Parallel scaling of Teter's Minimization for
Ab Initio Calculations

Torsten Hoefler

Department of Computer Science

Technical University of Chemnitz

HPCNano Workshop 2006
Supercomputing’06
Tampa, FL, USA

November 13th 2006

o ) = = A
Torsten Hoefler Teter Parallelism



Outline

0 Introduction
@ Introduction to ABINIT
@ Teter's Conjugate Gradient Minimization

e Parallelization

@ Already implemented Parallelization
@ A new Proposal

@ Verifying this Proposal

e Hunting the Overlap
@ Non blocking Collectives

(=] = = =

DA

Torsten Hoefler Teter Parallelism



Introduction
Outline

Introduction to ABINIT

Teter’s Conjugate Gradient Minimization

0 Introduction

@ Introduction to ABINIT

o ) = = A
ten Hoefler Teter Paralleli



Introduction Introduction to ABINIT

Teter’s Conjugate Gradient Minimization

ABINIT Introduction

@ ABINIT solves time-independent Schrédinger equation
@ effective one-particle case, uses DFT

° l/:ltotcb = Ex®

@ = Eigenvalue problem

°

Eigenvalues and -vectors determined with CG minimization
(Teter et al.)

@ wavefunction ¢ written in plain-wave basis set

o ) = = A
Torsten Hoefler Teter Parallelism



Introduction

ABINIT Program Flow

Introduction to ABINIT

Teter’s Conjugate Gradient Minimization

3
calculate trial potential

t
)

“

/ minimize electronic Energy
®) ‘ 5)
calculate Electron density ‘ calculate Potential ‘ SCF—CyCle
* \ not converged
)]
choose Coefficients

calculate total Energy ]
‘ (7)
Tlnitialization

(6)
mix new Density

check convergence ‘

converged

Torsten Hoefler

&
er Parallelis|

DA



Introduction

ABINIT Tracing

Introduction to ABINIT

Teter’s Conjugate Gradient Minimization

cgwf (83.6%/1.3%) orthon (5.7%/5.6%)
e N
fourwf (27.4%1/0.0%) projbd (36.0%/36.0%) nonlop (21.5%/0.0%)
i i
sg_fftrisc (27.4%/5.7%) nonlop_pl (21.5%/0.1%)
ron
g_ffty (14.8%/14.8%) g_fftpx (6.6%/6.6%)

opernl4a (11.6%/10.3%)

= 83% for Teter minimization

opernl4b (9.8%/8.7%)

rsten Hoefler

DA



Introduction
Outline

Introduction to ABINIT

Teter's Conjugate Gradient Minimization

0 Introduction

@ Teter's Conjugate Gradient Minimization

o ) = = A
Torsten Hoefler Teter Parallelism



Introduction Introduction to ABINIT

Teter's Conjugate Gradient Minimization

Conjugate Gradient Operations

@ dot- and matrix-vector product
dot-product: (®;|®;)
matrix-vector product: Ho
H=Eg + Ve, + V¢S

E;, and V¢ in reciprocal (k-) space

°
°
°
°
@ V¢ in real space
°

= 3D-FFT to transform between real and reciprocal space

o F = = DA

Torsten Hoefler Teter Parallelism



Outline

Parallelization

Already implemented Parallelization
A new Proposal

Verifying this Proposal

9 Parallelization

@ Already implemented Parallelization

o ) = = A
Torsten Hoefler Teter Parallelism



Already implemented Parallelization
Parallelization A new Proposal
Verifying this Proposal

K-Point Parallelization

@ Bands have to be minimized for each k-point

@ Minimization for each k-point is independent

@ All k-point data is only needed for the calculation of ETOT
@ = straightforward parallelization

@ ABINIT implementation:

@ Good speedup :-)

@ Uses only collective communication :-)
o Limited to nkpt :-(

o Uses MPI_COMM_WORLD :-(

o Uses MPI_BARRIER :-(

o F = = DA

Torsten Hoefler Teter Parallelism



Already implemented Parallelization
Parallelization A new Proposal

Verifying this Proposal

Band Parallelization

@ The Teter Method allows parallel CG

@ Orthogonalization constraint forces non-ideal solution
@ = tricky parallelization
@ ABINIT implementation:

@ Speedup depends on interconnect :-/
@ Uses Send/Recv :-(

o Limited by nband/c (c not easily predictable)

o ) = = A
Torsten Hoefler Teter Parallelism



Outline

Parallelization

A new Proposal
Verifying this Proposal

Already implemented Parallelization

9 Parallelization

@ A new Proposal

o ) = = A
Torsten Hoefler r Paralleli



Already implemented Parallelization
Parallelization A new Proposal
Verifying this Proposal

G Parallelization

. Vector Distribution
@ FFT = Two parallelization schemes: b

@ Distribute plane wave coefficients
o Distribute real space FFT Grid

@ Strict load balancing
@ Minimize communication

@ Possible to combine with Band and
k-Point parallelization

o
PooSVvXN N R W —

—_—
W
—
~
jav}
m
39

o F = = DA

Torsten Hoefler Teter Parallelism



Already implemented Parallelization
Parallelization A new Proposal
Verifying this Proposal

Real Space Distribution

3D-FFT Distribution

Torsten Hoefler Teter Parallelism

— 2D-FFT on z—planes 1D-FFT on xy-lines
PEO | 0 FFT-Box () 0 FFT-Box ()
L LTI [T [eT0T0[oTo]
L Wlo[t[i[i]2]2 [ [ofofo]ofo
L Alolo [ [i]2]2]X dlofofofo o i T\
o ofojoji]ijr)2j2]2 L jefrgrjuegugt
PE1 L olofofififif2{2]2 Lrfr]ifujif2]2f2
o ojofofr]ifif2]2]2 212]12]2]2]2[2]2
L oot ful2]2]7 N2 [2]2]2]2]3]3]F
L NJo i i]i]2] 31313]3]3]3
t X ol [1f2] N3 (3 (3131
“CH 0 o/t |o 0
PE3 L
MPL ALLTOALL Z y MPI_ALLTOALL

!
V)
P
i)




Already implemented Parallelization
A new Proposal

Verifying this Proposal

Parallelization

Implementation Issues

@ Necessary communication (complexity):
@ Dot-products (O(1))
@ Computation of kinetic energy (O(1))
@ FFT transpose (O(natom))

@ Only collective communication:
o MPI_ALLREDUCE for reductions
@ MPI_ALLTOALL for FFT transpose

@ Principles:

@ only coll. communication

@ separate communicator

@ simplification of the main code
@ heavy usage of math librarys

(=] = = =

A
Torsten Hoefler Teter Parallelism



Already implemented Parallelization
Parallelization A new Proposal
Verifying this Proposal

Benchmarking the Implementation of cgwf

60

SiO,, natom=43, nband=126, npw=48728 ——
SiO,, natom=86, nband=251, npw=97624 .
50 linear «wue

40

30

Speedup (s)

20

0 10 20 30 40 50 60

# processors (P) o ~ ao
o = = aQ

Torsten Hoefler Teter Parallelism



Parallelization

Already implemented Parallelization
A new Proposal

Verifying this Proposal
Possible Reasons for limited Scalability

@ serial parts (Amdahl’s law)
@ allocations

@ scalar calculation

@ index reordering (packin,packout - FFT)

@ communication overhead

@ latency of blocking collective operations
@ limits scalability significantly

@ overhead will be modelled in the following

o ) = = A
Torsten Hoefler Teter Parallelism



Outline

Parallelization

Already implemented Parallelization
A new Proposal

Verifying this Proposal

9 Parallelization

@ Verifying this Proposal

o ) = = A
ten Hoefler Teter Paralleli



Already implemented Parallelization
Parallelization A new Proposal
Verifying this Proposal

The LogP Model

level
Sender Receiver

rsten Hoefler er Paralleli



Already implemented Parallelization
Parallelization A new Proposal
Verifying this Proposal

Modelling the MPI_ALLREDUCE

@ — MPI_REDUCE to node 0 and MPI_BCAST

PO
P1
P2
P3
P4
P5
P6
P7

@ treg(P, size) = 2-size-(20+L+([logoP1—1)-max{g,20+L})

(=] = = =

!
V)
P
i)

Torsten Hoefler Teter Parallelism



Already implemented Parallelization
Parallelization A new Proposal

Verifying this Proposal

Modelling the MPI_ALLTOALL

@ — each node hast to send to all others
@ single host:

o] O
Po_s.g

g O
=
P1
P2
P3
P4

@ all hosts send, assuming FBB
® tpa(P,size) =size-((20+ L)+ (P—-1)-(g+0))

u]
L)
1
ul
!
V)
P
i)

Torsten Hoefler Teter Parallelism



Parallelization

Predicting the Overhead

Already implemented Parallelization
A new Proposal

Verifying this Proposal

® 0req(P) = nband - (9 + 2 nband) - treq(P, 1)
® 0e4(P) = O(log2P)
@ natom = 43:

® Org(P)=126-(9+4+2-126) -2 ([log2P] - 9.88)
® Ory(P) = 65772 - ([log2P] - 9.88)
@ 004(P) =2 04224(P, Ny - Ny - Nz/P)
@ natom = 43:
@ 0p4(P) =

] OaZa(P) ~ 633

o ) = = A
Torsten Hoefler Teter Parallelism



Already implemented Parallelization
Parallelization A new Proposal
Verifying this Proposal

Verifying the Overhead Prediction

16 T T T
ALLREDUCE Overhead ——
ALLTOALL Overhead
14 Predicted ALLREDUCE Overhead (t.oq) 7
Predicted ALLTOALL Overhead (t,5,)
12
10
g 8
|_
6
4
2
0
0 10 20 30 40 50 60

# processors (P) o _ ao
=] = = Q

Torsten Hoefler Teter Parallelism



Parallelization

Already implemented Parallelization
A new Proposal
Can we predict parallel Scaling?

Verifying this Proposal

@ = kind of (comm. overhead as limiting factor)
@ ideal scaling: t(P) = t(1)/P
o —limp_, f(P) =0
@ overhead: 0(P) = 0yeq(P) + 024(P)
o — limp_ 0(P) =

@ crossing point (P¢) denotes maximum scaling
@ t(P;) = o(P¢)

o ) = = A
Torsten Hoefler Teter Parallelism



Already implemented Parallelization
Parallelization A new Proposal

Verifying this Proposal

Modelled Prediction

50 ‘ ‘ ‘
Predicted Overhead (0,54+040,) ——
Ideal Calculation Scaling (t(P=1)/P)

40

30
©
£
|_

20

10

f"_’_’_
0
0 10 20 30 40 50 60

# processors (P)

o ) = = A
Torsten Hoefler Teter Parallelism



Already implemented Parallelization
Parallelization A new Proposal
Verifying this Proposal

Comparison to Benchmarks

60

SiO,, natom=43, nband=126, npw=48728 ——
SiO,, natom=86, nband=251, npw=97624 .
50 linear «wue

40

30

Speedup (s)

20

0 10 20 30 40 50 60

# processors (P) o ~ ao
o = = aQ

Torsten Hoefler Teter Parallelism



Already implemented Parallelization
Parallelization A new Proposal
Verifying this Proposal

Intermediate Conclusions

@ Teter's scheme is efficiently parallelizeable

@ k-pt, band, and g parallelism can be combined

@ parallel scaling can be predicted

@ parallel scaling depends on overhead

@ overhead depends on system size and LogP parameters

= overhead is a hard limitation (is it?)
overlapping could help ;0)

o F = = DA

Torsten Hoefler Teter Parallelism



Outline

Hunting the Overlap

Non blocking Collectives

9 Hunting the Overlap

@ Non blocking Collectives

o ) = = A
Torsten Hoefler Teter Parallelism



Non blocking Collectives
Hunting the Overlap

Non blocking Communication

@ Communication can be overlapped with computation

@ Progr. model to support overlapping is too complex
(threads)

@ Non blocking comm. does not change progr. model
@ Supported by MPI (MPI_ISEND, MPI_IRECV)

o ) = = A
Torsten Hoefler Teter Parallelism



Non blocking Collectives
Hunting the Overlap

Send/Recv is there - Why Collectives?

@ Gorlach, '04: "Send-Receive Considered Harmful”

@ & Dijkstra, ’68: "Go To Statement Considered Harmful”
point to point:

if ( rank == 0) then
call MPI_SEND(...)
else
call MPI_RECV(...)
end if

vs. collective:
call MPI_GATHER(...)

cmp. math libraries vs. loops

o F = = DA

Torsten Hoefler Teter Parallelism



Non blocking Collectives
Hunting the Overlap

Why non blocking Collectives

@ overlap communication and computation

@ many collectives synchronize unneccessarily
@ scale at least with O(/og. P) sends

@ wasted CPU time: logsP - L

Fast Ethernet: L = 50-60 us

Gigabit Ethernet: L = 15-20 us

InfiniBand: L = 2-7 us

148 ~ 4000 FLOPs on a 2GHz Machine

(4

¢ ¢ ¢

u]
L)
1
ul
!
V)
P
i)

Torsten Hoefler Teter Parallelism



Non blocking Collectives
Hunting the Overlap

Final Conclusions and Future Work

Conclusions

@ Teter’s minimization scales ok

@ communication overhead is the limiting factor

@ parallel scaling is predictable (not easily)

@ scaling could be enhanced with overlapping
communication and computation to hide latency

@ collective communications should be preferred
@ = non-blocking collective operations
LIbNBC http://www.unixer .de/NBC

Future Work

@ use non-blocking collectives to enhance QM codes

@ e.g., overlapping schemes for 3D-FFT
=] F = = A

Torsten Hoefler Teter Parallelism



Non blocking Collectives
Hunting the Overlap

The Teter Algorithm

@ Steepest descent: d' = — 2L = —GxX/

X!

@ f(X) — E Kohn Sham Energy Functional
@ X — 1o Wave function for each electron
® G — H Hamilton Operator
@ Teter’s scheme:

@ 1: check residual for convergence

© compute steepest descent vector

© orthogonalize it to all bands

© compute preconditioned steepest descent

© orthogonalize it to all bands

© compute conjugate gradient vector

@ step into cg direction

Q goto 1

o F = = DA

Torsten Hoefler Teter Parallelism



Non blocking Collectives

Hunting the Overlap

Verifying the Predictions

@ Kielmann’s 1ogp-mpi benchmark:
L=9.78us,0=0.05us,g =0.01us

350 ‘ ‘ ;
ALLREDUGE 16 bytes ——
ALLTOALL 16 bytes
300 | Predicted ALLREDUGE -
Predicted ALLTOALL
250
= 200
(o]
£
= 150
100 : =
50
0
0 5 10 15 20 25 30

# processors (P)
=} =2 = = APXN G4

Torsten Hoefler Teter Parallelism



	Introduction
	Introduction to ABINIT
	Teter's Conjugate Gradient Minimization

	Parallelization
	Already implemented Parallelization
	A new Proposal
	Verifying this Proposal

	Hunting the Overlap
	Non blocking Collectives


