
XaaS: Acceleration as a Service to Enable Productive
High-Performance Cloud Computing

Torsten Hoefler
ETH Zurich & Swiss National
Supercomputing Centre (CSCS)

Switzerland

Marcin Copik
ETH Zurich
Switzerland

Pete Beckman
Argonne National Laboratory

USA

Andrew Jones
Microsoft

United Kingdom

Ian Foster
Argonne National Laboratory

USA

Manish Parashar
Utah University

USA

Daniel Reed
Utah University

USA

Matthias Troyer
Microsoft

USA

Thomas Schulthess
Swiss National Supercomputing

Centre (CSCS)
Switzerland

Dan Ernst
NVIDIA
USA

Jack Dongarra
University of Tennessee

USA

ABSTRACT
HPC and Cloud have evolved independently, specializing their inno-
vations into performance or productivity. Acceleration as a Service
(XaaS) is a recipe to empower both fields with a shared execution
platform that provides transparent access to computing resources,
regardless of the underlying cloud or HPC service provider. Bridg-
ing HPC and cloud advancements, XaaS presents a unified archi-
tecture built on performance-portable containers. Our converged
model concentrates on low-overhead, high-performance commu-
nication and computing, targeting resource-intensive workloads
from climate simulations to machine learning. XaaS lifts the re-
stricted allocation model of Function-as-a-Service (FaaS), allowing
users to benefit from the flexibility and efficient resource utiliza-
tion of serverless while supporting long-running and performance-
sensitive workloads from HPC.

INTRODUCTION
Acceleration as a Service (XaaS) is a recipe for en-
abling high-performance computing (HPC) work-
loads in the cloud. Cloud computing (“the Cloud”)
provides the opportunity to offer computational ca-
pabilities as a simple transactional service, similar
to how we use electricity or the internet. Today’s
Cloud already offers a wide range of powerful ser-
vices, from online storage to specific applications
such as video calls or search. However, its performance is limited by
inefficiencies in current Cloud architectures. XaaS addresses those
inefficiencies and enables the computation of high-performance
accelerated workloads, ranging from simulations to AI/ML infer-
ence and training, as a high-performance cloud service capable of
serving most demanding workloads.

XaaS provides different opportunities for people with different
backgrounds and mindsets. Members of the HPC community will

find a vision for productive high-performance computing connect-
ing today’s manually compiled-and-run HPC applications to a new
world of automated high-performance containers running fine-
grained transactional computations. Members of the datacenter
systems and cloud computing communities will find a vision for
lifting standard container deployments seamlessly to low-overhead,
high-performance accelerated infrastructures, enabling the fastest
communication and specialized computing at the highest system uti-
lization and reliability, whereby deployed containers utilize library
interfaces and remote direct memory access (RDMA) technologies
for specialized acceleration and communication with close-to-zero
overheads compared to traditional bare-metal deployments.

Here, we define HPC workloads as resource-intensive and per-
formance sensitive applications. Traditionally, HPC systems were
aimed at executing extremely demanding scientific computing
workloads. Recently, HPC systems have also been employed for
data analytics, machine learning, and other workloads that, like
scientific computing, require massive concurrency and rapid in-
terprocess communication. Supercomputing is the subset of HPC
that uses the fastest and most powerful general purpose scientific
computing systems available at any given time [7]. Cloud computing
can be characterized by the desire to separate provider and user
by a simple, clear, and automatable interface (ideally as simple as a
power socket!) and by business and operations models designed to
ensure that user requests can always be satisfied. To this end, cloud
computing employs composable (micro)services that run in con-
tainers and interact through clearly defined interfaces (e.g., REST,
JSON) that often however compromise performance.

Applications that only rely on container and cloud service in-
terfaces are called “cloud native.” Container creation, deployment,
and management are largely handled by the de-facto standards
Docker and Kubernetes. However, cloud service interfaces such
as storage or machine learning inference are usually specific to
the provider’s ecosystem. Most modern cloud systems aim to offer

ar
X

iv
:2

40
1.

04
55

2v
1

 [
cs

.D
C

]
 9

 J
an

 2
02

4

Torsten Hoefler, Marcin Copik, Pete Beckman, Andrew Jones, Ian Foster, Manish Parashar, Daniel Reed, Matthias Troyer, Thomas Schulthess, Dan Ernst, and Jack Dongarra

supercomputing

cloud computing

Virtual
Machines

Compiled Source
Code / Applications

Portable XaaS Containers

Portability

Efficiency
(compared to VMs)

Scalability

Productivity

DevOps
(CI/CD)

Transactional
Accounting

Figure 1: Both Cloud and HPC converge to containers as an application and service deployment model. Containers bind all
dependencies and system aspects (users, rights, etc.) into a single portable unit that can be flexibly deployed. XaaS enables HPC
features for such containers.

an execution environment for cloud-native containers, which is
similar to an operating system’s interface to a process. The Cloud
Native Foundation seeks to define an interface in the spirit of the
POSIX interfacesa. This design is traditionally aimed at providing a
productive ecosystem. Only recently, performance has become a
center of attention when using compute accelerators for demand-
ing video processing tasks or AI/ML workloads. Thus, the goals of
modern cloud computing and HPC align well and could converge
towards the same infrastructure.

HPC and Cloud have progressed largely independently in the
past. Both according to their specialization: The Cloud innovates
in terms of business model, software packaging (containers),
and productive ecosystems (e.g., cloud native) and HPC in
terms of performance (e.g., RDMA) and abstractions for per-
formance (performance libraries). However, each field trails
the other in other respects: for example, HPC has explored as-a-
services abstractions [1] and is only just beginning to embrace
the simpler deployment philosophy of containerized environments,
while cloud started to explore ideas of RDMA. Each feature was
established in the other community a decade ago. XaaS provides a
way to accelerate this transition to a common architecture based on
high-performance containers. Figure 1 shows a schematic overview
of where each field is coming from and what containerized de-
ployments could enable today or in the near future. If those two
communities do not join forces, they are bound to re-invent each
other’s methods.

All-in-all, the high-level architectural vision for a converged
high-performance cloud with XaaS is based on three fundamental
principles:

(1) Performance portable containers (Infrastructure)
ahttps://kubernetes.io/blog/2016/09/cloud-native-application-interfaces/

(2) High-performance communication and I/O (Input/Output)
(3) High-performance allocation, scheduling, and account-

ing (Invocation)

In the following, we outline three key techniques that can be
used to build this architecture: Flexible hooked libraries and spe-
cialized builds can enable performance portability of the container
infrastructure [4]. RDMA and other direct memory access tech-
niques can provide the lowest overhead interface to the outside
world [6]. Direct peer-to-peer allocations and high-performance
scheduling and accounting can provide performant and available
integration into a full system [6].

STATE OF THE ART
We provide detailed descriptions of HPC and CC, considering each
field’s idiosyncrasies and commonalities.

HPC has traditionally supported demanding workloads
in centralized datacenters. Supercomputers have long been used
to serve the most demanding applications, such as weather pre-
diction or the numerical simulation of complex structures; more
recently, they are also used to train very large-scale AI models. Due
to the necessary large investment, supercomputers often pool the
resources of many individuals at the regional or national level to ad-
dress problems relevant to society. While they are architected to run
the largest jobs, they may spend much of their life running smaller
applications. HPC centers have long led the design and develop-
ment of large-scale systems, often in collaboration with system
vendors. HPC has driven the wide adoption of vector processing,
massive parallelism based on commodity CPUs, general-purpose
GPUs, and high-performance interconnects for multiple decades
through long-term engagement with vendor partners.

https://kubernetes.io/blog/2016/09/cloud-native-application-interfaces/

XaaS: Acceleration as a Service to Enable Productive High-Performance Cloud Computing

Table 1: Comparison point of existing Cloud offerings.

Cloud Overview
Generic Specialized

IaaS PaaS CaaS FaaS SaaS DaaS

Hardware Environment ✓ ✓ ✓ ✓ ✓ ✓

Software Environment ✓ ✓ ✓
Pre-Configured Service

Bespoke Software ✓ ✓

Fine-grained Accounting ✓ ✓ ✓

Example Services
AWS EC2, Azure VMs Google App Azure AKS AWS Lambda, Azure Gmail OneDrive, Box
GCP Compute Engine Engine AWS EKS Functions, GCP Functions Microsoft 365 Xignite for stock data

Cloud emerged as a paradigm to sell compute cycles to a
diverse set of customers, ranging from anonymous customers
with credit cards to long-term engagements. The Cloud’s success
in this endeavor has allowed it to realize, at scale, the vision of
utility [2, 8] and grid computing [10] whereby computing as a ser-
vice enables new services in many fields, including computational
sciences [9]. This approach changed the dynamics of IT businesses
at large, giving startups a significantly lower barrier of entry com-
pared to the dot-com days where the necessary CapEx proved to
be a huge burden. The Cloud’s aim to widen the customer base has
led to a wide range of offerings at various levels of complexity and
capability of compute services, encompassing Infrastructures (IaaS),
Platforms (PaaS), Containers (CaaS), and Functions (FaaS), as well
as full application services such as Service Architectures/Software
(SaaS) and Data (DaaS). The focus is usually on reducing the barrier
of entry and improving usability instead of performance, leading to
relatively inefficient but simple web interfaces such as REST. The
latest push in this direction is the definition of cloud-native inter-
faces, for which performance and efficiency initially played only a
secondary role. Yet, due to economies of scale, cloud computing has
become more performance-sensitive, especially in the emerging AI
area.

It appears as if the market-driven Cloud field is moving organ-
ically towards a productive higher-performance environment in
order to reduce costs of centralized services. Meanwhile, many or-
ganizations in the community-driven HPC field remain in some sort
of innovator’s dilemma whereby today’s traditional HPC environ-
ment, with its batch system setups, makefiles, and other venerable
features, works well enough to throttle development and experi-
mentation. Yet this environment is increasingly not fit for purpose
for emerging workloads that involve complex workflows or real-
time computing. Only a bottom-up movement, with potentially
some top-down incentives, can change the field. Only the right pro-
ductive high-performance technology will move the community! We
believe we need an architecture that enables portable, com-
posable, and scalable workloads that allows users to build
community-driven platforms at various levels.We believe that
a fine-grained billable and containerized deployment, similar to
FaaS (Table 1) but allowing much longer runtimes and large parallel
jobs, would serve the community well. While we do not prescribe
implementations for such a service, we believe a microservices
architecture could be used to implement and operate a XaaS infras-
tructure. We continue by capturing and contrasting the state of

the art in both HPC and Cloud along multiple axes: usage,
accounting, hardware, co-design, scheduling, and security,
and we outline a path to convergence towards productive high-
performance accelerated cloud computing.

The basis of XaaS exosystem is a portable container API that
abstracts interfaces from cloud and HPC providers together with
a standard operating system layer (Figure 2). The key addition in
the XaaS software ecosystem is a system-specific set of accelerated
APIs for compute (e.g., BLAS), communication (e.g., MPI, libfabric),
and I/O (e.g., NetCDF) that are tuned to each target system and
maintained by the provider. A recompilation layer would apply
to the workflow of either building or deploying containers and
is not shown. A standard XaaS layer enables portable accelerated
domain-specific simulations and services in specific domains such
as weather and climate, quantum chromodynamics and quantum
simulations, or material sciences. Those domain-specific containers
would be maintained by the respective community.

On-premise HPC and Cloud are two extremes in a tradeoff be-
tween capital expense (CapEx) and operational expense (OpEx).
A convergence of workloads and interfaces across both enables
interesting opportunities to balance the two in the future.

Containers
Containers form an interesting design point in software deploy-
ment. They emulate important parts of an operating system (e.g.,
a file system, processes, users) in a lightweight runtime that runs
on a host operating system. The key is that containers provide a
standardized clean and slim interface to the host OS and can thus be
portable across many platforms and architectures. They have their
weaknesses, for example, excessive memory consumption due to
limited sharing [15]. Yet, they form an interesting point solution in
a complex design space. Originally, computers ran individual appli-
cations that had to interface to all hardware directly. The emergence
of multiprogramming in OSs then drove the adoption of portable
interfaces (POSIX). The cloud started its journey by offering rented
virtualized hardware as “Infrastructure as a Service” (IaaS), whereby
customers would deploy their full OS as a virtual machine. Concur-
rently, HPC centers offered compute time to applications running
in a machine-specific environment. Deploying a new application
in such an environment routinely takes hours. The main difference
to early Cloud VMs was that HPC applications were typically re-
compiled (to optimize them) for the specific machine and Cloud
deployments were typically binary compatible (often x86). Such

Torsten Hoefler, Marcin Copik, Pete Beckman, Andrew Jones, Ian Foster, Manish Parashar, Daniel Reed, Matthias Troyer, Thomas Schulthess, Dan Ernst, and Jack Dongarra

Commercial Cloud Providers

XaaS Simulation Platform

Standard Portable Container API
(e.g., OCI)

Base Operating System Layer (e.g., Ubuntu/Debian/… - POSIX)

XaaS Accelerated Compute, Communication, I/O libraries, and APIs

Generic Containers
(e.g., docker)

System-Specific
(e.g., HPE, Intel)

Climate QCD Materials …
XaaS Service Platform

Climate
 Data

Materials
 Data

… Domain-Specific
(e.g., Climate)

M
ain

tain
ed

 b
y

P
ro

vid
er

M
ain

tain
ed

 b
y

C
o

m
m

u
n

ity

AWS Azure GCP …
HPC Service Providers

ALCF … Market / Policy-Specific
 (e.g., public vs. private)

Figure 2: XaaS ecosystem and components.

portable Cloud VMs are deployable in minutes on today’s cloud
providers and provide the highest isolation as well as flexible choice
of OS. When accounting for costs, VMs are typically charged by
the hour.

Containers started as a way to package libraries and dependen-
cies together with an application and quickly developed into an
encapsulated OS-like environment for more complex services. Most
containers are significantly smaller than an OS VM (Megabytes
vs. tens of Gigabytes) and can be deployed in seconds rather than
minutes. Their light weight enables a finer-grained accounting for
“Container as a Service” (CaaS), often at a minute or second granu-
larity. Containers also support fast scale-up: a container image can
be replicated to other machines to spin up more compute instances
in seconds. The latest development, “Function as a Service” (FaaS)
separates the deployment from the use of the containers. Re-
quests simply invoke a function (which is defined in a container)
that returns a result. Initially, such functions were stateless, but
they have recently been extended with local state and can of course
access cloud APIs for persistent storage. The main benefit of FaaS
is that the user is not involved in the deployment, which simplifies
life for users while also enabling a fine-grained billing model on
a millisecond scale for each function and allowing the operator
to schedule function executions creatively. Such functions can be
executed in containers or even micro-VMs for higher isolation.

Portability requires that binary containers execute on different
machines. This needs both compatible container APIs as well as
compatible binary executable formats. Furthermore, many high-
performance workloads require running parallel computations dis-
tributed to multiple machines; thus, containers need to be able to
communicate efficiently over a network. Today’s containers are
based on standards defined by Docker and the Open Container
Initiative (OCI) and portability is achieved by compiling containers
for a given target architecture. For example, the popular container
repository DockerHub lists seven architectures ranging from x86
and ARM to IBM’s Z series. Yet, performance-critical workloads
requiring lowest-overhead communications have received compar-
atively little attention so far. We define performance portable
containers as containers that achieve excellent performance on

a variety of architectures. The term “excellent” admits various de-
tailed definitions, such as “percent of peak” or “utilization”, which
we purposefully leave open.

Using resources
Users of HPC systems often engage with centers in a long-
term (multi-year or decadal) relationship. This is partially due
to what one could call “data gravity”, i.e., the hardship of moving
massive amounts of data, but also due to the complexity of set-
ting up a new environment and social aspects such as working
practices and personal relationships. HPC centers are interested
in high utilization of their machines with economy-of-scale ar-
guments. Today’s batch systems typically reorder jobs to achieve
the highest utilization. This often leads to delays of large jobs but
can also accelerate the scheduling of smaller jobs through “back-
filling” a gap that a waiting larger job may cause. This mode of
operation is of course only amenable to run-to-completion jobs and
cannot be used to operate online services or interactive sessions.
Important urgent or interactive applications such as disease and
pandemic simulation [5], real-time tsunami and earthquake simula-
tion [11, 17], and time-constrained data processing to guide future
experiments [14, 16] require bespoke solutions on HPC systems or
simply move to cloud systems. A corollary of this mode of oper-
ation is that (1) system availability plays a secondary role – HPC
systems are often down for days at a time during working hours; (2)
even system reliability is secondary because checkpoint/restart is a
viable mode of operation as long as the storage system is reliable.

Cloud users want to remain flexible and able to change
systems to allow the market to regulate pricing. Yet, cloud
providers have little incentive to standardize their interfaces to
achieve easy portability. Proprietary interfaces and the high mone-
tary costs of moving data out of the cloud result in some form of
involuntary gravity towards a specific vendor. Fundamentally, all
cloud systems work similarly: they provide customers with a set
of online services and microservices. Even though providers can
pass on their cost to customers if the market allows, optimizing the
cost of foundational services can save millions of dollars in opera-
tional costs and is thus attractive to providers. Sometimes, perfor-
mance considerations even lead to service consolidation. However,

XaaS: Acceleration as a Service to Enable Productive High-Performance Cloud Computing

providers have only indirect incentives to improve the performance
of customer workloads (who are charged per minute compute time).
In addition, newmodels such as FaaS allow providers to use their in-
frastructure more efficiently and thus lower costs while improving
usability and enabling completely new service and billing models
(pay as you go and scale down to zero). For many cloud services,
availability is critical and indeed non-negotiable as many important
online systems run in cloud settings (e.g., credit card transactions,
communication infrastructure). Availability is achieved by highly
resilient and redundant infrastructure that increases costs at all
levels. Scalability (aka “elasticity”) is also important, and while
aggregate user demand may exhibit less variance than that of indi-
vidual users, it ultimately requires costly idle resources at the time
of each request. In practice, resources are limited and requests can
only be fulfilled if resources are available.

Opportunities of converged XaaS. Both paradigms drive towards
convergence: HPC requires increasingly reliable services, for exam-
ple, for running performance- and availability-critical data systems
such as thematerials cloudb, medical cloudsc, metagenomic analysis
services [13], and earth virtualization engines [12]. Cloud systems,
on the other hand, already run batch jobs for background process-
ing and are increasingly running large-scale bulk-synchronous AI
training workloads in an HPC-like setting integrated with many
services.One aspect to drive this convergence would be to con-
sciously split workloads into interactive and non-interactive
parts. For example, for a climate simulation, producing the data
is a non-interactive component but analyzing and navigating the
data is often driven by interactive discovery.

Another important topic is ease-of-use. Cloud architectures with
containers in HPC would allow communities to build their own
platforms on top of a portable containerized environment.
This way, HPC providers could support high-performance
container interfaces and communities could layer domain-
specific services inside containers, e.g., a climate simulation
setup pre-installed in a container. The domain-specific layers
could then drive scientific reproducibility and faster progress.

Scheduling
By scheduling we mean the process of allocating resources to com-
pute jobs. Ideally, a compute job would never wait for resources and
always start immediately. Yet, having some jobs wait may greatly
increase the average utilization in a compute system by shifting
demand in time. From a user’s perspective, one needs to consider
the whole response time. Humans operate in milliseconds and in-
teractive requests, such as loading webpages, should return in that
time-frame. Some high-performance jobs such as ML inference
need to operate in those time frames while others, such as climate
simulations, do not. Yet, even for non-interactive workloads, large
amounts of computation must sometimes be provided in short time-
frames, such as in emergency situations like natural disasters or
pandemics.

High-performance computers are usually used through
batch systems that enable complex orchestration of sched-
uling of different hardware types with advanced requests such as
bhttps://www.materialscloud.org/
chttps://www.cancergenomicscloud.org/

reservations. They aim at high utilization and trade-off interactivity
and waiting times and sometimes also performance (e.g., allocating
arbitrary nodes instead of close nodes). Some HPC centers are be-
ginning to offer basic interactive services (at least a debug queue)
and more and more are beginning to support “run forever” (server)
type workloads. Such workloads are often supported by bespoke
solutions or cloud technologies in which some begin to employ
a microservice architecture as infrastructure. Thus, service work-
loads are slowly finding their way into HPC infrastructure and
the job-based allocation model changes slowly. One could say that
a services allocation model requires committing some resources
forever (at least very long periods of time) and not on a per-job
basis.

Cloud initially scheduled only singleVMs butmoved quickly
to groups of VMs to deploy microservices with orchestrators
such as Kubernetes. The business was mostly focused around ser-
vices for which reliability and availability is much more important
than performance. Thus, performance was often sacrificed for reli-
ability, for example when allocating groups of VMs into different
racks to avoid correlated failures in the power supply. In addition,
service level agreements often state time expectations for submit-to-
completion of interactive services. In addition, most cloud service
providers run batch jobs to operate parts of the services that do
not need to be interactive, for example, backups, nightly builds, or
precomputed inference suggestions.

Opportunities of converged XaaS. Portable high-performance
containers would be beneficial for Cloud and HPC. For exam-
ple, if one aims to collect low-rate sensor data over long periods of
time, a normal cloud service is sufficient and cheap. However, when
it comes to processing or analyzing this data, a XaaS job is likely
better. For serving results to external users XaaSmay be appropriate
if requests are computationally expensive, or a normal cloud service
may be more cost-effective for data access requests. Cloud service
providers also see growing demand for non-interactive and large
compute jobs such as AI (re)training on incoming data. Both, HPC
and Cloud providers need to analyze the requirements of interactive
vs. non-interactive jobs carefully; XaaS could provide additional
flexibility and new opportunities for both cases.

Accounting for resources
HPC resources are often provided by agencies that make the
acquisition of large resources easier than the money it would cost.
Users propose research projects to acquire fixed allocations of re-
sources to be consumed in a fixed time period. Those allocations
cannot be repurposed for other things such as personnel. This ap-
proach, while it enables explorative high-risk research without the
fiscal limitations, leads to a setup where research groups can ac-
quire computational resources relatively cheaply (in terms of effort)
but must invest their own people’s time into using them. Some-
times, users form consortia to support each other in such efforts,
often focused on specific software (e.g., the US Lattice Quantum
Chromodynamics or the Icosahedral Nonhydrostatic Weather and
Climate Model Collaboration). However, such a setup often makes
it hard to justify investing personnel resources into code optimiza-
tions, and performance consciousness thus varies largely across
research groups and communities. Ultimately, users care about the

https://www.materialscloud.org/
https://www.cancergenomicscloud.org/

Torsten Hoefler, Marcin Copik, Pete Beckman, Andrew Jones, Ian Foster, Manish Parashar, Daniel Reed, Matthias Troyer, Thomas Schulthess, Dan Ernst, and Jack Dongarra

total time and effort it takes to install, optimize, and execute their
codes in a specific platform, rather than the aggregate efficiency of
that platform.

Cloud resources are acquired with real money paid by the
users directly in highly varying plans ranging from pay-as-you-go
credit card transactions to year-long rentals for fixed provisioning.
Many accounting schemes are complex and set up to have users
spend more at a certain provider (e.g., free starting credits, through
loyalty programs, or simply charging for outbound data copies
while providing free inbound data copying). Performance has a
direct pricing incentive and one can translate person-effort into
money rather directly.

Opportunities of converged XaaS. Funding agencies are already
thinking about merging the two models. For example, NSF’s open
science grid cloud and cloudbank operate with an allocation-based
fundingmodel at the user-facing side but buy the compute resources
with real money from private and public clouds. This model ex-
ploits the flexibility to trade off CapEx and OpEx and the power of
large-volume contracts.

Early hardware access, co-design, and code
optimization
HPC centers often provide early access to hardware that they
are going to deploy for users, in order to improve “appli-
cation readiness”. Sometimes even pre-production hardware is
offered in collaboration with vendors who are interested to opti-
mize key applications for their architectures to provide the best
price/performance ratio for compute centers and users. Achieving
the best price/performance also drives system-level co-design that
balances relatively high-level ratios, for example, network band-
width per compute or storage bandwidth per compute. Engaging in
more detailed hardware designs with vendors is complex because,
despite the specialized purpose of HPC systems, their application
mix is frequently diverse. Some HPC architectures were designed
for specific applications (for example, IBM’s BlueGene was origi-
nally designed for biological applications), but they are generally
used for a larger set of applications. Thus, co-design happens to
a limited extent for some systems but is certainly not common
practice today.

Cloud service providers usually have access to early vendor
designs and plans early on, but rarely expose that informa-
tion to their users. One reason for this is that they want to run
standard setups that they can scale quickly, cheaply, and at low risk
to large user-bases. Diversity in special-purpose and early access
hardware tends to hinder this scaling. Yet, today’s cloud providers
are often first to roll out the newest technologies, and specialized
compute may be supported if the user base is large enough or the
service is profitable enough. For optimizing the workloads to the
target architecture, cloud providers usually rely on HPC techniques
such as libraries or compilers. Large markets (e.g., SQL databases
or AI) can drive significant specialization and co-design at scale.
Many of the architectures that providers use internally to provide
such large-scale services are prime examples of co-design but are
usually not exposed to the general public.

Opportunities of converged XaaS. Hardware vendors pay more at-
tention to larger markets and opportunities. Thus, an economy-
of-scale argument benefits both HPC and Cloud. Today, most
vendor attention is focused on cloud providers and thus growing
the performance-awareness in this context would be beneficial for
all. The opportunity to co-design hardware for AI and HPC
workloads is huge and could be fueled by XaaS setups, espe-
cially when combined with the flexibility of future chiplet-based
architectures.

Security and Isolation
HPC systems traditionally do not focus on security and iso-
lation at the system level. They either deploy unconnected (“air
gapped”) systems or have relatively weak security standards be-
cause users are generally trusted after a careful admission check.
HPC systems and users also generally trust system and network
administrators. Yet, recently, with the increased importance of HPC
in AI, health-care, and defense, security of HPC systems is receiving
much more attention.

Cloud systems see security and isolation asmission-critical
requirements. Encryption is often the default and trusted execu-
tion environments and even zero-trust environments are being
rolled out. These capabilities are necessary because cloud providers
(want to) admit anonymous users to their systems based solely
on a credit card or other payment. Such users cannot be trusted.
Furthermore, some big customers are not comfortable trusting the
operator’s sysadmins. Thus cloud providers routinely implement
special measures to implement “zero trust” settings (e.g., encrypt all
stored data by default with user-provided securely handled keys).

Opportunities of converged XaaS. As both HPC and Cloud have
to deal with sensitive data and computations, both will require
performant security solutions. Cloud systems could benefit from
high-performance security systems to minimize overheads when
providing privacy and isolation.

Summary
From our state of the art discussion, we conclude that XaaS opens
many opportunities when converging high-performance and cloud
approaches and workloads. XaaS requires but also enables a
culture change in the communities to enable layered high-
performance software platforms driven by performance-
portable XaaS containers. Thus, we believe that we are at
a perfect time and in a perfect setting to converge on XaaS
architectures!

HIGH-PERFORMANCE ACCELERATED CLOUD
COMPUTING - A ROAD TO CONVERGENCE
High-Performance Acceleration as a Service aims at a signifi-
cant market, with AI as a service and HPC as a service being
subsets, i.e., platforms that XaaS would enable. It will allow
new solutions and scalable business on both the provider and
user sides.Mainstream andmost productive software development
happens in the cloud space today and spawns a significant work-
force that would provide value to the HPC community. Yet, cloud
development is often not aimed at the highest-performing solutions,

XaaS: Acceleration as a Service to Enable Productive High-Performance Cloud Computing

which provides an opportunity for cloud computing to benefit from
decreased cost and CO2 output for higher-performance solutions.

Networking support and support for acceleration are two key
areas of difference in HPC and cloud infrastructures today. While
HPC has used both for decades, they are only now becoming rele-
vant in generic cloud settings. XaaS should enable both in a manner
that is consistent with the original vision of plug and play.

We now refine the observations made above into three principal
technical requirements that we already outlined in the introduction.
We outline (a path toward) technical solutions for each of those
requirements in the next section.
Performance portability needs to ensure not only high-performing
containers but also the ability to move containers between systems
while still achieving good performance on all. These requirements
imply low overheads for isolation and virtualization as well as
support for native acceleration and specialization features at each
system.
High-performance communication and I/O is required to move
data in and out of the portable environment. These capabilities are
needed both for data stored in the provider’s system (e.g., stor-
age access) and for data exchanged between different instances
of containers during the computation (e.g., MPI communication).
Low overhead schemes require operating system bypass solutions,
well-known from HPC, whereby user-space applications directly
communicate with the hardware.
High-performance allocation systems are needed to reduce the
waiting time for user applications. These allocation systems also
need to support complex scheduling policies to differentiate in-
teractive and batch jobs and potentially large requests that need
to launch thousands of container instances into a large-scale job.
Providing these capabilities will likely require decentralized or at
least parallelized scheduling strategies.

ENABLING TECHNOLOGIES FOR XAAS
We now briefly outline technologies and strategies that could be
used to implement each of the three principal requirements (aka
the “three Is”): Infrastructure for portable containers, fast com-
munication and Input/Output to containers, and low-overhead
and flexible Invocation.

High-Performance Container Infrastructure and
Input/Output
Containers provide a simple and effective environment for software
deployment by minimizing the interface to the outer (operating)
system to clearly defined and slim calls. The Open Container Initia-
tive (OCI) defines standards for container management. OCI offers
hooks that allow dynamically linking system-specific libraries to
containers during deployment. These hooks enable the provider
to bind system-optimized libraries to the container without the
full system being aware of the software running in the container.
This additional layer of indirection allows programmers to extend
the slim container interface with their own calls to performance
libraries (e.g., BLAS or DNN). These capabilities can be enabled with
Docker containers sitting on top of standard Linux namespaces and
cgroups, for example.

Existing HPC container infrastructures such as Apptainer (for-
mer Singularity) and Sarus are designed with performance in mind
and take advantage of such features. Yet, there is no widely agreed
standard for what libraries are supported for hooking across sys-
tems and what are the detailed interfaces and semantics of their
calls.

Having such a flexible library hooks interface also comes with
some burdens. For example, not all libraries have the same hooks -
if you want to hook into an MPI library, the interface will depend
on whether the container binary was compiled against Open MPI
or MPICH. Unfortunately, each has different ABI definitions. This
problem can be solved, albeit at the cost of additional complexity,
by implementing multiple ABIs in each provider. The ecosystem
could benefit from an ABI standardization.

Library hooks solve the problem whenever performance-critical
parts can be isolated into defined function calls. However, some-
times, complex application logic makes up for the majority of the
time. In this case, compilers may be able to take advantage of spe-
cialties of the target architecture’s instruction set architecture (ISA).
For example, NVIDIA’s H100 tensor cores offer much more func-
tionality than V100 cores, and Intel CPUs that support AVX2 are
more powerful than those that support AVX1 only. Using such
features requires recompilation to the specific target architecture.
Unfortunately, such recompilation is somewhat in conflict with the
simple binary-deployment strategy of containers, and endangers
the model of “compile and test on my laptop and then deploy on
the largest supercomputers”.

One approach to consider for the ISA issue is deployment re-
compilation, similar to software deployment models in Gentoo
Linux or Spack. One could attach a set of build scripts to each soft-
ware to rebuild it at the target system using the system-specific
optimizing compiler. This approach would greatly increase the
complexity of container deployment in different execution environ-
ments - from simple binary ISAs and APIs to complex source codes.
One could protect from failure by always including portable bina-
ries that use only the lowest-common-denominator ISA features,
but that approach would compromise performance portability. An-
other approach would be to ship precompiled source code in a
compiler intermediate representation form (e.g., LLVM IR or DaCe
SDFGs [3]) that are then optimized at the target architecture. Other
portability approaches such as WASM are probably not performant
enough.

Fine-grained Invocation, Billing, Operations, and
Integration
Simple and fast invocation is key for accelerated high-performance
cloud services. Such services often form workflows that are trig-
gered or interfaced to from the outside. The connection to outside
users could be offered through a web-service interface, for exam-
ple based on a REST API such as FireCRESTd, which extends the
established console interface with modern standard web services.
Yet, REST must not be on the critical path due to its performance
limitations, e.g., when transferring large data volumes. Yet, as a
control interface, for example, to coordinate the deployment of
a job or a virtual cluster, it is sufficient. Thus, as in Globus, the
dhttps://products.cscs.ch/firecrest/

https://products.cscs.ch/firecrest/

Torsten Hoefler, Marcin Copik, Pete Beckman, Andrew Jones, Ian Foster, Manish Parashar, Daniel Reed, Matthias Troyer, Thomas Schulthess, Dan Ernst, and Jack Dongarra

control channel may be REST, while the data channel employs
high-performance protocols.

XaaS should support batch jobs as well as interactive services
and enable deployment at various levels. While the typical deploy-
ment of XaaS may likely be FaaS, run-forever services could be
deployed either at the IaaS, PaaS, CaaS, or FaaS levels. This variety
of deployment levels will enable users to build and deploy their
own high-performance microservice architectures in an environ-
ment that is most productive for them. Service providers can then
support such executions or subsets of such executions (e.g., only
FaaS) based on their business model.

OPPORTUNITIES
We close by summarizing some of the opportunities of XaaS go-
ing forward. A shared and compatible execution platform
between cloud providers and high-performance computing
centers provides many opportunities. It would widen the mar-
ket and enable seamless access to various compute resources, inde-
pendent of the provider. Data location remains a challenging and
somewhat fundamental issue, but decoupling the interfaces to data
placement and to purchasing compute cycles will democratize big
parts of the market. Furthermore, XaaS layers can enable scien-
tific communities to distribute not only their source code
but also their whole setup to others and thus enable seam-
less execution of their software across many architectures
and providers at reasonable performance. A flexible scheduling
and execution interface for XaaS maintains many of the benefits
of FaaS workloads such that providers can increase their machine
utilization; it will also enable large longer-running computations
and sophisticated scheduling strategies.

ACKNOWLEDGMENTS
The authors would like to thank Satoshi Matsuoka for valuable
advice and comments.

REFERENCES
[1] Moustafa AbdelBaky, Manish Parashar, Hyunjoo Kim, Kirk E. Jordan, Vipin

Sachdeva, James Sexton, Hani Jamjoom, Zon-Yin Shae, Gergina Pencheva, Reza
Tavakoli, and Mary F. Wheeler. 2012. Enabling High-Performance Computing as
a Service. Computer 45, 10 (2012), 72–80. https://doi.org/10.1109/MC.2012.293

[2] Michael Armbrust, Armando Fox, ReanGriffith, AnthonyD Joseph, RandyHKatz,
Andrew Konwinski, Gunho Lee, David A Patterson, Ariel Rabkin, Ion Stoica,
et al. 2009. Above the clouds: A berkeley view of cloud computing. Technical
Report. Technical Report UCB/EECS-2009-28, EECS Department, University of
California

[3] Tal Ben-Nun, Johannes de Fine Licht, Alexandros N. Ziogas, Timo Schneider,
and Torsten Hoefler. 2019. Stateful Dataflow Multigraphs: A Data-Centric Model
for Performance Portability on Heterogeneous Architectures. In Proceedings
of the International Conference for High Performance Computing, Networking,
Storage and Analysis (Denver, Colorado) (SC ’19). Association for Computing
Machinery, New York, NY, USA, Article 81, 14 pages. https://doi.org/10.1145/
3295500.3356173

[4] Lucas Benedicic, Felipe A. Cruz, Alberto Madonna, and Kean Mariotti. 2019.
Sarus: Highly Scalable Docker Containers for HPC Systems. In High Performance
Computing, Michèle Weiland, Guido Juckeland, Sadaf Alam, and Heike Jagode
(Eds.). Springer International Publishing, Cham, 46–60.

[5] Nick Brown, Rupert Nash, Piero Poletti, Giorgio Guzzetta, Mattia Manica, Agnese
Zardini, Markus Flatken, Jules Vidal, Charles Gueunet, Evgenij Belikov, Julien
Tierny, Artur Podobas, Wei Der Chien, Stefano Markidis, and Andreas Gerndt.
2021. Utilising urgent computing to tackle the spread of mosquito-borne diseases.
In 2021 IEEE/ACM HPC for Urgent Decision Making (UrgentHPC). 36–44. https:
//doi.org/10.1109/UrgentHPC54802.2021.00010

[6] Marcin Copik, Konstantin Taranov, Alexandru Calotoiu, and Torsten Hoefler.
2023. rFaaS: Enabling High Performance Serverless with RDMA and Leases. In

2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS).
897–907. https://doi.org/10.1109/IPDPS54959.2023.00094

[7] Jack J. Dongarra, Iain S. Duff, Danny C. Sorensen, and Henk A. van der Vorst.
1998. Numerical Linear Algebra for High-Performance Computers. Society for
Industrial and Applied Mathematics. https://doi.org/10.1137/1.9780898719611
arXiv:https://epubs.siam.org/doi/pdf/10.1137/1.9780898719611

[8] Ian Foster. 2011. Globus Online: Accelerating and Democratizing Science through
Cloud-Based Services. IEEE Internet Computing 15, 3 (2011), 70–73. https:
//doi.org/10.1109/MIC.2011.64

[9] Ian Foster and Dennis B Gannon. 2017. Cloud computing for science and engi-
neering. MIT Press.

[10] Ian Foster, Yong Zhao, Ioan Raicu, and Shiyong Lu. 2008. Cloud Computing and
Grid Computing 360-Degree Compared. In 2008 Grid Computing Environments
Workshop. 1–10. https://doi.org/10.1109/GCE.2008.4738445

[11] Thierry Goubier, Natalja Rakowsky, and Sven Harig. 2020. Fast Tsunami
Simulations for a Real-Time Emergency Response Flow. In 2020 IEEE/ACM
HPC for Urgent Decision Making (UrgentHPC). 21–26. https://doi.org/10.1109/
UrgentHPC51945.2020.00008

[12] Torsten Hoefler, Bjorn Stevens, Andreas F. Prein, Johanna Baehr, Thomas
Schulthess, Thomas F. Stocker, John Taylor, Daniel Klocke, Pekka Manninen,
Piers M. Forster, Tobias Kölling, Nicolas Gruber, Hartwig Anzt, Claudia Frauen,
Florian Ziemen, Milan Klöwer, Karthik Kashinath, Christoph Schär, Oliver
Fuhrer, and Bryan N. Lawrence. 2023. Earth Virtualization Engines: A Tech-
nical Perspective. Computing in Science & Engineering 25, 3 (2023), 50–59.
https://doi.org/10.1109/MCSE.2023.3311148

[13] Kevin P. Keegan, Elizabeth M. Glass, and Folker Meyer. 2016. MG-RAST, a
Metagenomics Service for Analysis of Microbial Community Structure and Function.
Springer New York, New York, NY, 207–233. https://doi.org/10.1007/978-1-4939-
3369-3_13

[14] Anthony Kremin, Stephen Bailey, Julien Guy, Theodore Kisner, and Kai Zhang.
2020. Rapid Processing of Astronomical Data for the Dark Energy Spectroscopic
Instrument. In 2020 IEEE/ACM HPC for Urgent Decision Making (UrgentHPC). 1–9.
https://doi.org/10.1109/UrgentHPC51945.2020.00006

[15] Wei Qiu,Marcin Copik, YunWang, Alexandru Calotoiu, and TorstenHoefler. 2023.
User-guided Page Merging for Memory Deduplication in Serverless Systems.
In 2023 IEEE International Conference on Big Data (Big Data). IEEE Computer
Society.

[16] Rafael Vescovi, Ryan Chard, Nickolaus D. Saint, Ben Blaiszik, Jim Pruyne,
Tekin Bicer, Alex Lavens, Zhengchun Liu, Michael E. Papka, Suresh Narayanan,
Nicholas Schwarz, Kyle Chard, and Ian T. Foster. 2022. Linking scientific instru-
ments and computation: Patterns, technologies, and experiences. Patterns 3, 10
(2022), 100606. https://doi.org/10.1016/j.patter.2022.100606

[17] K.K. Yoshimoto, D.J. Choi, R.L. Moore, A. Majumdar, and E. Hocks. 2012. Imple-
mentations of Urgent Computing on Production HPC Systems. Procedia Com-
puter Science 9 (2012), 1687–1693. https://doi.org/10.1016/j.procs.2012.04.186
Proceedings of the International Conference on Computational Science, ICCS
2012.

BIOGRAPHIES
Torsten Hoefler is a professor at ETH Zurich and the Chief Archi-
tect for Machine Learning at the Swiss National Supercomputing
Center. His research interests revolve around high-performance
artificial intelligence and computing systems. Hoefler received his
highest degree in Computer Science from Indiana University. He
is a fellow of the IEEE and ACM as well as a member of Academia
Europaea. Contact him at http://htor.ethz.ch/.
Marcin Copik is a senior PhD student at ETH Zurich. He received
a Master’s degree from RWTH Aachen, Germany. His research in-
terests are in high-performance solutions for serverless computing
and cloud computing techniques for HPC. He received a Microsoft
Research PhD Fellowship and ACM-IEEE CS George Michael HPC
Fellowship. Contact him at https://mcopik.github.io.
Pete Beckman is Co-Director of the Northwestern University /
Argonne Institute for Science and Engineering. His research in-
terests include High-Performance System Software and Operating
Systems. Beckman received his PhD in Computer Science from
Indiana University. Contact him at beckman@anl.gov.
Andrew Jones is a Principal Program Manager at Microsoft at
Redmond, WA, USA. His research interests include planning and

https://doi.org/10.1109/MC.2012.293
https://doi.org/10.1145/3295500.3356173
https://doi.org/10.1145/3295500.3356173
https://doi.org/10.1109/UrgentHPC54802.2021.00010
https://doi.org/10.1109/UrgentHPC54802.2021.00010
https://doi.org/10.1109/IPDPS54959.2023.00094
https://doi.org/10.1137/1.9780898719611
https://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9780898719611
https://doi.org/10.1109/MIC.2011.64
https://doi.org/10.1109/MIC.2011.64
https://doi.org/10.1109/GCE.2008.4738445
https://doi.org/10.1109/UrgentHPC51945.2020.00008
https://doi.org/10.1109/UrgentHPC51945.2020.00008
https://doi.org/10.1109/MCSE.2023.3311148
https://doi.org/10.1007/978-1-4939-3369-3_13
https://doi.org/10.1007/978-1-4939-3369-3_13
https://doi.org/10.1109/UrgentHPC51945.2020.00006
https://doi.org/10.1016/j.patter.2022.100606
https://doi.org/10.1016/j.procs.2012.04.186
http://htor.ethz.ch/
https://mcopik.github.io
beckman@anl.gov

XaaS: Acceleration as a Service to Enable Productive High-Performance Cloud Computing

delivery of large-scale high performance computing (HPC) services;
technical and economic evaluation methods for HPC technologies
and services; and the economic and human aspects of HPC, such as
cost-value models and evolution of HPC skills. Jones received his
BSc in Physics from the University of Manchester. He is a member at
ACM SIGHPC. Contact him at www.linkedin.com/in/andrewjones.
Ian Foster is Distinguished Fellow and Director of the Data Sci-
ence and Learning Division at Argonne National Laboratory in
Lemont, Illinois 60439, USA, and Professor of Computer Science at
the University of Chicago, Chicago, Illinois 60637, USA. His research
interests include distributed and high-performance computing and
their applications in the sciences. Foster received his PhD in Com-
puter Science from Imperial College. He is a Fellow of the AAAS,
ACM, BCS, and IEEE. Contact him at foster@anl.gov.
Manish Parashar is Director of the Scientific Computing and
Imaging (SCI) Institute, Chair in Computational Science and Engi-
neering, and Presidential Professor, Kalhert School of Computing at
the University of Utah, Salt Lake City, UT, 84112. His research inter-
ests are in the broad areas of parallel and distributed computing and
computational and data-enabled science and engineering. Parashar
received his Ph.D. in Computer Engineering from Syracuse Univer-
sity. He is the founding chair of the IEEE Technical Community on
High Performance Computing (TCHPC), and is Fellow of AAAS,
ACM, and IEEE. Contact him at http://manishparashar.org.
Daniel Reed is a Presidential Professor and Professor of Computer
Science and Electrical & Computer Engineering at the University
of Utah in Salt Lake City, Utah, 84117, USA. His research interests

include computational science, science and engineering policy, and
high-performance computing. Reed received his Ph.D. in computer
science from Purdue University. He is a fellow of the ACM, IEEE,
and AAAS. Contact him at dan.reed@utah.edu.
Matthias Troyer is Technical Fellow and Corporate Vice President
at Microsoft Corporation in Redmond, WA. His interests include
Quantum Computation, High-Performance Cloud Computing and
AI acceleration for for science. Troyer received his PhD in Physics
from ETH Zurich. Contact him at matthias.troyer@microsoft.com.
Thomas Schulthess is Director of the Swiss National Supercom-
puting Center (CSCS). His research interests includeHigh-Performance
and Cloud Computing. Schulthess received his PhD in Physics from
ETH Zurich. Contact him at schulthess@cscs.ch.
Daniel Ernst is Director of System Architecture at Nvidia. His
research interests include computer memory systems architecture,
system performance modeling, and hardware/software co-design.
Ernst received his PhD in Computer Science and Engineering from
the University of Michigan. Contact him at dane@nvidia.com.
JackDongarra is Professor at the University of Tennessee Knoxville.
His research interests include High-Performance Computing, Paral-
lel Programming, and Numerical Algorithms. Dongarra received his
PhD in Applied Mathematics from the University of New Mexico.
He is a Fellow of the IEEE, ACM, SIAM, and AAAS, member of the
US NAE, the US NAS, and a Fellow of the British Royal Society, as
well as recipient of the ACM A.M. Turing Award. Contact him at
dongarra@icl.utk.edu.

www.linkedin.com/in/andrewjones
foster@anl.gov
http://manishparashar.org
dan.reed@utah.edu
matthias.troyer@microsoft.com
schulthess@cscs.ch
dane@nvidia.com
dongarra@icl.utk.edu

	Abstract
	Introduction
	State of the Art
	Containers
	Using resources
	Scheduling
	Accounting for resources
	Early hardware access, co-design, and code optimization
	Security and Isolation
	Summary

	High-performance Accelerated Cloud Computing - A Road to Convergence
	Enabling Technologies for XaaS
	High-Performance Container Infrastructure and Input/Output
	Fine-grained Invocation, Billing, Operations, and Integration

	Opportunities
	Acknowledgments
	References
	Biographies

