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WHAT YOUR VENDOR SOLD YOU 

Slide 2 of 22 



WHAT YOUR APPLICATIONS GET 

[1]: Schneider et al.: “Application-oriented ping-pong benchmarking: how to assess the real communication overheads“, Elsevier Computing  

10% of  
ping-pong 
performance 

observed application bandwidth 
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WHAT YOUR APPLICATIONS GET 

[1]: Schneider et al.: “Application-oriented ping-pong benchmarking: how to assess the real communication overheads “, Elsevier Computing  

10% of  
ping-pong 
performance 

Why? 
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LOCAL COPY VS. REMOTE COPY 
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 PGAS languages do not support datatypes 

 Send noncontiguous elements separately? 

 

PUT MAXIMUM CONTIGUOUS BLOCKS? 

Maximal Block 

Put Put Put Put Put 
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SHARED MEMORY, PGAS, MESSAGE PASSING 

OpenMP, Pthreads, MPI-3, … UPC, CAF, MPI One Sided, … MPI Two Sided, PVM, … 

origin specifies target address 
no involvement of target control flow 

origin specifies channel 
target specifies address 

simple compiler analysis and transformations static message matching  

 One-Sided Control Flow! 
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 Can we utilize the “one-sided control flow” to 
optimize non-contiguous communications? 

 During compilation, automatically? 

 

 

 

 Backslice from communication to packing loop 
Or accumulate communications to the same target 

 Affine loops are easy to handle 

 

 

 

 

 

RESEARCH QUESTIONS AND CONTRIBUTIONS 

Kjolstad et al. [2]: “We have implemented the algorithm in  
a tool that transforms packing code to MPI Datatypes.” 

[2]: Kjolstad et al.: “Automatic Datatype Generation and Optimization”, PPoPP’12 
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for ( int iters=0; iters<niters; iters++) { 
 compute_2d_stencil( array, ... ); 
 // swap arrays (omitted for brevity) 
 for ( int i=0; i<bsize; ++i ) 
  sbufnorth[i] = array[i+1,1]; 
 // ... omitted south, east, and west pack loops 
 RMA_Put( sbufnorth , rbufnorth , bsize , north ); 
 // ... omitted south , east , and west communications 
 RMA_Fence(); 
 for ( int i =0; i<bsize; ++i ) array[i+1,0] = rbufnorth[i]; 
 // ... omitted south, east, and west unpack loops 
} 

EXAMPLE: FULL PACKING 

Slide 9 of 22 



for ( int iter=0; iter<niters; ++iter ) { 
 compute_2d_stencil( array, ... ); 
 // swap arrays ( omitted for brevity ) 
 for ( int i=0; i<bsize ; i++ ) { 
  RMA_Put( array[i+1,1], array[i+1,0], size, north ); 
  // ... omitted south, east, and west communications 
 } 
 RMA_Fence( ); 
} 

EXAMPLE: MAXIMAL BLOCKS 
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HIGH-LEVEL OVERVIEW 

Pack First 

Put 

Pipelined-Pack-Put 

Put Put 

Maximal Block 

Put Put Put Put Put 

Optimal size  
for each step? 

Optimal copy code? 

Traditional Approaches Pipelined Packing 
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APPLICABILITY? 

Observation I: If contiguous blocks > 512 kiB then put directly! 
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BANDWIDTH CONSIDERATIONS 

Observation II: Larger transfers attain higher bandwidth (well known) 
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Fully Packed Communication 
 
 
 
 
 

Maximum Block Communication 
 
 
 
 
 

A MODEL FOR NONCONTIGUOUS TRANSFERS 

Maximal Block 

Put Put Put Put Put 
a1 a2 a3 a4 a5 

S = {a1, a2, a3, a4, a5} Block at target 
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Pipeline packing and remote put 
 
 
 
 

MODELING NON-CONTIGUOUS PUTS 

Optimization Problem: find the n optimal partitions! 

Strategy I: fixed partition size  
                   (“fixed pipeline”)  

Strategy II: close-to-optimal partition  
                     size (“Superpipeline” *3+)  

[3]:A. Denis: “A high performance superpipeline protocol for InfiniBand”, EuroPar 2011 
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 Lots of choice to move 
data! 

 > 36 ways on x86 

 Restricted semantics 
allow for Super- 
optimization [4] 

 Exhaustive search 

 Runs ~1 day 

 Generates close-to-
optimal sequences 

 

MODELING AND OPTIMIZING LOCAL COPIES 

Overview of data movement and 
loop-forming instructions on x86-64. 

[4]: S. Bansal and A. Aiken: “Automatic generation of peephole superoptimizers”, SIGPLAN Notices 2006 
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OPTIMIZED LOCAL COPY SEQUENCE 

optimized copy 

libc memcpy() 

libc bcopy() 

7x 

>3x 
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NETWORK COMMUNICATION MODEL 

Inter-node communication 
performance on JYC (R2=0.999) 

latency + synchronization 

per-put overhead 
(inverse message rate) 

per-byte overhead 
(inverse bandwidth) 

JYC (Gemini): 
 L=1 us 
 o=0.69 us 
 0.17 ns/B  

Piz Daint (Aries): 
 L=1 us 
 o=0.66 us 
 0.06 ns/B  
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RESULTS I: FFT PARALLEL TRANSPOSE 

JYC Piz Daint 
JYC (Gemini): 
 L=1 us 
 o=0.69 us 
 0.17 ns/B  

Piz Daint (Aries): 
 L=1 us 
 o=0.66 us 
 0.06 ns/B  
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RESULTS II: SPECFEM3D (12B BLOCKS) 

JYC Piz Daint 
JYC (Gemini): 
 L=1 us 
 o=0.69 us 
 0.17 ns/B  

Piz Daint (Aries): 
 L=1 us 
 o=0.66 us 
 0.06 ns/B  
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 Data layout from 
SPECFEM3D_GLOBE 

 4 Byte blocks with irregular 
displacements on sender, 
consecutive on receiver 

 High copy overhead 
because of the small block 
size 

RESULTS III: IRREGULAR DATA TRANSFER 

JYC 
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 Process-local compiler transformations speed up 
communication >2x 

 Analytic performance models work in practice 

 Superoptimization for specialized domains 
  

 Thanks to 

 

 

 
 the anonymous reviewers and Kimura-san 

CONCLUSIONS & ACKNOWLEDGMENTS 
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Backup Slides 
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PROGRAMMING MODELS OVERVIEW 

OpenMP, Pthreads, CUDA, … UPC, CAF, MPI One Sided, … MPI Two Sided, PVM, … 

 races, deadlocks, livelocks 
 hidden locality 
 memory model issues 
 scalability issues 

 races, deadlocks, livelocks 
 memory model issues 
 no coherency 

 coherency 
 direct match to hardware 

 explicit locality 
 scalable 
 direct match to hardware 

 deadlocks (rare) 
 matching overheads 

 explicit locality 
 scalable 
 no races etc. 
 ease of use 
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