
COMPILER OPTIMIZATIONS FOR
NON-CONTIGUOUS REMOTE DATA MOVEMENT

TIMO SCHNEIDER, ROBERT GERSTENBERGER, TORSTEN HOEFLER

WHAT YOUR VENDOR SOLD YOU

Slide 2 of 22

WHAT YOUR APPLICATIONS GET

[1]: Schneider et al.: “Application-oriented ping-pong benchmarking: how to assess the real communication overheads“, Elsevier Computing

10% of
ping-pong
performance

observed application bandwidth

Slide 3 of 22

WHAT YOUR APPLICATIONS GET

[1]: Schneider et al.: “Application-oriented ping-pong benchmarking: how to assess the real communication overheads “, Elsevier Computing

10% of
ping-pong
performance

Why?

Slide 4 of 22

LOCAL COPY VS. REMOTE COPY

Slide 5 of 22

 PGAS languages do not support datatypes

 Send noncontiguous elements separately?

PUT MAXIMUM CONTIGUOUS BLOCKS?

Maximal Block

Put Put Put Put Put

Slide 6 of 22

SHARED MEMORY, PGAS, MESSAGE PASSING

OpenMP, Pthreads, MPI-3, … UPC, CAF, MPI One Sided, … MPI Two Sided, PVM, …

origin specifies target address
no involvement of target control flow

origin specifies channel
target specifies address

simple compiler analysis and transformations static message matching

 One-Sided Control Flow!

Slide 7 of 22

 Can we utilize the “one-sided control flow” to
optimize non-contiguous communications?

 During compilation, automatically?

 Backslice from communication to packing loop
Or accumulate communications to the same target

 Affine loops are easy to handle

RESEARCH QUESTIONS AND CONTRIBUTIONS

Kjolstad et al. [2]: “We have implemented the algorithm in
a tool that transforms packing code to MPI Datatypes.”

[2]: Kjolstad et al.: “Automatic Datatype Generation and Optimization”, PPoPP’12

Slide 8 of 22

for (int iters=0; iters<niters; iters++) {
 compute_2d_stencil(array, ...);
 // swap arrays (omitted for brevity)
 for (int i=0; i<bsize; ++i)
 sbufnorth[i] = array[i+1,1];
 // ... omitted south, east, and west pack loops
 RMA_Put(sbufnorth , rbufnorth , bsize , north);
 // ... omitted south , east , and west communications
 RMA_Fence();
 for (int i =0; i<bsize; ++i) array[i+1,0] = rbufnorth[i];
 // ... omitted south, east, and west unpack loops
}

EXAMPLE: FULL PACKING

Slide 9 of 22

for (int iter=0; iter<niters; ++iter) {
 compute_2d_stencil(array, ...);
 // swap arrays (omitted for brevity)
 for (int i=0; i<bsize ; i++) {
 RMA_Put(array[i+1,1], array[i+1,0], size, north);
 // ... omitted south, east, and west communications
 }
 RMA_Fence();
}

EXAMPLE: MAXIMAL BLOCKS

Slide 10 of 22

HIGH-LEVEL OVERVIEW

Pack First

Put

Pipelined-Pack-Put

Put Put

Maximal Block

Put Put Put Put Put

Optimal size
for each step?

Optimal copy code?

Traditional Approaches Pipelined Packing

Slide 11 of 22

APPLICABILITY?

Observation I: If contiguous blocks > 512 kiB then put directly!

Slide 12 of 22

BANDWIDTH CONSIDERATIONS

Observation II: Larger transfers attain higher bandwidth (well known)

Slide 13 of 22

Fully Packed Communication

Maximum Block Communication

A MODEL FOR NONCONTIGUOUS TRANSFERS

Maximal Block

Put Put Put Put Put
a1 a2 a3 a4 a5

S = {a1, a2, a3, a4, a5} Block at target

Slide 14 of 22

Pipeline packing and remote put

MODELING NON-CONTIGUOUS PUTS

Optimization Problem: find the n optimal partitions!

Strategy I: fixed partition size
 (“fixed pipeline”)

Strategy II: close-to-optimal partition
 size (“Superpipeline” *3+)

[3]:A. Denis: “A high performance superpipeline protocol for InfiniBand”, EuroPar 2011
 Slide 15 of 22

 Lots of choice to move
data!

 > 36 ways on x86

 Restricted semantics
allow for Super-
optimization [4]

 Exhaustive search

 Runs ~1 day

 Generates close-to-
optimal sequences

MODELING AND OPTIMIZING LOCAL COPIES

Overview of data movement and
loop-forming instructions on x86-64.

[4]: S. Bansal and A. Aiken: “Automatic generation of peephole superoptimizers”, SIGPLAN Notices 2006
 Slide 16 of 22

OPTIMIZED LOCAL COPY SEQUENCE

optimized copy

libc memcpy()

libc bcopy()

7x

>3x

Slide 17 of 22

NETWORK COMMUNICATION MODEL

Inter-node communication
performance on JYC (R2=0.999)

latency + synchronization

per-put overhead
(inverse message rate)

per-byte overhead
(inverse bandwidth)

JYC (Gemini):
 L=1 us
 o=0.69 us
 0.17 ns/B

Piz Daint (Aries):
 L=1 us
 o=0.66 us
 0.06 ns/B

Slide 18 of 22

RESULTS I: FFT PARALLEL TRANSPOSE

JYC Piz Daint
JYC (Gemini):
 L=1 us
 o=0.69 us
 0.17 ns/B

Piz Daint (Aries):
 L=1 us
 o=0.66 us
 0.06 ns/B

Slide 19 of 22

RESULTS II: SPECFEM3D (12B BLOCKS)

JYC Piz Daint
JYC (Gemini):
 L=1 us
 o=0.69 us
 0.17 ns/B

Piz Daint (Aries):
 L=1 us
 o=0.66 us
 0.06 ns/B

Slide 20 of 22

 Data layout from
SPECFEM3D_GLOBE

 4 Byte blocks with irregular
displacements on sender,
consecutive on receiver

 High copy overhead
because of the small block
size

RESULTS III: IRREGULAR DATA TRANSFER

JYC

Slide 21 of 22

 Process-local compiler transformations speed up
communication >2x

 Analytic performance models work in practice

 Superoptimization for specialized domains

 Thanks to

 the anonymous reviewers and Kimura-san

CONCLUSIONS & ACKNOWLEDGMENTS

Slide 22 of 22

Backup Slides

Slide 23 of 22

PROGRAMMING MODELS OVERVIEW

OpenMP, Pthreads, CUDA, … UPC, CAF, MPI One Sided, … MPI Two Sided, PVM, …

 races, deadlocks, livelocks
 hidden locality
 memory model issues
 scalability issues

 races, deadlocks, livelocks
 memory model issues
 no coherency

 coherency
 direct match to hardware

 explicit locality
 scalable
 direct match to hardware

 deadlocks (rare)
 matching overheads

 explicit locality
 scalable
 no races etc.
 ease of use

Slide 24 of 22

