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ABSTRACT

The steadily increasing number of nodes in high-performance
computing systems and the technology and power constraints
lead to sparse network topologies. Efficient mapping of ap-
plication communication patterns to the network topology
gains importance as systems grow to petascale and beyond.
Such mapping is supported in parallel programming frame-
works such as MPI, but is often not well implemented. We
show that the topology mapping problem is NP-complete
and analyze and compare different practical topology map-
ping heuristics. We demonstrate an efficient and fast new
heuristic which is based on graph similarity and show its util-
ity with application communication patterns on real topolo-
gies. Our mapping strategies support heterogeneous net-
works and show significant reduction of congestion on torus,
fat-tree, and the PERCS network topologies, for irregular
communication patterns. We also demonstrate that the ben-
efit of topology mapping grows with the network size and
show how our algorithms can be used in a practical setting to
optimize communication performance. Our efficient topol-
ogy mapping strategies are shown to reduce network con-
gestion by up to 80%, reduce average dilation by up to 50%,
and improve benchmarked communication performance by
18%.

Categories and Subject Descriptors

D.1.3 [Concurrent Programming]: Parallel Programming—
Topology Mapping

General Terms

Performance
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1. MOTIVATION
The number of nodes in the largest computing systems,

and, hence, the size of their interconnection networks, is
increasing rapidly: The Jaguar system at ORNL has over
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18,000 nodes and larger systems are expected in the near
future. These networks are built by interconnecting nodes
(switches and processors) with links. Pin count, power and
gate count constraints restrict the number of links per switch;
typical sizes are: 24 (InfiniBand), 36 (Myrinet, InfiniBand),
or 6 (Sea Star or BlueGene/P). Different topologies are used
to construct large-scale networks from crossbars; e.g., k-
ary n-cubes (hypercube, torus), k-ary n-trees (fat-trees), or
folded Clos networks. Networks also differ in their routing
protocols.

As the number of nodes grows larger, the diameter of the
network (i.e., the maximum distance between two proces-
sors) increases; for many topologies, the bisection bandwidth
(i.e., the minimum total bandwidth of links that need to be
cut in order to divide the processors into two equal sets)
decreases relative to the number of nodes.

This effect is well understood and it is generally accepted
that dense communication patterns (such as an all-to-all
communication where each node communicates to each other)
are hard to scale beyond petascale systems. Luckily, the
communication patterns of many applications are relatively
sparse (each node communicate with a few others), and
dense communications can be replaced by repeated sparse
communications (e.g., the all-to-all communication used for
the transpose in a parallel Fast Fourier Transform can be
replaced by two phases of group transposes, each involving
only Θ(

√
P ) processors [17]). Furthermore, the communi-

cation pattern often has significant locality, e.g., when most
communication occurs between adjacent cells in a 3D do-
main. However, an inappropriate mapping of processes to
the nodes of the interconnection network can map a logical
communication pattern that is sparse and local into traffic
that has no locality.

Finding an allocation of processes to nodes such that the
sparse application communication topology efficiently uti-
lizes the physical links in the network is called topology
mapping. The problem has been much studied for regular
communication graph and regular interconnection network
topologies. In practice, both graphs are likely to be irreg-
ular: The communication pattern may be data-dependent
(e.g., for finite-element on irregular meshes); it may consist
of a superposition of multiple regular graphs (e.g., for com-
putations that combine nearest-neighbor communications
with global communication). The interconnection network
may have a complex topology, with different links having dif-
ferent bandwidths (e.g., copper vs. optics), and with some
links being disabled. The general problem has been much
less studied.



Our previous argument suggests that mapping regular and
irregular applications to the network topology is becoming
more and more important at large scale. MPI offers sup-
port for topology mapping. A user can specify the (regular
or irregular) communication topology of the application and
request the library to provide a good mapping to the physical
topology [16, 7]. An MPI implementation then re-numbers
the processes in the communicator so as to improve the map-
ping.The scalability and usability of the topology interface
was recently improved in MPI-2.2 [12] to allow a scalable
specification and edge weights that represent communica-
tion characteristics. Finding a good mapping is non trivial
and MPI implementations tend to use the trivial identify
mapping.

Our work supports the optimization of arbitrary process
topologies for arbitrary network topologies and thus an effi-
cient implementation of the MPI process topology interface.
This enables transparent and portable topology mapping
for all network topologies. Our work also addresses hetero-
geneous networks such as PERCS, where different physical
links may have different bandwidths.

Our implementation is intended for renumbering processes
as suggested by MPI, however, the developed techniques and
our open-source library can also be applied to other parallel
programming frameworks such as UPC or CAF.

1.1 Related Work
The mapping of regular Cartesian structures to differ-

ent target architectures is well understood. Yu, Chung,
and Moreira present different topology mapping strate-
gies of torus process topologies into the torus network
of BlueGene/L [23]. Bhatelé, Kalé and Kumar discuss
topology-aware load-balancing strategies for molecular dy-
namic CHARM++ applications [2]. Their analysis enables
mapping from mesh and torus process topologies to other
mesh and torus network topologies and provides perfor-
mance gains of up to 10%.

Several researchers investigated techniques to optimize
process mappings with arbitrary topologies on parallel com-
puters. Bokhari [3] reduces the mapping problem to graph
isomorphism. However, his strategy ignores edges that are
not mapped. It was shown later that such edges can have
a detrimental effect on the congestion and dilation of the
mapping. Lee and Aggarwal [15] improve those results and
define a more accurate model which includes all edges of the
communication graph and propose a two-stage optimization
function consisting of initial greedy assignment and later
pairwise swaps. Bollinger and Midkiff [4] use a similar model
and simulated annealing to optimize process mappings.

Träff proposes an implementation strategy for strictly hi-
erarchical networks such as clusters of SMPs [22]. He de-
fines different optimization criteria and shows the potential
of MPI topology mapping for several artificial graphs.

2. TOPOLOGYMAPPING

2.1 Terms and Conventions
We use a notation that extends that used for graph em-

beddings [19]. The formulation is similar to the fluid flow
approximation used to study Internet traffic [13]. We repre-
sent the (logical) communication pattern using a weighted,
directed graph G = (VG , ωG) VG is the set of processes; the
weight ω(uv) of the edge connecting u ∈ VG to v ∈ VG rep-

resents the volume of communication from process u to pro-
cess v; the weight is zero if no such communication occurs.
The graph G might be disconnected and isolated vertices can
exist – representing the concurrent execution of multiple un-
related jobs.

Likewise, the (physical) interconnection network is repre-
sented by a weighted, directed graphH = (VH, CH, cH,RH).
VH is the set of physical nodes (processors and switches).
If u ∈ VH then CH(u) is the number of processes that
can be hosted at u (this represents multicore processors);
CH(u) = 0 if u contains no processors (e.g., is a switch).
cH(uv) is the capacity (bandwidth) of the link connecting u
to v (zero if there is no such link).

The function RH represents the routing algorithm. Let
P(uv) be the set of simple paths (paths where each edge oc-
curs at most once) connecting node u ∈ VH to node v ∈ VH

For each pair of nodes uv, RH(uv) is a probability distribu-
tion on P(uv). Thus, if p ∈ P(uv) then RH(uv)(p) is the
fraction of traffic from u to v that is routed through path
p. In practice, routing algorithms tend to use a small frac-
tion of the possible paths (e.g., only shortest paths), and the
traffic is often distributed evenly across all used paths.

The topology mapping is specified by a function Γ: VG →
VH which maps the vertices of G (processes) to vertices in
VH (nodes) such that no more than C(v) vertices in G are
mapped to each vertex v ∈ VH. We use the terms mapping
and embedding interchangeably.

We now define two quality measures for a mapping: Worst
Case Congestion (for short, congestion) and Average Dila-
tion (for short, dilation). Let |p| denote the length of path
p. Then, the expected dilation of an edge uv of the commu-
nication graph is defined as

Dilation(uv) =
∑

p∈P(Γ(u)Γ(v))

RH(Γ(u)Γ(v))(p) · |p| (1)

Dilation(uv) is the average length of the path taken by a
message sent from process u to process v. The average dila-
tion is computed by weighting each inter-process communi-
cation by its frequency:

Dilation(Γ) =
∑

u,v∈VG

ωG(uv) ·Dilation(uv) (2)

Dilation is the average number of edges traversed by packets
– hence is a measure of the total “communication work”per-
formed by the interconnection network; it is indicative of the
total energy consumption of the interconnection network.

The congestion of a link uv of the interconnection network
is the ratio between the amount of traffic on that link and
the capacity of the link. The total traffic crossing an edge
e ∈ EH is

Traffic(e) =

∑

u,v∈VG

ωG(uv)





∑

p∈P(Γ(u)Γ(v)),e∈p

RH(Γ(u)Γ(v))(p)



 (3)

The congestion of edge e is defined as

Congestion(e) =
Traffic(e)

cH(e)
, (4)

and the worst-case congestion is

Congestion(Γ) = max
e

Congestion(e) (5)



Congestion(Γ) is a lower bound on the time needed for
communication. Both congestion and dilation can be com-
puted in polynomial time.

The chosen representation embodies certain assumptions
that are satisfied in many cases:

We assume that bandwidth between processes hosted at
the same processor node is practically unbounded. To do
so formally, we add to each processor node a self-loop with
infinite capacity.

We assume that switches are not a performance bottle-
neck: the traffic flowing through a switch is constrained by
the bandwidth of the incoming and outgoing links, but not
by the internal switch structure. If this is not the case, the
internal switch structure needs to be represented, too.

We assume oblivious routing: the distribution of traffic
between two nodes does not depend on other ongoing traffic.

We assume that the routing algorithm is fixed, and does
not depend on the embedded communication graph: The
knowledge of the application communication pattern is used
to map processes to processors, but is not used to change the
routing algorithm. The formalism can be adjusted to handle
routing protocols that are application dependent, in which
case, the routing function becomes part of the mapping.

The mapping problem is often expressed as a permutation
of processes, following an initial assignment of processes to
processors. The remapping is defined by a permutation π on
the set 0 . . . P−1 of processes. For example, in MPI, the user
can specify a logical communication graph for a communi-
cator, and request that the processes in the communicator
be physically mapped so as to improve the performance of
this communication pattern; the permutation π is returned
as a new rank order for the processes in the communicator
if the reorder argument is set to true.

2.2 Practical Issues
The mapping framework presented in this paper assumes

that a communication pattern is defined once for all pro-
cesses running on the system, and the processes are mapped
to processors once. In practice, it may be advantageous to
periodically readjust the mapping; and remapping of the
processes of a job may be restricted to the set of nodes al-
located to the job. We discuss below how our framework
can be extended to handle these concerns; a detailed perfor-
mance analysis of these enhancements is beyond the scope
of this paper.

The jobs running on the system can be periodically recon-
figured, based on the observed communication pattern and
the overall network topology. A remapping might be benefi-
cial whenever the communication pattern of a job changes,
or when jobs start or terminate. When we do so, we need
to balance the overhead of remapping against the benefit of
improved communication performance. We do not consider
in this paper the problem of selecting an optimal remap-
ping schedule, and focus only on the choice of an optimal
mapping when (re)mapping is performed.

If each job is mapped independently, then the host graph
for a job is taken to be the partition used for this job (we
assume space partitioning): the processors allocated to the
job and the switches that can be used to route between these
nodes. If there is little interference between the traffic of
different parallel jobs, then the capacity of each link in this
host graph equals its physical capacity; if the interference is
significant, then the traffic of other jobs can be represented

as a reduction in the capacity of edges in the host graph
seen by the job being mapped. A significant change in the
background traffic may necessitate a remapping of processes
to nodes.

2.3 An Example Mapping
Figure 1 shows a simple example. The host network topol-

ogy H is a 2-ary 3-cube (3D cube) with VH = {0, 1}3 and
EH = {(u, v) ∈ VH × VH|u and v differ in one bit}; we as-
sume dimension order routing in x,y,z-order. We use a four
process job with the communication topology shown in Fig-
ure 1(b) as example. A possible initial mapping that maps
(0, 1, 2, 3) to (000, 111, 101, 100), in this order, is shown in
Figure 1(c); the edges in H are annotated with the num-
ber of connections that are routed through the edge. The
maximum congestion and dilation for this initial mapping
are 2 and 3, respectively. A better mapping, shown in Fig-
ure 1(d), maps (0, 1, 2, 3) to (101, 111, 000, 100), with both
maximum congestion and dilation of 1.

2.4 The Mapping Problem
The mapping problem can be defined as finding a map-

ping Γ that minimizes some measure of the congestion or
dilation. In this work, we focus on minimizing the max-
imum congestion (the algorithm runtime) and average di-
lation (the needed power to move the data). Our work is
equally applicable to other optimization metrics.

We define the Topology Mapping Problem TMP as the
problem of deciding if there exists a mapping Γ (or permu-
tation π) that has congestion less or equal to x.

Theorem 1. TMP is NP-complete.

Proof. The congestion of a mapping can be computed in
polynomial time, using Equations (3), (4) and (5). It follows
that TMP is in NP: The NP algorithm guesses a mapping Γ,
computes its congestion and returns TRUE is the congestion
is less than x.

We now show a reduction to the “MINIMUM CUT INTO
BOUNDED SETS” NP-complete problem’ [10, ND17] to
conclude our proof. The (reduced) min cut problem takes
as input an undirected graph G =< V,E >, two specified
vertices s, t ∈ V and an integer L; it decides whether there
exist a partition of the vertices into two disjoint sets V1, V2

such that s ∈ V1, t ∈ V2, |V1| = |V2| and the number of
edges between V1 and V2 is no more than L. an

Let G =< V,E >, s, t, L be an instance of the min-cut
problem. Let P = |V |. We construct a “dumbbell” host
graph H = (VH, EH, C, c) that consists of two fully con-
nected graphs L1 = L2 = KP/2 and a single bidirectional
edge ē between arbitrary vertices u1 ∈ L1 and u2 ∈ L2. We
set C(v) = 1 and c(e) = 1 for all edges, except edge u1u2;
c(u1u2) = c(u2u1) = P . The construction is shown, for
P = 8 in Figure 2. The routing function RH is defined to
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Figure 2: Dumbbell graph

route all traffic between two nodes in H through the unique
shortest path connecting them.

We define the communication graph G to be the graph G
with weight ω(e) = 1 for each edge e ∈ E; the edge st is
given weight P 4 if st /∈ E, and weight P 4 + 1 if st ∈ E.
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Figure 1: A simple example for topology-aware mappings.

Any mapping of G to H defines a partition of VG into two
equal size sets V1 = Γ−1(L1) and V2 = Γ−1(L2). A mapping
that minimizes congestion must map {s, t} to {u1, u2}: This
results in a congestion of ≤ P 3 +P whereas any other map-
ping will result in a congestion of ≥ P 4 (since traffic from
s to t will flow through an edge of capacity 1). In such a
mapping, the most congested edge will be the edge u1u2; its
congestion will be

P 3 +
1

P
· |{(v1v2) ∈ E s.t. v1 ∈ V1 and v2 ∈ V2}|

Thus, any solution to the TMP instance, with x = P 3+L/P ,
can be used to build a solution to the partition problem in
polynomial time. It is easy to see that the converse is also
true.

2.5 Restricted Mapping Problem
We shall focus, from now on, on the simpler problem

where routing only uses shortest paths and all shortest paths
are used with equal probability.

The dumbbell graphH used in the proof of Theorem 1 has
a unique shortest path between any two nodes; the routing
function routes all traffic between two nodes on that shortest
paths. Thus, the problem of finding an optimal mapping is
still NP-hard if routing is restricted as above.

For the restricted routing problem, we do not need to spec-
ify explicitly the routing function; the host graph is defined
as (VH, CH, cH), and the routing function is determined im-
plicitly. The number of shortest paths between two nodes
can be exponential in the number of vertices, so that the
concise representation of the host graph can be exponen-
tially smaller than an explicit one. Therefore, it is not obvi-
ous that computing the congestion or dilation of a mapping
takes polynomial time, with this input representation. We
show this is the case, below.

Determining the dilation of an edge (u, v) ∈ G is straight-
forward by computing the length of the shortest path
from Γ(u) to Γ(v) in H. This can be implemented with
single-source-shortest-path (SSSP) from each vertex in time
O(|VG | · (|EH|+ |VH| · log |VH|)).

The congestion of an edge can be computed in polynomial
time using an algorithm similar to the one used for comput-
ing betweenness centrality [5]. We present below a simple
(nonoptimal) polynomial time algorithm.

Let σi(s, t) be the number of paths of length i from s to t
Then

σ0(s, t) =

{

1 if s = t
0 otherwise

and

σi(s, t) =
∑

u adjacent to t

σi−1(s, u)

We compute σi(s, t)) for all pairs of nodes s, t and all i ≤
P in time O(|VH|2|EH|). The distance (the shortest path
length) between any two nodes is equal to

d(s, t) = min{i : σi(s, t) > 0}
and the number of shortest paths from s to t is equal to

τ (s, t) = σd(s,t)(s, t)

Let τ (s, t, e) be the number of shortest paths from s to t
going through edge e, Then, if e = uv, then

τ (s, t, e) =
∑

j+k=d(s,t)−1

σj(s, u) · σk(v, t)

The traffic through edge e can now be computed as

Traffic(e) =
∑

s,t

ω(s, t)
τ (s, t, e)

τ (s, t)

and the congestion equals to

max
e

Traffic(e)

c(e)

3. TOPOLOGYMAPPING ALGORITHMS
Previous work discussed different options for topology

mapping. We start with an extension to a simple greedy
algorithm which supports heterogeneous networks, discuss
recursive bisection mapping and then discuss a new map-
ping strategy based on graph similarity. We also show how
to support multicore nodes with established graph partition-
ing techniques.

3.1 Greedy Heuristic
Similar greedy algorithms have been proposed in previous

work. Our greedy strategy, however, considers edge weights
and thus enables mapping to heterogeneous network archi-
tectures.

Let the weight of a vertex v ∈ VG be the sum of the weights
of all edges e = (v, u). The greedy mapping strategy starts
at some vertex in H, chooses the heaviest vertex in G and
greedily maps its heaviest neighboring vertices in G to the
neighboring vertices inH with the heaviest connections. The
process is continued recursively. The detailed algorithm is
presented in Algorithm 1. The greedy heuristic would find
an optimal solution for the example in Figure 1 if it is started
at vertex 100. This greedy approach is the most generic



Algorithm 1: Greedy Graph Embedding.

Input: Graphs H and G, C(v) for all v ∈ VH.
Output: Mapping Γ : VG → VH, congestion ρ(e) for all

e ∈ EH.
S ← VG ;1

Q← empty priority queue;2

ω̂ = maxe∈EG
{ω(e)} · |VH|23

initialize all ρ(e) with ω̂; // forces minimal edge count4

pick start vertex s ∈ VH;5

while S 6= ∅ do6

find vertex m with heaviest out-edges in S;7

if C(s) = 0 then8

pick new s ∈ VH such that C(s) ≥ 1;9

Γ(m) = s; // map m to s10

S = S\m; // remove m from S11

C(s) = C(s)− 1;12

foreach u|(m,u) ∈ EG and u ∈ S do13

Q← (m,u)|u ∈ S; // add all neighbors14

// ... of m that are still in S to Q15

while Q 6= ∅ do16

(u,m)← Q; // heaviest edge in Q17

if C(s) = 0 then18

// find closest vertex t ∈ VH to s with19

// ... C(t) ≥ 1 using a SSSP20

// ... (e.g., Dijkstra’s) algorithm21

s = t;22

Γ(m) = s; // map m to s23

S = S\m; // remove m from S24

C(s) = C(s)− 1;25

add ω((m,u))/c(f) to each ρ(f) for all edges f26

on the shortest path Γ(u) ; Γ(m)
foreach u|(m, u) ∈ EG andu ∈ S do27

Q← (m,u)|u ∈ S; // add all neighbors28

// ... of m that are still in S to Q29

subtract ω̂ from all ρ(e); // correction from line 430

approach and works with all graphs and arbitrary values for
C(v).

Theorem 2. The runtime of the greedy mapping algo-
rithm is O(|VG | · (|EH|+ |VH| log |VH|+ |VG | log |VG |)).

Proof. Each vertex in G will be removed exactly once
from S. Picking a new vertex (lines 7/8) takes O(|VG |) with
a linear scan. Checking if each of the neighbors of m should
be added to Q (lines 13,24) can be done in O(|VG | log |VG |).
Line 16-19 issues an SSSP-run in H (e.g., Dijkstra’s al-
gorithm using a Fibonacci heap) for ∀v ∈ VG. Thus,
the asymptotic run-time is O(|VG | · (|EH| + |VH| log |VH| +
|VG | log |VG |))

3.2 Recursive Bisection Mapping
A second method to find a good topology mapping is re-

cursive bisection. In this method, the weighted graphs H
and G are recursively split with minimum weighted edge-cut
into equal halves to determine the mapping. This technique
proved successful to determine “static mappings” in the soft-
ware package SCOTCH [18].

The minimal edge cut in the bisections maps“heavy”clus-
ters in G to “strong” clusters in H. Thus, this mechanism

Algorithm 2: Function map recursive().

Input: Graphs H and G, C(v) for all v ∈ VH.
Output: Mapping Γ : VG → VH.
// pre-condition:

∑

v∈VH
C(v) == |VG |1

if more than one vertex v ∈ VH with C(v) 6= 0 then2

(C1, C2) = bisect(H, C);3

(G1,G2) = bisect(G);4

if
∑

c∈C1
c == |VG1

| then5

map recursive(H,G1, C1);6

map recursive(H,G2, C2);7

else8

map recursive(H,G1, C2);9

map recursive(H,G2, C1);10

else11

// map all n vertices in G to vertex with load n in H12

is expected to compute relatively good mappings. However,
Simon and Teng show that in some cases, the recursive bi-
section approach might result in bad p-way partitions [21].

Theorem 3. The runtime of the recursive mapping algo-
rithm is O(|EG | log(|VG |) + |EH| · |VG |).

Proof. The runtime of the multilevel k-way partitioning
approach to bisect a graph G = (V,E) is O(|E|) [20]. The
depth of recursive calls to bisect G is ⌈log2(|VG |)⌉ and the
size of the graph G is halved in each step. Thus, the total

runtime is
∑⌈log

2
(|VG |)−1⌉

k=0 2kO(|EG |)/2k = log2(|VG |)|EG | =
O(|EG | log(|VG |)). The depth of recursive calls to bisect H
is the same as for G because the number of processors in H
(
∑

v∈VH
C(v) == |VG |) is equal to the |VG |. However, in H,

all vertices are considered at each recursion level of the bi-
section (only edges cut in previous recursions are removed).
If we assume that no edges are cut (removed), then the run-

time is
∑⌈log

2
(|VG |)−1⌉

k=0 2k · O(|EH|) = O(|EH|) · (|VG | − 1) =
O(|EH| · |VG |).

We used the METIS library [20] to compute a (2,1+ǫ)-
balanced bisection. The bisection had to be balanced in
some rare cases. Our library does this by moving the vertex
with the lowest cumulative edge weight from the bigger to
the smaller partition.

In the following, we discuss a new algorithm based on
graph similarity. This algorithm has significantly lower time
complexity and improves dilation and congestion.

3.3 Mapping based on Graph Similarity
It is well known that there is a duality between graphs and

sparse matrices and techniques from sparse linear algebra
have been applied to solve graph problems [11]. The basic
idea is that a graph’s adjacency matrix can be modeled as
a sparse matrix which enables the application of established
techniques from sparse linear algebra.

A well-studied NP-hard problem is the reduction of the
bandwidth of a sparse matrix which tries to eliminate non-
zero elements that are far from the diagonal elements by
re-numbering columns of the matrix. This can be used to
bring the adjacency matrices two graphs G andH in a similar
shape. This technique effectively transforms both graphs
into a shape where edges are localized. The Reverse Cuthill



McKee (RCM) algorithm [6] is a successful heuristic for the
bandwidth reduction problem.

RCM mapping applies the RCM algorithm to G and H
to compute πG and πH and then computes the final process
permutation π(πG) = πH, that is, π = πH ◦ π−1

G . To handle
mappings with |G| < |H| correctly, all vertices v with C(v) =
0 are removed from H. Despite potential disconnectivity on
the sub-graph, RCM handles the proximity condition well
and produces mappings with low dilation and congestion.

Figures 3(a) and 3(b) show the adjacency matrices for the
problem graph G and the network graph H, respectively.
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(a) G adjacency map of the F1 matrix on 512 processes.
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(b) H adjacency map for an 8x8x8 torus.

Figure 3: Example for RCM topology mapping of
the F1 matrix to a torus network.

Figure 3(a) shows the adjacency matrix of the communi-
cation topology for a sparse matrix-vector product of the
F1 matrix on 512 processes. This represents one of our
application-use-cases and described in detail in Section 5.2.
Figure 3(b) shows the physical topology of an 8x8x8 3-d
torus network with 512 processes.

Both figures show the original permutation on the left and
the RCM permutation on the right. RCM mapping is now
based on the similarity between both RCM graphs. This
effectively minimizes dilation and congestion.

Theorem 4. Let m = max{degree(v)|v in V }.
RCM topology mapping computes a mapping in time
O(mH log(mH)|VH|+mG log(mG)|VG |).

Proof. The complexity of RCM is O(m log(m)|V |) [6]
where m = max{degree(v)|v in V }. The algorithm applies
RCM to H and G and the mapping can be computed from
the results in O(|VG |).

The discussions in the introduction suggests that mH =
O(1) and scalable parallel algorithms often have mG =
O(log(|VG |)). RCM is thus significantly faster than the
greedy and the recursive mapping approaches and is a good
candidate for large-scale systems.

3.4 Supporting Multicore Nodes
If compute nodes (vertices v ∈ VH) execute more than

one process, then a graph partitioner can be used to divide
G before other mapping strategies are applied. The common
case where each allocated node executes the same number
of processes C(v) = p ∀v ∈ Γ(VG) and the topology graph G
needs to be partitioned into P/p equal pieces is supported
by graph partitioners.

This technique benefits from the long experience in se-
rial and parallel graph partitioning. Multiple heuristics for
(k,1+ǫ)-balanced partitioning using geometric, combinato-
rial, spectral and multilevel schemes exist [8, §18].

Libraries, such as METIS [20] or SCOTCH [18] and
their parallel versions offer optimized partitioning heuris-
tics. However, most graph partitioners cannot guarantee
perfectly (k,1)-balanced but (k,1+ǫ)-balanced partitions (for
small ǫ). Thus, the partition might need to be corrected
to be (k,1)-balanced. We use the ParMeTiS partitioner
(Multilevel k-way Partitioning in O(|EG |) [20]) to compute
(k,1+ǫ)-balanced partitions and balance the partitions if
necessary.

3.5 Improving the Initial Solution
We now describe a heuristic that might further improve

the found solution as was used in several previous works.
Several heuristics exist for such problems. Threshold Ac-
cepting [9] is an improved algorithm for simulated annealing
or hill climbing which takes an initial solution and tries to
optimize it further by searching a local minimum. We use
20 iterations in the inner optimization loop and a time limit
to determine the number of outer optimization iterations.
Candidate solutions are modified by swapping two random
positions in the mapping π. We will introduce a fast algo-
rithm to estimate the congestion in Section 5.1 which is also
used as weight function to minimize the optimization in our
TA implementation. The asymptotic running time of each
iteration of TA is equal to the running time of Algorithm 3
(cf. Theorem 5).

In the next section we describe how to effectively compose
all strategies into a topology mapping framework and apply
them to real-world network architectures.

4. A TOPOLOGYMAPPING LIBRARY
Several problems need to be solved in addition to the map-

ping problem in order to use topology mapping in practice.
We show a mechanism that supports most interconnection
networks and implement it in a portable library to perform
automated topology mapping for parallel applications.

4.1 Determining the Network Topology
The first practical problem is to determine the network

topology graphH. This task can be handled manually based
on the physical connections between compute nodes. How-
ever, many interconnection networks offer automated tools
to query the topology and connectivity. Table 1 lists the
tools that can be used to query the topology of different
networks. All listed networks are supported by our imple-
mentation. The result of running those tools, the graph H,
is stored as an adjacency list in a configuration file on disk.
When a parallel job starts up, each process loads H and
identifies the vertex that it runs on. The identification is
done with the hostname of the machine, that is, each vertex
in the H file (representing a compute node) has its hostname
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Input: Graphs H and G, mapping Γ : VG → VH.
Output: congestion ρ(e) for all e ∈ EH.
ω̂ = maxe∈EG

{ω(e)} · |VH|21

initialize all ρ(e) with ω̂; // enforce paths with minimal number of edges in SSSP2

foreach e = (u, v) ∈ EG do3

find shortest path Γ(u) ; Γ(v) in H;4

// implicitly minimizing congestion5

increase edge weight ρ(f) of each edge f ∈ EH along path Γ(u) ; Γ(v) by ω(e)/c(f);6

subtract ω̂ from all ρ(e); // correct edge weights7

Algorithm 3: Determine Congestion.

Interconnection
Network (API)

Topology Query
Tool(s)

Myrinet (MX) fm_db2wirelist

InfiniBand (OFED) ibdiagnet & ibnet-

discover

SeaStar (Cray XT) xtprocadmin &

xtdb2proc

BlueGene/P (DCMF) DCMF API

Table 1: Supported Topology Query Tools.

as attribute attached. Each process p has now access to the
initial mapping Γ(p) which is often not under the user’s con-
trol (e.g., determined by the batch system). BlueGene/P is
an exception where H is created on the fly after querying
the Deep Computing Messaging Framework (DCMF) for all
topology information.

4.2 Composing a Mapping Strategy
We now seek to permute processes so as to reduce conges-

tion and dilation. We assume that interference with other
jobs is negligible, so that congestion can be computed from
the network topology, the location of the allocated processes
and the communication graph.

If all C(v) = p are all equal, then an optional graph par-
titioning phase as described in Section 3.4 is used to di-
vide G into P/p partitions. The topomapper library uses
ParMETIS [20] to perform partitioning and corrects the
resulting (k,1+ǫ)-balanced partitioning by moving vertices
from partitions with more then p vertices to partitions with
less than p vertices. The correction step moves vertices with
the least cumulative edge weight. After this optional par-
titioning step, a new graph G′ that contains the partitions
as vertices with |V ′

G | = P/p is created. Only inter-partition
edges from G remain in G′ and vertices are numbered from
0 to P

p
− 1.

A second step applies Greedy, Recursive, or RCM map-
ping as described in Sections 3.1, 3.2, and 3.3 respectively.
The mappings can be optimized additionally by applying
the threshold accepting algorithm discussed in Section 3.5.

The complete control flow of the optimization process is
shown in Figure 4. All processes apply the optimization
process, subsets of processes can perform different optimiza-
tions, for example, each process chooses a different starting
vertex for the Greedy mapping. The permutation with the

lowest congestion is chosen at the end of the optimization
process and returned.

5. EXPERIMENTAL ANALYSIS
We analyze the efficiency and performance of mappings of

irregular process topologies onto different multicore network
topologies.

5.1 A Fast Algorithm to Assess Congestion
Assessing the congestion with the technique described

in Section 2.5 is, due to the high time complexity
(O(|VH|2|EH|) = O(|VH|4)), impractical at large scale.
Thus, we propose a portable and fast heuristic for deter-
mining the approximate congestion of all edges in H in Al-
gorithm 3. The congestion is computed by repeated short-
est path calculations. To find the minimal congestion, the
edge weights along used (shortest) paths are updated af-
ter each search to reflect the current load. This leads to
an automatic balancing of edges along all paths. However,
with this scheme, paths with more edges and less conges-
tion on those edges might have shorter weighted distances.
This is avoided by initializing the edges to a high weight
ω̂ = maxe∈EG

{ω(e)} · |VH|2 so that a path with less edges
always has a shorter weighted distance regardless of the con-
gestion. Among all paths with the minimal number of edges,
those with minimal congestion are then preferred.

Theorem 5. The runtime of Algorithm 3 is O(|EG | ·
(|EH|+ |VH| · log |VH|)).

Proof. Exactly one SSSP-run on H (e.g., Dijkstra’a al-
gorithm using a Fibonacci heap) is started for each edge in
G (line 3–4). Thus, the asymptotic runtime of Algorithm 3
is O(|EG | · (|EH|+ |VH| · log |VH|)).

5.2 Real-world Irregular Process Topologies
Sparse matrix-vector multiplication is one of the most

important kernels in large-scale scientific applications and
can be used to solve a large class of scientific computing
problems [8]. In order to capture the characteristics of
real irregular applications, we use parallel sparse matrix-
vector products with real-world input matrices from the
University of Florida Sparse Matrix Collection [7]: F1, nlp-
kkt240, and audikw 1. All three matrices represent un-
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Figure 5: Topology mapping results for different topologies.

structured matrices/grids. F1 and audikw 1 are symmet-
ric stiffness matrices—approximating elasticities in struc-
tural mechanics—modeling automotive crankshafts. The
nlpkkt240 matrix is the largest matrix in the collection and
represents a nonlinear programming problem for a 3d PDE-
constrained optimization. Table 2 lists the dimensions and
number of non-zero (nnz) entries for each matrix.

Matrix
Name

Rows and
Columns

NNZ (sparsity)

F1 343,791 26,837,113 (2.27 · 10−4%)

audikw 1 943,695 39,297,771 (4.4 · 10−5%)

nlpkkt240 27,993,600 401,232,976 (5 · 10−7%)

Table 2: Properties of the test matrices.

The vector of a sparse matrix-vector product is initially
distributed block-wise. Each element i of the vector re-
quires all elements j where the matrix element Ai,j is non-
zero. Most matrix elements are zero and the pattern of non-
zero elements depends on the structure of the input system.
Thus, in order to minimize the communication, scientific
codes usually partition the matrix with a graph partitioner
and redistribute matrix and vector elements accordingly. We
use ParMeTiS to find a decomposition of the matrix in or-
der to minimize communication.1 The domain-optimized
decomposition is then used to derive the number of vector
elements that need to be communicated from and to each
process. We build a weighted MPI-2.2 process topology that
reflects the communication requirements of the decomposi-
tion. The resulting distributed topology communicator [12]
is used by our topology mapping library to optimize the
process-to-node mapping.

All experiments presented below use the same input ma-
trices which means that they simulate a strong scaling prob-
lem. We ran all experiments with up to 1,792 processes (or
the maximum supported by the physical topology). All pre-
sented results used TA to refine the mapping until otherwise
noted. Results without TA are omitted for brevity. TA im-
proved the congestion between 2% and 9%.

5.3 Petascale Network Topologies
We investigate topologies that are used to build current

and future petascale-class systems: A three-dimensional
torus is used in the Cray XT-5 and IBM Blue Gene ar-
chitectures. The IBM PERCS network [1] uses a heteroge-
neous hierarchical fully-connected topology to construct a
10 petaflop computer.

1This step should not be confused with graph partitioning
for multicore topology mapping even though it uses the same
tools!

We present only one representative matrix for each net-
work topology due to space limitations. We also analyze
only one process per node in Sections 5.3 and 5.4 because
we assume that hybrid programming schemes will be used
to exploit the full potential of those machines.

5.3.1 Three-Dimensional Torus

A k-dimensional torus of size x1 × · · · × xk has vertices
< m1 . . .mk >, where 0 ≤ mi < xi and edges connecting
< m1 . . .mk > to < m1 . . .mi ± 1( mod xi) . . .mk >, for
i = 1, . . . , k.

We investigate 3-dimensional toruses with cube topolo-
gies (x1 = x2 = x3) which maximize bisection band-
width. Processes are mapped in lexicographical order, i.e.,
< 0, 0, 0 >,< 0, 0, 1 >, . . . , < x1 − 1, x2 − 1, x3 − 2 >,<
x1 − 1, x2 − 1, x3 − 1 > in the initial allocation.

Figure 5(a) shows the maximum congestion of mapping
the communication topology that results from a domain-
decomposition of the nlpkkt240 matrix to different 3d-Torus
networks. The relative gain over the initial consecutive map-
ping increases with the network size. Greedy mapping re-
duces the maximum congestion by 27% for a 33 and up to
32% for a 123 torus network. RCM is slightly worse than
greedy in all configurations, however, it reduces the dilation
significantly. The recursive mapping algorithm delivers the
best results at large scale where it outperforms greedy with
a relative gain of 44% for a 123 network. The average di-
lation a 123 torus was 9.00, 9.03, 7.02, 4.50 for the initial,
Greedy, RCM, and Recursive mappings, respectively. Re-
cursive reduces the average dilation by 50% and might thus
result in lowest power consumption.

The memory overhead to start the physical topology was
between 0.63 kiB for 33 and 31.20 kiB for 123 respectively. It
shows that RCM takes basically constant time (never more
than 0.01 s) and Greedy and Recursive take up to 1s while
TA can be infeasibly expensive with nearly 10 minutes.

5.3.2 PERCS Network

The PERCS topology [1] was designed by IBM to con-
struct a multi-petaflop machine. The network consists of
three different link types: LL, LR, and D with different
speeds. Each endpoint connects to 7 neighbors via LL links
with a rate of 24 GiB/s, 24 neighbors via LR links at a rate of
5 GiB/s, and up to 16 neighbors via D links with 10 GiB/s.
Each stage (link-type) forms a fully-connected network. A
set of nodes that is fully connected with LL links is called
drawer and a set of nodes fully-connected with LL+LR links
is called supernode; supernodes are fully connected by D
links. Each drawer consists of 8 nodes and each supernode
consists of 4 drawers. The size of the network is determined
by the number of D links. The maximum distance between



any two nodes is three. A detailed description of the net-
work and the topology can be found in [1]. We assume 9
D links per node which results in 9248 nodes total and we
connect all D links randomly. The total topology occupies
1,445 kiB in main memory.

For the first simple example, we assume that processes
are allocated and mapped consecutively to nodes in draw-
ers and then drawers in supernodes. Figure 5(b) shows the
result of topology mapping for this heterogeneous network
architecture. Topology mapping can reduce the maximum
congestion by up to 80% (P=1,792). The huge improve-
ment comes from the effective exploitation of the different
link speeds in the greedy strategy. RCM performs consis-
tently slightly worse than greedy because it does not take the
link capacities into account. Recursive achieves with 1.82 a
lower average congestion than Greedy with 2.89 with 1,728
nodes. The benefits grow with the size of the allocation.

Again, RCM mapping consistently takes less than 0.01s
while Greedy grows from 0.8s to 22s and Recursive from
4.51s to 7.51s. TA took 41 minutes at P=512 and was thus
disabled for P > 512.

5.4 InfiniBand Network Topologies
We now investigate our topology mapping strategies on

large-scale InfiniBand installations. We used the tools de-
scribed in Section 4 to query the network topology of two
large-scale systems, Juropa at the Jülich Supercomputing
Center and Ranger at the Texas Advanced Computing Cen-
ter. Both systems use InfiniBand topologies that are similar
to fat-trees. The number of nodes in the systems were 3,292
for Juropa and 4,081 for Ranger. For our initial allocations,
we use the order of hostnames like a batch-system does by
default. As before, we assume one process per core in our
analyses to investigate the quality of topology mapping sep-
arately from multicore mapping.

5.4.1 Juropa

Figure 5(c) shows the results for topology mapping of the
communication patterns for the audikw 1 matrix on the Ju-
ropa cluster. The improvements are between 40% and 61%
and grow with the number of mapped tasks. Greedy shows
significantly better congestion results than RCM mapping.
RCM provides a lower average dilation of 4.45 in comparison
to Greedy with 5.8 and Recursive with 5.13 at P=1,792.

RCM is again fastest with less than 0.01s. Greedy takes
between 0.16 s and 2.6s and Recursive between 0.63s and
1.21s, while TA is with up to 9 minutes only feasible at
small scales. Juropa’s complete topology occupied 87 kiB
memory.

5.4.2 Ranger

Figure 6(a) shows the results of topology mapping on the
Ranger cluster. The maximum congestion was improved by
up to 50%, depending on the allocation size. Figure 6(b)
shows the mapping times for the Ranger system. Again,
Greedy performs significantly better than RCM at a much
higher cost. RCM finished all mapping problems in less than
0.01s while Greedy used between 0.26s and 3.85s and Recur-
sive between 0.76s and 1.5s. TA took up to 14 minutes for
the largest problem and only improved it modestly. Ranger’s
complete topology occupied 134 kiB memory.

5.5 Benchmark Results
In our theoretical analysis and simulations, we made sev-

eral assumptions on the (ideal) routing scheme and net-
work behavior. The improvements reported by our mapping
strategies are thus lower bounds and are hard to achieve in
practice.

We now show benchmark results on Surveyor, an IBM
BlueGene/P system at the Argonne National Lab, to demon-
strate the utility of our topology mapping library and algo-
rithms in practice.

As for the simulation, each process loads a part of the ma-
trix, decomposes it with a graph partitioner, constructs an
MPI-2.2 graph topology, and calls the topomapper library
to optimize the mapping. The library exercises all options
as described in Section 4 and returns an optimized mapping.

We measured the time to perform 100 communication
phases in isolation and report the maximum time across all
ranks before and after applying the mapping. We also com-
pute a predicted time from the improvement in maximum
congestion which is a lower bound to the actual improve-
ment.

Figure 6(c) shows the time to perform the communication
on the initial (consecutive) mapping, the time to perform
the communication on an optimized (renumbered) mapping
and the prediction of a run with 512 nodes. The mapping
took 0.34s in all cases and the physical topology graph oc-
cupied 12 kiB memory. The measured performance gains lie
between 10% and 18% depending on the matrix while the
predictions were between 18% and 32%.

These experiments show that topology mapping leads to
significant improvements in practical settings.

6. CONCLUSIONS AND FUTUREWORK
In this work, we defined the topology mapping problem

and presented a proof that an finding an optimal solution to
the problem is NP-hard. This opens the door to investigate
the efficiency of different heuristics for topology mapping.

We propose different topology mapping algorithms that
support arbitrary heterogeneous network and application
topologies and showed their effective use in the context of
sparse linear algebra computation. The proposed topology
mapping algorithms have been implemented to support re-
ordering in the intuitive distributed graph topology interface
in MPI-2.2.

We showed improvements of the maximum congestion of
up to 80% and our results indicate that the benefits of topol-
ogy mapping grow with the system size. We analyzed the
scalability of the different mapping approaches. Our the-
oretical and practical analysis shows that Greedy and Re-
cursive are slower than RCM and that additional optimiza-
tion with threshold accepting (TA) might be prohibitively
expensive. Greedy scales approximately linearly with the
system size for all our investigated application and network
topologies which means that it might not be suitable for
large mappings. Recursive mapping is faster but might re-
sult in worse congestion. However, RCM is fastest in theory
and never took longer than 0.01s in our experiments. We
also found that the Greedy performs well for minimizing
congestion and Recursive and RCM for minimizing dilation.
This creates interesting opportunities for further investiga-
tion. We conclude that TA can improve most mappings
further but it is not scalable to large systems.
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Figure 6: Topology mapping results for different networks.

Our proposed optimization framework utilizes the avail-
able parallelism in the system. It starts the Greedy algo-
rithm at different source vertices on each node and simulta-
neously applies RCM and Recursive on one node each and
selects the best solution found. We demonstrated speedups
of up to 18% of the communication phase of a sparse matrix-
vector multiplication on 512 BlueGene/P nodes.

We plan to investigate optimized strategies for initial
process-to-node mappings on different architectures. The
PERCS network topology presents multiple interesting chal-
lenges in this area.

Our implementation can immediately be used to optimize
communication on petascale systems. However, the pro-
posed mapping algorithms can scale to the size of exascale
systems. The two metrics, maximum congestion and aver-
age dilation can be used to optimize and trade application
runtime and power consumption on such systems. Exascale
systems will need to exhibit substantially improved commu-
nication locality in order to achieve acceptable energy con-
sumption [14]. The use of high quality mapping procedures
will be essential to achieving this goal.

The topology mapper library is available at
http://www.unixer.de/research/libtopomap.
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