(a) Results of the BenchIT [18] latency benchmark in nanoseconds

Label Cost

RL,M 8.6
RL,E 8.6
RL,S 8.7
RR,M 234.7
RR,E 235.8
RR,S 233.4
RI 277.7

(b) Model parameters
(nanoseconds)

Label Cost

RL,∗ = RL 8.6
RR,∗ = RR 235.8

RI 277.7

(c) Simplified parame-
ters (nanoseconds)

Table 2: Parametrizing and simplifying the model: (a) shows latency results and standard deviations for different distances,
(b) extracts the relevant model parameters (cf. Fig. 1), (c) shows the simplified model parameters (cf. Fig. 3).

2.2 Parametrizing the Model for Xeon Phi
We use the BenchIT [18] benchmark to determine the base

parameters of our model. The benchmark measures the la-
tency of T0 reading random lines from a buffer owned by
T1 varying the state of the lines and the placement of T1.
We place T1 in the same core (distance 0), in an adjacent
core (distance 1), in a distant core (distance 15) and in a
core located at the opposite side of the ring (distance 30).
When T1 is in the same core as T0, the reads of M , E, and
S lines are performed inside the local cache, but, when T1

is located in another core, T0 has to communicate with the
DTD in charge of the cache line (the S state is achieved by
sharing the line between T1 and a third thread).
Our measurements in Table 2a show that communica-

tion with the DTD makes the distance between the two
cores nearly irrelevant. In fact, the distance-invariant per-
formance is a design goal for excellent application scalability
on Xeon Phi. Our model parameters can be derived from
those measurements (we use the “Middle distance”) and are
shown in Table 2b. If the line is in I state, that is, it has to
be fetched from memory, it does not matter if T1 is in the
local core or in a remote one, and for Table 2b we chose the
values for “Same core”.
The full model in Table 2b indicates that some of the

states in Figure 1 can be collapsed due to nearly identical
transition costs. We can form three groups of operations,
local reads, remote reads, and reads of invalid lines. Ta-
ble 2c and Figure 3 summarize the simplified model for Intel
Xeon Phi.

Figure 3: Graph of the simplified MESI transitions of a line
within two cores

The simplifications we applied to make the model easier
to use for algorithm design are system-specific. We tested
the methodology on other systems, such as Sandy Bridge
and Nehalem, and found that similar simplifications can be

performed. The main difference is that, on those systems,
the performance is generally depending on the distance be-
tween the caches. We found that this can be included with
constant cost-offsets for each distance.

3. COMMUNICATION MODELS
In this section, we utilize the basic cache communication

model to develop slightly more complex models for typical
communications in parallel programming. The first and sim-
plest model is for a single cache-line ping-pong benchmark
where a send-buffer is communicated to a distinct receive
buffer. The main difference is that this benchmark involves
two memory locations and two lines, instead of one location
as in the previous model. Later, we will extend the single-
line ping-pong to multiple lines and then investigate the ef-
fect of contention while accessing single lines from multiple
threads. This will result in a complete model for communi-
cations in cache-coherent systems that covers all scenarios
that, for example, the LogP model family [9] expresses.

3.1 The Single-line Ping-Pong Model
The single-line ping-pong benchmark resembles the de-

sign of traditional ping-pong benchmarks: a send buffer is
copied to a buffer at the receiver and, after reception, an-
other buffer is copied back to the sender. This requires two
sets of buffers on each process (thread) and a synchroniza-
tion between sender and receiver. We are using a designated
byte, which we call canary value in the receive buffer as a
synchronization flag such that the receiver waits for the mes-
sage by repeatedly reading this byte (polling) until the byte
changes. Such “canary protocols” are used in practice for
small-message synchronizations [12]3. Figure 4 shows the
benchmark schematically.

flag

flag

flag

flag

cache line

cache line

cache line

cache line

Thread 0

SendBuffer0

SendBuffer1

RecvBuffer1

RecvBuffer0

Thread 1

poll

poll

end timer

start timer

Figure 4: Ping-Pong test between two threads using four
buffers.

The desired coherence state for each line is established
before each ping-pong exchange. An S state indicates that
3We remark that such canary protocols are typically lim-
ited to a single aligned cache line due to relaxed memory
consistency in modern multiprocessors.

the line is shared between the two threads performing the
ping-pong. Considering the symmetry of the benchmark,
send-buffers from both threads have the same cache coher-
ence state (Ss), and so do the recv-buffers (Sr). The esti-
mation of the latency of a ping-pong can be based upon the
latencies of reading each line.
We assume that the protocol is sender-driven, i.e., the

sender copies the data to the receiver. To perform the copy,
the sender reads its send-buffer, which is in state Ss in the
local cache, in time RL,Ss

. This is followed by a read of the
correspondent recv-buffer, which is in state Sr in the remote
cache, in time RR,Sr

. Then (ignoring the overhead that the
write operation could provoke) the receiver reads its recv-
buffer, that has been modified by the sender, and thus is in
modified state in the sender’s cache, in time RR,M . This pro-
cess is repeated with switched roles. Equation (1) shows T1,
the single-line latency and the simplified model. The term
O stands for an overhead that might be introduced by the
coherency traffic due to having two active communicating
threads (ideally, O = 0).

T1 = RL,Ss
+RR,Sr

+RR,M +O = RL + 2RR +O (1)

We measured 5000 independent iterations (using the high-
precision x86 RDTSC counter) with pseudo-random addresses
to avoid bias caused by the DTDs. The average and stan-
dard deviation form a Gaussian Distribution of the samples.
We applied the t-test to each result to assess the statistical
significance of our results and modeling. Where the result
of the t-test was to reject the null hypothesis of equality
of averages between both distributions, the overhead O was
estimated as the difference of the distributions. Since the
variances are unknown and not equal, we used Welch’s t-
test [25]. We found that we could reject the equality of av-
erages with more than a 90% confidence in every scenario,
confirming that there is an extra overhead imposed by the
coherency traffic.
For the two threads T0 and T1 on different cores and

Ss = Sr = E, we measured 497.1µs (standard deviation
σ = 77.2µs) while the simplified model predicts 479.1µs
(σ = 36.1µs). For the states Ss = I and Sr = E, we mea-
sured 842.8µs (standard deviation σ = 102µs) while the
simplified model predicts 748.1µs (σ = 49.6µs)4.
The state Sr = I cannot be measured with our method

because it cannot be guaranteed that the receive buffer is
in invalid state when the sender attempts to fetch it. This
is due to the benchmark design: the receiver is polling the
recv-buffer and it can fetch it from memory before the sender
requests it.
The results show that the overhead O ≃ 18 for the in-

cache configuration and O ≃ 95 if the send-buffer is in mem-
ory. However, the overhead is lower than the standard devi-
ation of the measurements, thus, although our t-test shows
that it is statistically significant, it could be within the noise
of real measurements.

3.2 The Multi-line Ping-Pong Model
We now show how to model multi-line ping-pong trans-

fers, i.e., buffers can contain more than one cache line and,
assuming x86 total store order [20], the receiver will only
poll for the canary value on the last line of the recv-buffer

4An extensive analysis of every combination of states and lo-
cations of the threads has been carried out and are included
in the extended version of this article [22].

while the sender copies the content of the send-buffer. The
analysis of different cache states is limited to 8 kb buffers
due to the use of four buffers per pair of threads and the L1
cache size (32 kb). From now on, and given that we want
to analyze the effect of having threads in different cores, we
will assume a one-to-one mapping of threads to cores.

Assuming pipelining, the sender fetches every line in
2N
P

RL,S where N is the number of cache lines of each buffer
and P is the number of outstanding memory requests per
core. After the copy, the receiver reads the last line, that
has been modified by the sender, in RR,M .

However, this simple model misses several factors that
affect performance as the eviction overhead, the hardware
prefetcher, the signal buses or the DTD capabilities to serve
the outstanding requests. To approach this overhead, we
tested a multiplicative factor based on the results, but, al-
though it was asymptotically accurate, the relative error
reached the 40-50% for small messages (2-12 lines) when
the send-buffer was in I, and around 30% when it was in E.
To obtain a more accurate model, we use linear regression
with a typical transfer function. Equation (2) shows the
model function where o is the asymptotic fetch latency for
each cache line (including hardware prefetch, etc.), and p, q
model the startup overhead which consists of a fixed part
q that is amortized partially by the number of fetched lines
with the factor p.

TN = o ·N + q −
p

N
(2)

If we apply this model to a single line broadcast, it will
essentially lead to the one-line model discussed before in
Section 3.1: T1 = RL + 2RR +O = q + o− p.

0
5

1
0

1
5

64 128 512 2048 8192

L
a
te

n
c
y
 (

u
s
)

Size (Bytes)

0
2

0
4

0
6

0
8

0
1

0
0

R
e
la

ti
ve

 E
rr

o
r

(%
)

average

model

rel. error

(a) Sender and receiver
buffers in Exclusive state.
The parameters of the
model (in nanoseconds) are
76.0 ·N + 1521.0− 1096.0

N

0
5

1
0

1
5

64 128 512 2048 8192

L
a
te

n
c
y
 (

u
s
)

Size (Bytes)

0
2

0
4

0
6

0
8

0
1

0
0

R
e
la

ti
ve

 E
rr

o
r

(%
)

average

model

rel. error

(b) Sender and receiver
buffers in Invalid state.
The parameters of the
model (in nanoseconds) are
94.9 ·N + 2750.0− 2017.5

N
.

Figure 5: Latency and performance model for a multi-line
ping-pong

The parametrization of the model has been performed
with ping-pong tests using buffers from 64 bytes (one cache
line) to 8 kb, varying the initial cache state of the buffers5.

The results of our ping-pong measurements and the model
fits are shown in Figure 5. The measurement for each
size were repeated 5000 times and timed separately using
x86 RDTSC. The left axis shows boxplots [17] of each value
where the horizontal line is the median, the upper and lower
parts of the box denote the first and third quartile and the
whiskers show the minimum and maximum data values (out-

5This test can use the Sr = I because the receiver is polling
only the last line, and when the sender fetches the recv-buffer
lines they are all invalidated except for the last one.

liers were removed). We use boxplots to visualize the statis-
tical noise across measurements. The right axis and asterisks
show the relative error of the model.

3.3 DTD Contention Model
On Xeon Phi, the DTDs may cause delays when they are

contended [7]. Thus, we include an additional contention
model to capture this effect. This may not be necessary in
broadcast and snooping-based cache-coherency protocols.
Contention is benchmarked using a global send-buffer

owned by one thread that every other thread (receivers)
copies into a private recv-buffer. When having only two
threads, the performance is expected to be RLs,Ss

+RLr,Sr
.

For the rest of the section, and given that the sender is an
idle thread that only owns the global buffer, we will assume
that the number of threads is the number of receivers.
The contention on MIC for cached lines can be estimated

with a linear model TC(nth) = c · nth + b, where nth is
the number of threads, and c represents the slope and the
overhead imposed when adding a new thread. If nth = 1,
there is no contention and TC(1) = RL + RR = c + b (the
cost of copying a global send-line into a private recv-line).
Equation (4) shows the DTD contention model when buffers
are in E state in the owner’s cache.

TC(nth) = RL +RR + c · (nth − 1) = b+ c · nth (3)

However, if the global line is in memory, the performance
is limited by the access to memory and the model is similar
to the one developed for the multi-line ping-pong in terms
of the number of threads accessing the line instead of the
message size.

TC(nth) = c · nth + b−
a

nth
(4)

(a) Sender and receiver
buffers in Exclusive state.
The parameters of the
model (in nanoseconds) are
320.5 + 56.2 · nth.

(b) Sender and receiver
buffers in Invalid state.
The parameters of the
model (in nanoseconds) are
23.4 · nth + 1202.0− 695.8

nth

.

Figure 6: Contention in the access to the same line

Figure 6 shows the results of the benchmark for different
number of threads and state of the global and private buffers
(E for both in Figure 6a and I in Figure 6b).

3.4 Ring Contention
We have also analyzed how the number of running threads

affects the performance of the cache line transfers. For this
purpose, we have designed two ping-pong benchmarks. The
first one arranges threads into groups of four where the com-
municating pairs are interleaved (e.g., if a group is formed
by T0, T1, T2 and T3, and Ti is running in core i, the pairs
are T0−T2, and T1−T3). The second benchmark forces pairs

to communicate through the same part of the ring (e.g, with
6 threads, the pairs will be T2 − T3, T1 − T4, T0 − T5)
assuming that communications will use the shortest path.
Due to the ring structure of the Xeon Phi, from the 16th
pair on, communications will go through the other half of
the ring.

Regardless of the initial cache state of the buffers, both
benchmarks showed that there is no congestion caused by
having several pairs of threads communicating simultane-
ously if they are accessing different memory addresses. The
differences that appeared were not related to the number of
running threads and the most feasible reason is the assign-
ment of the requested lines to DTDs.

We have shown that the communication model can be
parametrized accurately for simple communication tasks
such as ping-pong. We now discuss how the model can
be used to develop and parametrize suitable algorithms for
communications on Xeon Phi.

4. DESIGNING COMMUNICATION AL-

GORITHMS IN THE MODEL
The communication algorithms tackled are different pat-

terns of data exchange where interference among threads
hugely increase variability. E.g., if two threads, T0 and T1

have to write to a line that T2 is polling, waiting for them to
write the value, the performance will depend on the order in
which the three operations occur, as shown in Figure 7. If
T0 and T1 write to the line, and then T2 checks it (Fig. 7a),
the cost is RI+2RR. But, if T2 checks it right after the write
of T0 (Fig. 7b), the line makes an extra travel to T2 before
going to T1, and T2 has to read it again to get the expected
value (RI +3RR). And there is still a worse scenario: when
T2 is the first that gets the line (Fig. 7c) and keeps polling,
causing the line to travel from T2’s cache to each writer and
the other way round, increasing the cost up to RI + 4RR.

T0 T1

T2

Main

Memory1. Write

(RI)

2. Write

(RR)

3. Read

(RR)

(a) No interference

1. Write

(RI)

4. Read

(RR)
2. Read

(RR)

3. Write

(RR)

Main

Memory

T0

T2

T1

(b) One Interference

2. Write

(RI)

5. Read

(RR)3. Read

(RR)

4. Write

(RR)

1. Read

(RR)

Main

Memory

T0

T2

T1

(c) Two Interference

Figure 7: Interference in the access to a cache line by two
writers (T0 and T1) and a reader that is polling the line
waiting for writes.

To capture all the variations, the algorithms are expressed
as Min-Max Models including the best and the worst case.

In the design of algorithms, it is assumed that data buffers
are initially in exclusive state in the owner’s cache to simplify
the discussion. Similar results were obtained with buffers in
invalid state and the models can be adapted by applying the
invalid-state equations where the exclusive-state models are

used. For the same reason, shared structures are assumed to
be in memory (invalid) at the beginning of each algorithm.

4.1 Fast Message Broadcasting
The broadcast operation consists of sending one message

from one thread, called root, to every other thread. We
will talk in terms of trees since they are the more common
communication patterns in broadcast algorithms.
In a shared memory scenario, a send-receive pair of oper-

ations can be performed in two different ways. In a sender-
driven approach, the sender copies the data into the recv-
buffer, similar to the pingpong benchmark from Section 3.1;
the receiver may notify the sender with the canary protocol
that the recv-buffer is ready. In a receiver-driven approach,
the receiver would copy the message after the sender has
notified that it is ready (notification forwards). In addition,
the receiver has to acknowledge the reception of the message
(notification backwards).
For the broadcast operation, where the sender commu-

nicates with several receivers, the receiver-driven approach
allows simultaneous copies and thus leads to better load bal-
ancing for larger numbers of threads despite the additional
acknowledgment.

4.1.1 Notification

The notification forwards and backwards uses shared
structures in order for them to be accessible to every thread.
There, the root can notify that the message is ready to be
copied and the rest of threads can confirm that they have
received the message, so that the root can free the shared
structure. If the algorithm uses a tree, each parent has to
communicate with its descendants and every descendant has
to notify backwards to is parent, thus, several notification
substructures will be needed.
Given that the parent has to provide, along with a no-

tification flag, the data that is going to be copied or the
address where it is stored, the notification forwards can be
seen as a notification with payload where data and flag can
be fetched in a single line. Hence, if data is small enough to
fit in the same line, the descendants will poll the notification
line and they will copy the data directly from there. If the
space in the notification line is not enough, the parent will
set the flag and an address (zero-copy protocol) from which
descendants will copy the data.
The backwards notification from the descendants to the

parent uses cache lines that are independent from the no-
tification forwards structures to avoid interference in the
copy of the data. We analyze two variants of this notifi-
cation: The first one with one cache line in which every
thread adds a value after finishing. The parent reads this
value and checks if the operation is done. This requires ev-
ery child thread, to write to the same line, and, since only
one thread can write a line at a time, these writes are going
to be serialized. In the second variant, each thread avoids
serialization by writing its own notification line, but the par-
ent has to read them all to check if the operation is done.
We will focus on the use of one line because both the model
and the empirical results confirmed that it provides better
performance.
The model for the notification backwards assumes that

each thread writes an immediate value and thus there is no
cost associated with reading an additional cache line.
Since all threads, but the root, write to the same line,

every thread (but the root) has to read and modify the no-
tification line (RI + (nth − 2)RR). Then, in the best case,
the root only reads the line at the end (RR).

Tnb,min(nth) = RI + (nth − 1) ·RR (5)

In the worst case, the root will check the notification line
after each time a thread wrote to it. This scenario is modeled
by Equation (6).

Tnb,max(nth) = RI + 2(nth − 1) ·RR (6)

4.1.2 Small Broadcast

Once the notification has been analyzed, the design of the
broadcast algorithm focuses on the stages needed to copy the
data from the root into every other descendant. Karp et al.
developed an optimal algorithm [14] in the LogP model, but
this is very different from our state-based min-max model
with separate notification. However, we can use a similar
technique to design our optimal tree taking into account
that all the descendants of a given node can get the data at
the same time.

First of all, we will describe the structure of a generic
tree assuming that each level i can use a different number
of descendants (ki) and that the height of the tree is d. In
this structure, the number of threads in each level (ni) of
the tree is given by equation 7.

n0 = 1, ni ≤

i
∏

j=1

kj (7)

Hence, the total number of threads can be expressed as:

nth ≤ 1 +

d
∑

i=1

i
∏

j=1

kj (8)

All of the ki descendants of one thread from level i are
accessing the same line, thus, by increasing the number of
descendants, we also increase contention. Hence, every one
of these descendants is able to get the data in TC(ki). It is
also worth mentioning that different threads accessing differ-
ent data should not cause any congestion, thus, it is possible
to apply the contention model to each group of descendants
ignoring other groups of threads. Thus, the latency of copy-
ing a message throughout this tree is:

Ttree =
d
∑

i=1

TC(ki) =
d
∑

i=1

(c · ki + b)

=
d
∑

i=1

(RR +RL + c · (ki − 1))

(9)

The optimized tree has to find a tradeoff between the num-
ber of threads that get the value at the same time, thus
causing congestion (c · ki), and the number of levels of the
tree. It is expected that the values of ki decrease while de-
scending throughout the tree since the lower the value of ki,
the lower the latency of acquiring one message.

Figure 8 presents an example of a 10-threads broadcast
tree using (arbitrarily chosen) d=2, k1 = 3, k2 = 2. The
backwards arrows indicate from which node the receivers
copy the message. Threads from level 1 get the message
in t1 = c · k1 + b = 3c + b and, then, leaf nodes will copy
it in c · k2 + b = 2c + b, thus, the total time will be t2 =
c · (k1 + k2) + 2b = 5c+ 2b.

0

54 6 7 8 9

t0

t2 t1

t1 k1

k2

1 2 3

= 0

 = *c + b

 = + *c + b

Figure 8: Tree for an 10-threads broadcast assuming d = 2,
k1 = 3, k2 = 2.

Once the tree structure is defined, we have to take into ac-
count the notification. The total time for notification back-
wards is the time spent from the moment in which the last
descendant receive the message until the root is aware that
every thread has it. The correspondent equations from Sec-
tion 4.1.1 must be applied to each level of the tree, providing
the cost of notification backwards in the critical path.
Regarding notification forwards (i.e., the parent notifying

to its descendants that the buffer is ready to be copied),
first, there is a global flag where the root sets the shared
structure as occupied by the current operation (RI). Each
descendant has to check the flag and copy the data (that
are on the same line), which can be estimated by the con-
tention model (Equation (9)), and then, each parent has to
read its own structure (RI), copy the data into this struc-
ture (RL) and set it as ready (RL). In the worst case, the
descendants can read the flag before it is set and interfere
while the parent is copying the data and setting the flag.
Moreover, when interference involves several threads, they
will cause contention. Although the first reading affected
by contention is an invalid line, the contention model for a
cached line is used for simplicity purposes. Equation (10)
show the best (min) and worst (max) case model for this
notification forwards.

Tfw,min = RI +
d
∑

i=1

(RI + 2RL) = (d+ 1)RI + 2dRL

Tfw,max = RI +
d
∑

i=1

2

(

RR +
d
∑

i=1

(c · ki + b)

)
(10)

The optimal tree to perform a one-item broadcast is thus
the solution to the minimization problem expressed in equa-
tion (11), combining notifications and reception of data.

Tsbcast = min
d,ki

(

Tfw +
d
∑

i=1

(c · ki + b) +
d
∑

i=1

Tnb(ki + 1)

)

N ≤ 1 +

d
∑

i=1

i
∏

j=1

kj , ∀i < j, ki ≤ kj

(11)

This equation can be solved with numerical methods to
obtain d and all ki for the optimal broadcast tree.

4.1.3 Large Broadcast

When each thread has to copy N lines using the tree de-
veloped for the small broadcast and assuming that the N
lines are sent in Npack packets of size Ncl, the leafs will not
start copying until the first package has arrived.
In order to avoid having idle threads in the first stages,

and given that it is possible to divide the N -line message
in Npack = nth − 1 slices, we can construct an algorithm in

stages in which every thread, but the root, starts copying
one different slice of the message. Having every line of the
message in the root’s cache could cause some contention (the
root has to communicate with the DTDs to change the state
of each line from E or M to S) and for the next stages, each
thread copy one slice of the message from a different thread,
having only one thread copying from the same location at
the same time. The performance model of this pipelined
algorithm is stated in Equation (12).

Tpipedbcast = Tinit + T1st + Trest + Tfin

Tinit,min = RI + 2RL

T1st,min = 2RL + TC(nth − 1) + TNcl

Trest,min = (nth − 2)(RR +RL + TNcl
)

Tfin,min = 2RR +RL

(12)

This algorithm will use the same notification structure
than the small broadcast, but since only one thread accesses
this information in each stage, it is possible to have the flag,
address and notification in the same line, allowing the re-
ceiver to fetch it only once during the stage. Moreover, the
owner of the line only checks the notification at the end of
the whole algorithm, minimizing interference. The model
has been divided in four parts: (1) initialization (Tinit), in
which every thread checks its notification line and sets the
local buffer address. (2) First stage (T1st): the root sets its
flag to ready (RL), the rest of threads check it (TC(nth − 1)
is an upper bound to the real value because the contention
model implies the copy of a line and in this scenario threads
only read the value) and copy of the first slice of the mes-
sage (TNcl

using the multi-line model) and sets its own flag
to ready (RL). (3) Rest of stages (Trest), where the rest of
packets (nth − 2) are copied, including the check for readi-
ness (RR) and the notification to the owner (RL). And (4)
Finalization (Tfin), each thread checks for completion (RR)
and sets the own structure as free (RL). The extra RR rep-
resents the notification to the root. To avoid interference
and serialization in this notification, each thread will notify
the first copy in a different stage.

Having only one thread accessing one location at every
stage minimizes interference, however, there are still some
points in which it can appear. In T1st , as happened in the
notification forwards from Equation (10), the polling threads
can interfere with the root. Moreover, in Trest, any thread
(e.g., T2) can finish its stage earlier tan others and try to
read a flag before it is set, e.g., by T1. When setting it, T1

forces the line to be evicted from T2’s cache, that will have
to fetch it again later. And finally, it is possible to assume
that the last thread writes the notification after the first
check for completion, adding some extra costs.

Tinit,max = RI + 2(RR + TC(nth − 1)) +RR

T1st,max = 2RR + TC(nth − 1) + TNcl

Trest,max = (nth − 2)(2RR + TNcl
)

Tfin,max = 2RR +RL

(13)

Although this algorithm minimizes contention and in-
terference, it can also preclude the benefits of prefetching
(Equation (2)) that is only exploited for each packet.

Thus, we analyze a second algorithm, a flat tree, that op-
timizes for prefetching. In a flat tree, all receivers access
the whole message after the root notified them. This al-
gorithm ends when the receivers acknowledge the root that

they have copied the message. Since the number of threads
colliding is large, the notification system uses two lines, in
the same way as the small broadcast. The analysis to be
done here is how contention affects the performance of re-
questing multiple contiguous lines, thus, we have to combine
the contention and the multi-line models. For this purpose,
we use the slope factor of the multi-line ping-pong model (o)
as the time that it takes for one thread to get the message.
This operation will be affected by the congestion caused by
the rest of threads but the root (nth − 2). As intercept
or constant factor, we arbitrarily chose the b from the con-
tention model (assuming that the buffers are in exclusive
state). In this scenario, the Flat Tree algorithm represents
a good tradeoff between the benefits of prefetching and the
drawbacks of contention. The rest of the model is equiva-
lent to one stage of the small broadcast tree. Equation (14)
reflects the best and worst models for this algorithm.

Tftbcast = Tnotif + Tcopy

Tcopy = b+ c · (nth − 2) + o ·N

Tnotif,min = RI + 3RL +RR + TC(nth − 1)

+ (nth − 1)RR

Tnotif,max = RI +RL + 3RR + 2TC(nth − 1)

+ 2(nth − 1)RR

(14)

We expect the second algorithm to perform better for
large message sizes.

4.2 Barrier Synchronization
A barrier synchronization involves every thread acknowl-

edging that every other thread has reached the synchroniza-
tion point. We have modeled it as a dissemination barrier
since it has been proven to be the best algorithm for single-
port LogP systems, but optimizing the parameters within
our min-max models. The dissemination algorithm uses
r = logm(nth) rounds in which thread T sends a notification
to thread (T + i(m+ 1)r) mod nth, 0 < i ≤ r and waits for
the notifications from (T − i(m+ 1))r) mod nth, 0 < i ≤ r.
In our shared memory scenario, assuming that every thread
owns a notification line, each “send” operation consists of
setting a flag and waiting until the receivers acknowledge
that they have read this flag; and, “receive” is to notify to
the senders the read of the corresponding flags.
In the best case, the owner was the last reader of its line

(to check its value in the previous round), having it in cache
when setting it to ready (RL), and, the cost of checking it
after every receiver has finished is RR. Moreover, it has
to read m threads’ flags and, assuming no interference and
that flags are already set, the thread will read and write to
them just fetching each line once. Although every thread has
to read m lines, they are not contiguous and exposed to be
prefetched, thus we will not apply the multi-line model. The
contention model does not apply either because, although m
threads are accessing each line, they are performing writes
that have to be serialized. The total cost is shown in Equa-
tion (15). The m value must be chosen to minimize this
cost.

Tbarr,min = r(RL +RR ·m+RR)

r = ⌈logm(nth)⌉
(15)

However, in every round, the own line can be in other
core’s cache, e.g. if other thread is already checking the
flag,(RR) and the notification value can be checked once and

every time that it is modified by a notifier thread ((2m +
1)RR). Finally, if the first read of other thread’s flags results
in failure (the flag has not been set yet), at least another read
of the line has to be performed. Taking into account that
otherm−1 threads can get the line and modify it in between,
this interference could result in (3m) · RR + m(m − 1)RR.
Since it is unlikely to happen, the model includes only one
interference per line m.

Tbarr,max = r(RR + 4m ·RR + (2m+ 1)RR)

r = ⌈logm(nth)⌉
(16)

The best m can again be found using numerical methods.

4.3 Small Reduction
A reduction is the application of an operation to data

collected from all threads. In this section we will analyze
the implementation of the reduction of one item.

The root is receiving from multiple threads, thus, the op-
eration is very different from broadcast. A first approach
could be having all those threads writing to a common loca-
tion. Then, each thread will have to (1) check a flag to see if
the buffer is ready (RR), (2) read the buffer (RL), (3) apply
the reduction operation to the buffer using its private data
(RL), (4) write the result to the data buffer and (5) notify
that it has finished (RR). If several threads are accessing the
same buffer, steps 2 to 5 have to be performed in an atomic
manner, thus, serializing. To avoid serialization, the root
has several buffers in which each descendant writes its data.
Then the root reads them all and performs the operation.

This scheme can be structured in a tree similar to the
broadcast one. In this tree, each thread from level i has
ki buffers where its ki children copy their own data. Then,
the parent performs the operation with the data from these
buffers. In each stage of the tree, the parent has to set a flag
(RI) that their children (ki) read (causing some contention)
before writing to the corresponding buffer (RR + RL) and
notifying that the data is ready (RR). Once the parent gets
the acknowledgment (RR), it performs the operation (which
is modeled using the multi-line model). The tree minimizing
Equation 17 forms our solution.

Tred,min =
d
∑

i=1

[RI + TC(ki) + (1 + ki)RR +RL + Tki
]

+RR

(17)

The interference in the notification forwards (some
threads read the parent’s flag before it is set) and in the
notification backwards (the parent checks the notification
before it is complete) are reflected in the worst case in Equa-
tion (18).

Tred,max =

d
∑

i=1

[RI + 2TC(ki) + 2(1 + ki)RR +RL + Tki
]

+RR

(18)

Here again, we compute the optimal d and kis using nu-
meric techniques.

5. EVALUATION
The evaluation of the designed algorithms has been per-

formed on an Intel Xeon Phi 5110P with 60 cores at
1052 MHz, the host machine is a Intel Xeon E5-2670 Sandy
Bridge with 8 cores at 2.60 Ghz. The Intel MIC software
stack is the MPSS Gold update 2.1.4346-16, with the Intel
Composer XE 2013.0.079, the Intel Compiler v.13.0 and In-
tel MPI v.4.1.0.024. The benchmarks used are the EPCC
OpenMP Benchmarks 3.0 and the Intel MPI Benchmarks
(IMB) 3.2.
The benchmarks used to measure the performance of our

algorithms were developed to ensure a given cache state in
each of the 1000 iterations. Before each iteration, threads
are synchronized with a custom RDTSC-based synchroniza-
tion and the data lines are placed in the desired cache state.
To guarantee that all threads start at the same time we

used the feature that the RDTSC is consistent among cores [1,
§2.1.7] in a normal power state of the Xeon Phi. Thus, we
generate time intervals for threads to achieve before start-
ing, then assuring that they enter each operation at the same
time. A second synchronization before the collective opera-
tion is performed. The time is measured for every operation
call and the whole distribution of times is used for statistical
analysis of the obtained results. The goal is to check whether
the model predictions are accurate enough and compare the
results with existing solutions.

0 10 20 30 40 50 60

0
5

1
0

1
5

2
0

2
5

3
0

3
5

Number of Threads

L
a

te
n

c
y
 (

u
s
)

Flat Tree
Binomial Tree
Fib. Tree (o=L/2)
Fib. Tree (o=L/4)
Knomial Tree (3)
Optimal Tree

Figure 9: Small Broadcast performance comparing our op-
timal algorithm with widely used broadcast trees.

Before testing, all the parametrizable algorithms (small
broadcast, reduction and synchronization) have been op-
timized to obtain the best parameters by minimizing the
best case models from Section 4. The optimization for the
worst case was also taken into account with similar results,
hence, only the parameters obtained for the best case model
are shown in the graphs. As an example, when having 30
threads, the parameters obtained for a small broadcast were
d = 2, k1 = 5, k2 = 5; for reduction d = 3, k1 = 3, k2 = 3,
k3 = 2; and for barrier m = 6 (r = 2). For 60 threads, the
parameters were d = 3, k1 = 4, k2 = 4 and k3 = 3 for small
broadcast and reduction, and m = 4 (r = 3) for barrier.
Parameters differ for each number of threads and that is the
reason of some variations in the models as seen around 28
processes in Figure 12.
All benchmarks launch one thread per core and, when

using 60 threads, the variability increases because it is not
possible to avoid the core that runs the OS.
Figure 9 shows a comparison between different algorithms

for small broadcast: flat tree, binomial tree, k-nomial tree
(k=3), Fibonacci tree and our optimal tree, all of them with
buffers in E state. For Fibonacci trees [14], given that they
are designed for LogP and that in this system it is not ex-
actly applicable, we have chosen o = L/2 and o = L/4
to construct the tree. As expected, the optimal algorithm
developed using the model obtains the lowest latency even
though, some of the other algorithms, e.g., Fibonacci Trees,
are optimal in other models.

0 10 20 30 40 50 60

0
5

1
0

1
5

Number of Threads

L
a

te
n

c
y
 (

u
s
)

Broadcast
Min−Max Model
Intel MPI

Figure 10: Small Broadcast performance compared to the
model and the Intel MPI implementation.

0 10 20 30 40 50 60

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0

Number of Threads

L
a

te
n

c
y
 (

u
s
)

Pipelined
Pipelined Min−Max Model
Flat Tree
Flat Tree Min−Max Model
Intel MPI

Figure 11: Large Broadcast (8 kb) algorithms compared to
the model and the Intel MPI implementation.

Figures 10 to 13 represent the performance obtained with
the algorithms modeled in Section 4. Results are presented
with the corresponding boxplots and the min-max model.
The large broadcast uses 8 kb messages because it is the
higher buffer size that was modeled for the multi-line ping-
pong, and the operation used in the reduction is a summa-
tion. As it can be seen, the min-max model is able to capture
the inherent variability of the use of threads and allowed us
to obtain the best parameters for the small broadcast, the
small reduce and the barrier.

To compare the results with current shared memory com-
munication solutions, the graphs also include the latency
obtained with MPI and OpenMP (when applicable). It is
worth mentioning that the benchmarks used for OpenMP
and MPI measure the average result without synchroniz-
ing threads before each iteration and without forcing any
cache state, avoiding the eviction of the shared data and
taking advantage of temporal locality across iterations. Our
benchmark forces the data to be in exclusive state in the
buffer owner’s cache, thus invalidating it in any other cache.

0 10 20 30 40 50 60

0
5

1
0

1
5

2
0

2
5

3
0

3
5

Number of threads

L
a

te
n

c
y
 (

u
s
)

Barrier
Min−Max Model
Intel MPI
Intel OpenMP

Figure 12: Barrier Synchronization results compared to the
model and the Intel OpenMP and MPI implementations.

0 10 20 30 40 50 60

0
5

1
0

1
5

2
0

2
5

3
0

Number of threads

L
a

te
n

c
y
 (

u
s
)

Reduce
Min−Max Model
Intel MPI
Intel OpenMP

Figure 13: Small Reduction performance compared to the
model and the Intel OpenMP and MPI implementations

However, even in that case, our algorithms outperform MPI
and OpenMP except for two scenarios. In Figure 12, with
60 threads, the OpenMP barrier obtained a latency that is
lower than our algorithm, however, it seems that it is highly
optimized for a large number of threads while ours is op-
timized separately for each number of threads. Moreover,
they take advantage of the non-cache-invalidation policy be-
tween iterations used in the benchmarks. In the results of
the large broadcast (Fig. 11), the ”pipelined” algorithm is
outperformed by MPI when the number of threads is larger
than 32, although it does not happen if the flat tree algo-
rithm is used. As mentioned in Section 4.1.3, the flat tree
obtains a good tradeoff between contention and prefetching
while the pipelined algorithm is not able to take advantage
of prefetching.

6. RELATED WORK
The optimization of parallel computation is based on

the study of the architectural features that can influence
performance. However, algorithm design requires models
that simplify and abstract complex systems, e.g., LogP [9],
LogGP [3], LoGPC [19], PlogP [16] or Hockney [11] model
the communications in distributed memory systems. On
the other hand, models like PRAM [15], that assume that
processors can access global memory without cost, study
the logical structure of parallel computation removing com-
munication from the analysis. Another approach followed
in [6] and [5] is the inclusion of memory concerns in the
model to measure the effects that memory buffer copies have

in point-to-point communications. Our work is focused on
shared memory architectures were point-to-point communi-
cations are translated directly to memory transfers, thus,
buffer transformations would be treated as common mem-
ory operations.

These models have been successfully used to design opti-
mal algorithms for communication operations. In [14], Karp
et al. show that Fibonacci trees are optimal for small broad-
casts. The authors of [23] use a simple linear communication
model to develop bandwidth-optimal broadcast and reduc-
tion algorithms.

With the increase in the number of cores per processor,
the modeling of shared memory communications is also cru-
cial to develop efficient algorithms to transfer information
through shared memory among the cores of the system.
Petrovic et al. [21] discuss communications in the precur-
sor of the Intel Xeon Phi, the Intel SCC. However, this sys-
tem did not provide cache coherency, which simplifies the
interactions among threads greatly.

The cache coherency protocols have been also widely stud-
ied, specially in terms of internal memory hierarchy models
analyzing the effects of evictions and memory locality. Agar-
wal et al. [2] presents a comprehensive model for associative
caches and other works like [24] or [4] study the behavior
of the memory hierarchy on multi-core systems, but focus
on the behavior of caches and the optimization of parallel
codes avoiding cache misses, and does not discuss the effects
of communications among cores.

Early experiences on the Intel Xeon Phi coprocessor [8]
showed that this architecture provides scalable performance,
which combined with the possibility of obtaining highly par-
allel applications with standard programming paradigms,
makes it really interesting to explore the communications
among cores in a shared memory environment.

7. DISCUSSION AND CONCLUSIONS
We found that, especially for small data, the notification

system and interference caused by threads in the polling
stages, can impact performance more than the actual data
transfer. In order to model these effects, we had to resort to
min-max models that complicate the algorithm development
considerably. Nevertheless, our model allows algorithm de-
signers to abstract away from the architecture and the de-
tailed cache coherency protocols and design algorithms on
purely analytic ground. We showed that our models can be
combined into a powerful framework for tuning and devel-
oping parallel algorithms.

In general, we found that optimizing for cache-coherency
protocols is harder than optimizing for systems that of-
fer direct remote memory access. The developed models
and techniques are more complex than, for example algo-
rithms in the LogP model. Based on results gathered in [21],
we would assume that direct remote cache access (DRCA)
would lead to parallel systems with higher performance and
better predictability and transparency. Thus, we conjecture
that DRCA would greatly simplify the design of parallel al-
gorithms.

However, if such architectures are not an option, our mod-
els describe a viable method for designing parallel algo-
rithms on cache-coherent architectures. Indeed, our sim-
plified model can be used rather mechanically to optimize
and parametrize well-known algorithms. In addition, we
showed how to develop new and optimal algorithms requir-

ing slightly more effort. While all our models do not provide
precise predictions rather than a range of possible perfor-
mance, we demonstrated how they can be used to guide
algorithm design and development.
The algorithms we developed with the help of our ana-

lytical models show performance improvements over Intel’s
hand-tuned MPI and OpenMP libraries in nearly all config-
urations with a maximum improvement of 4.3 times. Our
method can also be used for other architectures and algo-
rithms.

Acknowledgments

We thank the Swiss National Supercomputing Center (CSCS),

especially Hussein Harake, Thomas Schoenemeyer, and Thomas

Schulthess, for providing access to and support with Xeon Phi

hardware. S. Ramos thanks the HiPEAC network, the University

of A Coruña, the Ministry of Science and Innovation of Spain

[Project TIN2010-16735], and the Xunta de Galicia CN2012/211,

partially supported by FEDER funds for financial support.

8. REFERENCES
[1] IntelR© Xeon Phi

TM

Coprocessor: Software Developers
Guide. https://www-ssl.intel.com/content/www/
us/en/processors/xeon/xeon-phi-coprocessor-

system-software-developers-guide.html, 2012.

[2] A. Agarwal, J. Hennessy, and M. Horowitz. An
Analytical Cache Model. ACM Trans. Comput. Syst.,
7(2):184–215, 1989.

[3] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and
C. Scheiman. LogGP: Incorporating Long Messages
into the LogP Model - One Step Closer towards a
Realistic Model for Parallel Computation. In Proc. 7th
Annual ACM Symp. on Parallel Alg. and Arch.
(SPAA’95), pages 95–105, S. Barbara, CA, USA, 1995.

[4] D. Andrade, B. B. Fraguela, and R. Doallo. Accurate
Prediction of the Behavior of Multithreaded
Applications in Shared Caches. Parallel Computing,
39(1):36 – 57, 2013.

[5] K. W. Cameron, R. Ge, and X. H. Sun. lognP and
log3P: Accurate Analytical Models of Point-to-Point
Communication in Distributed Systems. IEEE Trans.
Computers, 53(3):314–327, 2007.

[6] K. W. Cameron and X. H. Sun. Quantifying Locality
Effect in Data Access Delay: Memory logP. In Proc.
17th IEEE Intl. Parallel & Distrib. Processing Symp.
(IPDPS’03), page (8 pages), Nice, France, 2003.

[7] G. Chrysos. IntelR© Xeon Phi
TM

Coprocessor
(Codename Knights Corner). Keynote talk at the 24th
Hot Chips: A Symp. on High Perf. Chips, 2012.

[8] T. Cramer, D. Schmidl, M. Klemm, and D. an Mey.
OpenMP Programming on Intel Xeon Phi
Coprocessors: An Early Performance Comparison. In
Proc. Many-core Applications Research Community
(MARC) Symp. at RWTH Aachen University, pages
38–44, 2012.

[9] D. Culler et al. LogP: towards a Realistic Model of
Parallel Computation. SIGPLAN Not., 28(7):1–12,
1993.

[10] D. Hackenberg, D. Molka, and W. E. Nagel.
Comparing Cache Architectures and Coherency
Protocols on x86-64 Multicore SMP Systems. In Proc.
42nd Annual IEEE/ACM Intl. Symp. on

Microarchitecture (MICRO’42), pages 413–422, New
York, NY, USA, 2009.

[11] R. W. Hockney. The Communication Challenge for
MPP: Intel Paragon and Meiko CS-2. Parallel
Computing, 20(3):389 – 398, 1994.

[12] T. Hoefler and T. Schneider. Optimization Principles
for Collective Neighborhood Communications. In
Proc. 25th ACM/IEEE Intl. Supercomputing Conf. for
High Performance Computing, Networking, Storage
and Analysis (SC’12), Salt Lake City, UT, USA, 2012.

[13] L. Ivanov and R. Nunna. Modeling and Verification of
Cache Coherence Protocols. In Proc. 2001 IEEE Intl.
Symp. on Circuits and Systems (ISCAS’01), pages
129–132, 2001.

[14] R. M. Karp et al. Optimal Broadcast and Summation
in the LogP Model. In Proc. 5th Annual ACM Symp.
on Parallel Alg. and Arch. (SPAA’93), pages 142–153,
Velen, Germany, 1993.

[15] R. M. Karp and V. Ramachandran. A Survey of
Parallel Algorithms for Shared-Memory Machines.
Technical report, Berkeley, CA, USA, 1988.

[16] T. Kielmann, H. E. Bal, and K. Verstoep. Fast
Measurement of LogP Parameters for Message Passing
Platforms. In Proc. 15th IPDPS 2000 Workshops on
Parallel & Distrib. Processing, pages 1176–1183, 2000.

[17] R. McGill, J. W. Tukey, and W. A. Larsen. Variations
of Box Plots. The American Statistician, 32(1):12–16,
1978.

[18] D. Molka, D. Hackenberg, R. Schoene, and M. S.
Mueller. Memory Performance and Cache Coherency
Effects on an Intel Nehalem Multiprocessor System. In
Proc. 18th Intl. Conf. on Parallel Architectures and
Compilation Techniques (PACT’09), pages 261–270,
Raleigh, NC, USA, 2009.

[19] C. A. Moritz and M. I. Frank. LoGPC: Modeling
Network Contention in Message-Passing Programs.
IEEE Trans. on Parallel and Distrib. Systems,
12(4):404–415, 2001.

[20] S. Owens, S. Sarkar, and P. Sewell. A Better x86
Memory Model: x86-TSO. In Proc. 22nd Intl. Conf.
on Theorem Proving in Higher Order Logics
(TPHOLs’09), pages 391–407, Munich,Germany, 2009.

[21] D. Petrović, O. Shahmirzadi, T. Ropars, and
A. Schiper. High-performance RMA-based Broadcast
on the Intel SCC. In Proc. 24th ACM Symp. on
Parallelism in Alg. and Arch. (SPAA’12), pages
121–130, Pittsburgh, PA, USA, 2012.

[22] S. Ramos and T. Hoefler. Modeling Communications
in Cache Coherent Systems . Technical report,
University of A Coruña, ETH Zurich, 2013.

[23] P. Sanders, J. Speck, and J. L. Träff. Two-Tree
Algorithms for Full Bandwidth Broadcast, Reduction
and Scan. Parallel Comput., 35(12):581–594, 2009.

[24] L. G. Valiant. A Bridging Model for Multi-core
Computing. Journal of Computer and System
Sciences, 77(1):154 – 166, 2011.

[25] B. L. Welch. The Generalization of ’Student’s’
Problem when Several Different Population Variances
are Involved. Biometrika, (1-2):28–35, 1947.

