
KafkaDirect: Zero-copy Data Access for Apache Kafka over
RDMA Networks

Konstantin Taranov∗
ETH Zurich
Switzerland

ktaranov@inf.ethz.ch

Steve Byan
Oracle Labs

USA
steve.byan@oracle.com

Virendra Marathe
Oracle Labs

USA
virendra.marathe@oracle.com

Torsten Hoefler
ETH Zurich
Switzerland

htor@inf.ethz.ch

ABSTRACT
Apache Kafka is an open-source distributed publish-subscribe sys-
tem, which is widely used in data centers for messaging between
applications, log aggregation, and stream processing. The existing
Kafka implementation uses TCP/IP for communication, which has
various inefficiencies such as a high message dispatch cost due
to OS involvement and excessive memory copies. Recently, the
availability of cost-effective RDMA-capable network controllers
within data centers and cloud infrastructures have encouraged
many modern applications to adopt RDMA networking, which of-
fers the potential to outperform classical TCP/IP. We introduce
KafkaDirect, an extension to Apache Kafka, that uses RDMA to
accelerate the three most network intensive datapaths: record pro-
duction, record replication, and record consumption. In this work,
we explore the design choices including which RDMA operations to
use to take full advantage of offloaded communication. Our RDMA
design relies on one-sided RDMA requests to attain true zero-copy
communication completely avoiding the need for using intermedi-
ate buffers in Kafka servers, thereby ensuring low latency and high
throughput communication. KafkaDirect can offer up to 9x increase
in throughput for both Kafka producers and Kafka consumers, and
can provide 4x and 50x reduction in latency for Kafka producers
and Kafka consumers, respectively.

CCS CONCEPTS
• Information systems → Parallel and distributed DBMSs; •
Networks → In-network processing; • Computer systems orga-
nization → Distributed architectures.

KEYWORDS
RDMA, Apache Kafka, Pub/Sub, Memory management
ACM Reference Format:
Konstantin Taranov, Steve Byan, Virendra Marathe, and Torsten Hoefler.
2022. KafkaDirect: Zero-copy Data Access for Apache Kafka over RDMA
Networks . In Proceedings of the 2022 International Conference on Manage-
ment of Data (SIGMOD ’22), June 12–17, 2022, Philadelphia, PA, USA. ACM,
New York, NY, USA, 14 pages. https://doi.org/10.1145/3514221.3526056

∗Work done while at Oracle Labs.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9249-5/22/06. . . $15.00
https://doi.org/10.1145/3514221.3526056

1 INTRODUCTION
Decreasing prices on RDMA-capable network controllers (RNICs)
have made them widely available in data centers and cloud infras-
tructures [12, 24, 34]. RDMA networking offers higher throughput
and lower latency compared to the traditional TCP/IP stack by of-
floading most of the networking functionality to RNICs, effectively
bypassing the OS kernel. The availability of RNICs and their per-
formance advantages have already affected the design of modern
database management systems to improve performance of query
processing [5, 43], data replication [8, 19, 25, 50, 63], distributed
index structures [64], distributed transactions [9, 15, 59, 62], and
processing of analytical database workloads [4, 29].

The naive use of RDMA, nonetheless, is unable to achieve max-
imum performance. The high-level frameworks such as RPCs [6]
that hide direct memory communication primitives from the user
may struggle to achieve even 20% of link bandwidth and have much
higher latency and CPU usage than promised by the RNIC specifi-
cation [60]. In addition, the lack of richness of RDMA operations
poses challenges to its efficient use, as one-sided RDMA operations
can only read and write a remote memory location. RDMA does
not support more sophisticated operations such as conditional and
compound operations, though such RDMA primitives have been
proposed [3, 8, 18, 28]. Therefore, many applications are forced to
use intermediate buffers or multiple round trips in their protocols.
Although RDMA design challenges have been extensively studied
for general key-value stores [20, 28, 32], not many RDMA solutions
have been proposed for log-structured storage systems [21, 36].

In this paper, we explore the most efficient way of using existing
RDMA features to accelerate Apache Kafka [26], a publish-subscribe
log-structured storage system, which performance is currently con-
strained by overheads in the existing TCP datapaths in the form of
RPC infrastructure, CPU wakeup latency, and superfluous buffer-
ing of data. All these issues get into the way of having a tightly
streamlined datapath between the various components of Kafka.

The design of our storage system, KafkaDirect, is inspired by the
fact that general-purpose request processing is expensive due to
excessive data copies. Since zero-copy request processing is crucial
for CPU-intensive systems, such as Kafka, we propose to remove
data copies introduced by the TCP/IP stack and general-purpose
request processing by offloading them to RNICs.

Challenges. The effective use of offloaded RDMA networking
for Kafka raises numerous challenges: 1) how to achieve true zero-
copy communication that avoids intermediate buffering, 2) how
to empower Kafka consumers to read records without the involve-
ment of the CPU of Kafka brokers, 3) coexistence of RDMA and
TCP datapaths in Kafka without obstructing its usability and perfor-
mance. Our work effectively solves the aforementioned technical

https://doi.org/10.1145/3514221.3526056
https://doi.org/10.1145/3514221.3526056

challenges and provides an extensive investigation of the space
of possible design decisions, that can be extended to other log-
structured and publish-subscribe systems (§6).

Design. KafkaDirect empowers clients to write records directly
to storage using RDMA. KafkaDirect can ensure consistent writes to
the same topic frommultiple producers by employing RDMAatomic
operations. Unlike the original Kafka, KafkaDirect follows a push
approach for data replication to write records directly to the mem-
ory of replica servers. Consumers in KafkaDirect exploit RDMA
Reads to directly read records from subscribed topics, completely
bypassing the CPU of Kafka brokers and thereby significantly re-
ducing their CPU usage. KafkaDirect delivers low latency and high
throughput without modifications of existing data-formats, preserv-
ing backward compatibility. The RDMA modules of KafkaDirect
can be enabled at need, allowing us to study the performance of
each RDMA-accelerated module.

Contribution. KafkaDirect outperforms the existing Kafka sys-
tems in terms of both bandwidth and latency for all datapaths. The
latency to the RDMA producer client can be as low as 80 us, which
is a 4x improvement compared to the unmodified Kafka deployed
over IPoIB networks. The RDMA producer client can achieve 4.5
GiB/sec for producing records to a single topic, which is a 9x im-
provement over today’s Kafka producer bandwidth. KafkaDirect’s
replication module offers high-bandwidth replication which pro-
vides a 13x improvement in replication performance. In addition,
the RDMA Kafka consumer offers a 50x reduction in latency and a
10x increase in throughput. Finally, the RDMA Kafka consumer of-
floads processing of Kafka fetch requests to the network controller,
allowing the system to serve thousands of clients with no CPU
cost. To the best of our knowledge, this is the first Kafka design
for high-performance RDMA capable interconnects that exploits
native RDMA programming.

In summary, we make the following contributions: We extend
Apache Kafka to use RDMA for the Produce, Consume, and Replica-
tion datapaths without compromising backward compatibility. We
investigate the space of possible design decisions for RDMA datap-
aths, which could be employed by other log-structured memory sys-
tems. The proposed RDMA design completely offloads processing of
the consume datapath to RNICs. For other datapaths, the processing
overhead is minimal and does not involve data copies. We exten-
sively evaluate each RDMA-enabled component of KafkaDirect in
comparison with the unmodified Kafka and the RDMA-accelerated
Kafka [33] proposed by the Ohio State University.

2 BACKGROUND ON RDMA NETWORKING
RDMA is a mechanism allowing one machine to directly access data
in the memory of remote machines across the network. Memory
accesses are performed using RNICs without any CPU intervention
or context switches. RDMA is offered by several network architec-
tures [1, 7, 41]. In this work, we focus on the InfiniBand standard
and its reliable RDMA connection type called reliably connected
queue pair (RC QP). Applications make use of offloaded RDMA
communication by directly posting asynchronous work requests to
an RNIC, bypassing the operating system. Upon completion of a
request, the RNIC places a corresponding completion event into a
completion queue created by the application.

In this work, we primarily focus on the following RDMA work
requests. RDMA Send allows an application to send a buffer to the
remote endpoint similar to a classical TCP/IP socket. The sender
is unaware where the data will be written in the remote machine.
The remote RNIC will write the data to the buffer specified in the
corresponding receive work request posted by the receiver. RDMA
Write is a one-sided operation that allows the sender to write a
buffer to a remote virtual address without notifying the receiving
side. To notify the receiver about an incoming Write, InfiniBand
supports WriteWithImm operation that generates a completion
event at the receiver. Unlike Send operation, WriteWithImm allows
the sender to choose the destination memory address. RDMA Read
allows the initiator to read the content of a remote buffer without
the involvement of the remote CPU. RNICs also support one-sided
remote atomic operations that can atomically modify an eight byte
value at a remote address: Compare-and-Swap (CAS), and Fetch-
and-Add (FAA).

Accelerating systems with RDMA. Networked systems em-
ploy RDMA to reduce CPU usage and to enable specific services by
exploiting one-sided communication primitives that are more effi-
cient than traditional socket interface. Typically, these systems are
built from scratch to exploit RDMA writes for delivering requests
directly to request queues and RDMA reads for fetching remote data
without involvement of remote CPUs, thereby reducing overall la-
tency and CPU usage. In our work, we also exploit RDMAReads and
Writes to accelerate communication and bypass CPU and operating
system. However, unlike other projects, we aim to integrate RDMA
networking to a huge codebase without compromising backward
compatibility and still achieving zero-copy communication, that is
even more challenging in managed language such as Java [51].

3 PUBLISH-SUBSCRIBE SYSTEMS
Publish-Subscribe messaging systems provide simple but powerful
abstractions enabling asynchronous data transfer between appli-
cations. Applications that communicate through the messaging
system are divided into publishers and subscribers. A publisher
application appends records to a message queue, and subscribers
can subscribe to the message queue to receive all published records.

Publish-Subscribe systems are a popular building block for many
modern data center applications [16, 57, 58], as they shift the burden
of reliable messaging from communicating applications. Publish-
Subscribe applications are available as open-source systems (e.g.,
Apache Kafka [26], Corfu [2], Scalog [14], Fuzzylog [30]) and as
a service by various cloud providers [23, 31, 35, 45]. Despite the
rich diversity in applications implementing the abstraction, we
find that they share similar functionality and data organization.
Their records are stored as a sequence of ordered records in append-
only data logs, that are replicated to ensure fault-tolerance against
machine failures. As the systems have similar storage designs, we
only focus on Apache Kafka [26], but the RDMA design could be
borrowed by other systems (§6).

ApacheKafka.Kafka [26] is a fault-tolerant distributed publish-
subscribemessaging system. A Kafka’s publisher is called a producer
that pushes records to containers called Kafka topics. A Kafka’s
subscriber, called a consumer, subscribes to Kafka topics to fetch
the produced records.

File 0
immutable

File 1
immutable

Head File 2
mutable

Topic Partition

Figure 1: A topic partitionmay consist of multiple files. New
records are appended to the head file. All preceding files of
the topic partition are sealed and cannot be modified.

Kafka Topics. All records in Kafka are categorized into topics
that are partitioned into multiple partitions called topic partitions
(TPs). Each TP is an ordered, immutable sequence of records that
constitutes a log. The records in the TP are labeled with sequential
ID numbers called the Kafka offset that uniquely identifies each
record within the TP. The offset is a sequential value that Kafka
linearly and uniquely assigns to each record as it is appended to
a TP. Logically, a TP can be viewed as a contiguous append log.
However, physically it is comprised of segments that are distinct
files stored on disk (see Figure 1). A new record is always appended
to the head segment of the log. The record size in Kafka is limited
to 1 MiB and the segment size is 1 GiB by default. When the head
segment becomes full, Kafka seals the file and creates a new head
file to store new records.

Each TP can be replicated across a configurable number of
servers for fault tolerance. In this case, one server acts as the replica-
tion leader and one or more servers act as replication followers. The
leader handles all read and write requests for the partition while the
followers passively replicate the leader. A record is not considered
committed until it is fully replicated to all in-sync replicas.

Kafka Broker. A broker is a storage server of the Kafka cluster.
The broker receives records from producers, assigns offsets to them,
and commits the records to local disks. It also services consumers,
responding to fetch requests for its TPs and responding with the
records that have been fully replicated. Each Kafka broker can
process multiple TPs and act as a replication leader for some of its
TPs and a follower for others to balance the load within the cluster.

4 RDMA DESIGN FOR KAFKA
KafkaDirect extends Kafka with efficient RDMA networking with-
out compromising its original API and data formats. Our RDMA
modules are carefully integrated into Kafka and provide accelera-
tion of the three most intensive datapaths: record production, repli-
cation, and consumption. The main design principle of KafkaDirect
is to offload request processing of those datapaths to RNICs.

Unlike a naive use of RDMA that replaces TCP/IP sockets with
two-sided RDMA networking, we aim to use one-sided RDMA ac-
cesses to directly access data stored on Kafka Brokers. Our design is
inspired by the main observation that general-purpose RPCs are ex-
pensive for data-intensive requests. Even though many variations of
efficient implementations of RPCs over RDMA [10, 15, 22, 48, 49] ex-
ist, their performance can still suffer from the RPC abstraction [60]
that induces additional memory copies: an RPC initiator needs to
copy RPC arguments to network send buffers, and an RPC execu-
tor needs to unpack received arguments from network receiver
buffers. The problem becomes especially severe for storage ap-
plications that communicate large data volumes that should be
stored in or read from remote storage. The requirement to copy

Network Modules

TCP module

RDMA module

Processor
thread

Processor
thread

TCP

RC QPs

RC QPs

sockets

TCP
sockets

Processor
thread

Processor
thread

API Modules

RDMA Produce

RDMA Consume

API workers

API thread

API thread

API thread

API thread

Request queue

File ID → TP
Sequencer

Metadata slots

Replication Modules

Data management

Follower TPs

Leader TPs

RDMA Push module

TCP Pull module
Worker Worker

TP
Replica

TP
Replica

Slots Slots
TP TP

Worker Worker

1 3

2
4

5

6

8

7

Figure 2: Kafka’s broker architecture and our RDMA exten-
sions (in color).

data from the network receive buffers to storage structures can fur-
ther aggravate the already well-known CPU-bottleneck problems
encountered in many distributed applications [37, 55]. As a result,
the CPU-intensive systems suffering from excessive data copies
can be accelerated only by fully offloading request processing from
the CPU to network controllers.

The only known to us RDMA-enabled implementation of Kafka,
OSU Kafka [33], uses two-sided RDMA Sends to replace the TCP/IP
network module of Kafka and does not use one-sided RDMA re-
quests to directly access records. Thus, its performance is still ob-
structed by the need to copy messages from and to network buffers
of the multipurpose request processing module. In Section 5 we
show that KafkaDirect significantly outperforms OSU Kafka, show-
ing the importance of our zero-copy design.

Overview. A graphical overview of KafkaDirect’s broker archi-
tecture that makes the best use of RDMA networking is presented
in Figure 2. KafkaDirect has a dedicated RDMA network module
(§4.1) to serve RC QP connections from clients and brokers. We
extend Kafka with our RDMA Produce module (§4.2) allowing
producers to exploit RDMAWriteWithImm to write data directly
to TP files and notify the broker about the incoming produce re-
quests. KafkaDirect provides high-performance exclusive RDMA
produce requests (§4.2.2) that do not require coordination between
producers. For shared access, KafkaDirect can ensure consistent
writes to the same topic from multiple producers by employing
RDMA atomic operations. KafkaDirect enables low-latency data
replication by adding an RDMA push replication module (§4.3.2)
that uses RDMA writes to replicate data directly from replication
leaders to replication followers. Finally, consumers in KafkaDirect
exploit RDMA Reads to directly read records from subscribed topics
(§4.4), completely bypassing the CPU of Kafka brokers and thereby
significantly reducing their CPU usage. KafkaDirect’s consumer
module employs RDMA-readable metadata slots, that contain infor-
mation about TP files, allowing consumers to get informed about
new records without the broker’s CPU involvement.

4.1 Network Layer
The original Kafka uses TCP connections to exchange requests
between clients and brokers. When a broker receives a request via

TCP, one of its network processor threads will enqueue the request
➊ to the shared request queue (see Figure 2). The request will be
later fetched ➌ and executed by one of the API worker threads.

KafkaDirect completely reuses Kafka’s TCP module for process-
ing all the original Kafka requests, thereby ensuring backward
compatibility. KafkaDirect has an additional RDMA network mod-
ule that serves RC QP connections for only processing RDMA
accelerated datapaths. Its thread workers poll shared RDMA com-
pletion queues of established QPs to get RDMA completion events.
Once a thread fetches a completion event, it will enqueue ➋ the
corresponding request to the shared request queue.

KafkaDirect uses reliable (RC) instead of unreliable (UD) RDMA
transport for two reasons. First, unlike other transports, RC sup-
ports one-sided RDMA Reads and Writes, which are exploited in
our produce (§4.2) and consume datapaths (§4.4) for zero-copy data
accesses. Second, our replication and produce datapaths rely on
the delivery guarantees of reliable transport to pipeline multiple
produce requests (§4.2.2).

4.2 Produce datapaths
4.2.1 TCP produce datapath. An original Kafka producer sends
records to brokers using a produce request that contains records and
how many times the records must be replicated before receiving
an acknowledgment. The broker verifies the received records and
then appends ➍ them to the corresponding TPs. Once the records
are committed, the broker starts replicating them (§4.3). The broker
will make as many copies as configured for the requested topic, but
the producer receives the acknowledgment as soon as the requested
number of copies are made.

The shortcoming of the existing produce datapath is that the
broker performs two redundant memory copies to persist new records.
The first data copy is performed by the TCP network stack. The dri-
ver copies all received messages from its receive buffers to Kafka’s
receive buffers. The second copy is made by the broker when it
copies data from the network receive buffer to the file buffer.

4.2.2 RDMA produce datapath. The high-level idea of the KafkaDi-
rect produce datapath is to use RDMA to write records directly to
remote TP files. This approach eliminates the need for perform-
ing the two aforementioned data copies. By omitting the memory
copies, we aim to improve the performance of the producers.

KafkaDirect does not change the persistency model of the origi-
nal Kafka, allowing KafkaDirect to reuse Kafka’s original failover
mechanisms. The produce datapath of KafkaDirect only uses RDMA
to write records directly to the destination TPs, but not for com-
mitting them. The written records are persisted and processed
according to the existing rules of Kafka, which include verifying
checksums of new records, assigning offsets to new records, and
committing the processed data.

Getting RDMA access. To get RDMA access to the head file
of a TP, an RDMA producer sends a request via TCP that enables
RDMA access to the head file by mapping it to the main memory
(using mmap) and registering it with the RNIC (using ibv_reg_mr).
Since RNICs are not able to append data to files and only can
write data to an already preallocated memory region, we enable
the file preallocation in Kafka’s configuration. The response from
the broker contains the RDMA connection string and the virtual

Producer Broker
WriteWithImm

Acknowledgement

Exclusive access Shared TCP/RDMA access

Producer Broker
RDMA Atomic
order,offset
WriteWithImm

Acknowledgement

Figure 3: Methods for producing records via RDMA. In the
exclusive mode, the single producer tracks the offset. In the
sharedmode, producers acquire the offset before they write.

address and the full length of the preallocated head file. Having the
length allows the producer to prevent writing beyond the allocated
area and to timely request allocation of a new head file.

Approaches to RDMA produce. We propose two produce al-
gorithms that provide different access permissions: exclusive RDMA
access, and shared RDMA/TCP access. Both approaches exploit RDMA
WriteWithImm work requests to notify the broker of incoming
Write requests. Note that WriteWithImm allows the sender to pig-
gyback a 32-bit value, called immediate data, that is included in a
corresponding completion event at the destination.

The main shortcoming of WriteWithImm is that the destination
address of an incoming buffer is unknown to the receiver and is
fully chosen by the sender. The completion event at the destination
only contains the number of written bytes and the 32-bit immediate
data. We address this problem by encoding where the data has been
written into the immediate data. In KafkaDirect, when a producer
requests RDMA access to a file, the broker accesses ➎ the RDMA
produce module to generate a unique 16-bit ID for the requested
file and sends it to the producer. The producer includes the ID in
the immediate data of WriteWithImm to inform the leader to which
TP the data has been written (see Figure 4). Once the completion
event is received and enqueued ➋ to the shared request queue, one
of the API worker threads fetches ➌ the request and maps the file
ID to the requested TP by accessing ➎ the RDMA produce module.
After that, the API worker can request ➍ the file from the data
management module and perform verification of the written data.
If the written data complies with the integrity checks, the broker
commits the records by advancing the Kafka offset of the TP.

Exclusive RDMA access. In this mode, only one RDMA pro-
ducer can publish records to a TP. For that, the producer contigu-
ously writes records to the head file using WriteWithImm using the
file ID as immediate data. Importantly, WriteWithImm to the same
file must be processed sequentially and in the same order as they
have been written to the file. Otherwise, a race condition could
occur if two writes were processed in the opposite order by thread
workers ➌. KafkaDirect solves this problem by processing RDMA
produce requests in the same order as the corresponding completion
events are generated ➎. We rely on InfiniBand’s in-order delivery
guarantees that ensure the correct order of completion events.

The datapath is consistent as long as the TP is written by a single
remote producer, which is enforced by the broker. The broker never
grants exclusive access to the same file to two producers. If the
RDMA producer fails, its exclusive RDMA access will be revoked.
Client failure can be detected from QP disconnection events. To

Order TP identifier
16-bit 16-bit

Figure 4: The 32-bit immediate value used to inform broker
where the records has been written with WriteWithImm.

Order TP offset
16-bit 48-bit

Figure 5: The 64-bit atomic value used to enforce order-
ing across producers. They must atomically fetch and incre-
ment the current order and offset before writing records.

avoid the situation where a faulty client still accesses the memory
of a TP file, the broker can disable RDMA access to the file.

Shared RDMA/TCP access. In this mode, multiple producers
can publish the records to a single TP, and publishers can use either
TCP or RDMA operations for that. The main challenge of shared
RDMA/TCP mode is to ensure concurrent and consistent writes to
the same TP file from multiple producers. KafkaDirect solves this
problem by employing RDMA atomic operations such as RDMA
CAS and FAA to achieve agreement between writers to the same
file. The broker associates with each TP an 8-byte value that stores
the current producer order (first 2 bytes) and the current offset in
the file (remaining 6 bytes) as depicted in Figure 5.

Before writing data to a TP using WriteWithImm, a producer
should reserve a memory region within the file where it can write
the records. For that, the producer atomically fetches the 8-byte
value associated with the file and increments its order field by one
and its offset field by the size of the record it intends to write. In
response, the producer retrieves the start of the region it can write
to and its order.

The fetched order field is used to enforce order in the produce
requests from different producers, and it must be included in the
immediate data of the subsequent WriteWithImm request (Figure 4).
Even though the maximum size of the Kafka file is 4 GiB, the current
file offset field is 6 bytes allowing the producers to detect overflow
of the field when RDMA FAA is used. RDMA FAA always succeeds
and, therefore, producers can exceed the actual file size, which can
be detected by the producers by checking these extra 2 bytes. When
a broker receives a produce request via TCP to an RDMA-accessible
file, it also needs to reserve a memory region by issuing an RDMA
atomic to itself to ensure a consistent view between the broker and
remote clients.

Shared RDMA/TCP access can be potentially damaged by client
failures since holes can appear in the TP file when a client wins a
segment in the file and then fails to fill it through RDMA due to
crashes or slowdowns. KafkaDirect prohibits holes in the TP file by
detecting failed RDMA produce requests using the order encoded
in the immediate data. The RDMA produce module ➎, which is
responsible for ensuring the correct processing order of RDMA
requests, prevents processing a produce request 𝑖 , if the request
𝑖 − 1 is not processed. The RDMA produce module sets a timeout to
each incoming RDMA produce request which should wait for the
arrival of preceding produce requests. If a produce request is timed
out it gets aborted and RDMA access to the file is revoked causing

64 128 256 0.5K 1K 2K 4K 8K 16K 32K 64K 128K 256K
Message size (bytes)

0
1
2
3
4
5
6

Go
od

pu
t (

Gi
B/

se
c)

Exclusive 1 Producer
Shared FAA 1 Producer

Shared FAA 2 Producers
Shared FAA 5 Producers

Shared CAS 1 Producer
Shared CAS 5 Producers

Figure 6: Aggregated Write bandwidth of different RDMA
produce approaches with increasing message size.

abortion of all pending produce requests to the file. Clients can
re-enable the RDMA datapath by requesting RDMA access again.

Performance comparison. Figure 6 shows goodput for pro-
duce requests for different record sizes. For shared accesses, we
measure the aggregate goodput for two and five producers. The
microbenchmark is implemented in C/C++ and is not a part of
Kafka. The goal of this experiment is to show the performance
upper-bound achieved by RDMA networking. The experiment is
performed on two machines connected by a 56 Gbit/s network.

The highest performance is reached by the exclusive WriteWith-
Imm as no synchronization is required and the request is performed
in one round-trip. The produce requests with RDMA atomics, how-
ever, can achieve the same performance only for records larger than
32 KiB. The main reason is that the throughput of RDMA atomics
is limited and cannot exceed 2.68 Mreq/sec for a single counter on
our hardware. RDMA FAA performs better than RDMA CAS as it
always succeeds to update the atomic value. Based on the results,
in KafkaDirect we use RDMA FAA for shared produce accesses.

The choice of notification method. KafkaDirect relies on the
immediate data capability to notify the broker about newly written
records. The limitation of this approach is that the producer must
be able to encode all metadata related to the request into 32 bits. An-
other approach is to notify the broker using an RDMA Send request.
In this case, the data is written to a TP file without notification
using an RDMA Write, and then the metadata is sent separately in
a Send request. We will refer to this approach asWrite+Send.

The main disadvantage of the Write+Send approach is that the
producer needs to issue two requests to perform a single RDMA
produce: an RDMA Write to a TP file and an RDMA Send that
contains metadata. Since Infiniband guarantees in-order packet
processing, the Send request will be processed after the preceding
Write request preventing the broker to observe partial records. In
other words, it is guaranteed that when the application receives
metadata corresponding data records are already written to the
main memory of the broker by the preceding Write request.

We evaluate the latency and bandwidth of the Write+Send ap-
proach against the WriteWithImm approach using a microbench-
mark written in C/C++, which unveils the best performance achiev-
able by the notification approaches. We evaluate Send sizes starting
from 4 bytes and up to 512 bytes.

Figure 7 shows that the latencies of the studied notification
approaches are approximately the same forWrites larger than 1 KiB.
For small messages, however, the latency for the WriteWithImm
approach can be as little as 1.5 us, whereas Write+Send approaches
are by 1 us slower on average.

8 16 32 64 128 256 0.5K 1K
Message size (bytes)

0
1
2
3
4

La
te

nc
y

(u
s)

256 0.5K 1K 2K 4K 8K 16K 32K
Message size (bytes)

0
1
2
3
4
5
6

Ba
nd

wi
dt

h
(G

iB
/s

ec
)

WriteWithImm 4B
Write+Send 4B

Write+Send 16B
Write+Send 32B

Write+Send 128B
Write+Send 512B

Figure 7: Latency and write bandwidth of different ap-
proaches for notifying the broker.

In the bandwidth experiment, we measure the goodput of Write
requests only. All approaches reach the goodput of approximately
2.4 GiB/sec for small messages of up to 512 bytes. For 1 KiB mes-
sages, WriteWithImm outperforms all Write+Send approaches by at
least 0.8 GiB/sec. This difference in bandwidth gradually decreases
with the increase in data size and becomes insignificant for 32 KiB
records.

Overall, we believe that Kafka could exploit the Write+Send
approach to transmit more metadata, as it still ensures low latency
communication and outperforms classical TCP/IP networking in
the terms of bandwidth and latency. In our KafkaDirect we only
implemented the WriteWithImm approach for notification as it is
the lowest-latency approach.

4.3 Replication datapaths
4.3.1 TCP pull replication. Each Kafka broker has a replication
module with dedicated worker threads that are responsible for
keeping local TP copies in-sync with the leader. The workers pe-
riodically send fetch requests to the TP leader at their own pace.
In response to the request, the leader sends the records which the
follower replica does not have or an empty response if the follower
is in-sync. The replication module on the follower receives new
records and appends ➏ them to the corresponding replica TP. Such
an approach is commonly called a pull approach.

4.3.2 RDMA push replication. We implement a push replication
module that uses RDMA to replicate the records. The high-level idea
is that the leader usesWriteWithImm, similar to an RDMA producer,
to write new records to the corresponding TPs of all its followers
without incurring extra data copies.When an API worker completes
the processing of a produce request, it submits ➐ a replication
request to the push replication module that immediately starts
writing records to followers, thereby reducing replication latency.
KafkaDirect uses the exclusive RDMA WriteWithImm approach as
the leader has exclusive access to the followers.

The push replication module has RC QP connections to all other
brokers that follow the TP. In KafkaDirect, the leader uses a "get
RDMA produce address" request to get RDMA access to the replica
files on the followers, and then uses RDMAWriteWithImm to write
the data from its mapped file to the mapped files of the followers.

A naive implementation of push RDMA replication may have
trouble with fast leaders that could overflow the RDMA completion
queue of a slow follower leading to disconnection of all corre-
sponding QPs. To prevent overflow of the RDMA queues, we use a
credit-based approach where each follower of KafkaDirect assigns

64B 128B 256B 512B 1K 2K 4K
Batch size

1
2
4
8

16
32
64

La
te

nc
y

(u
s)

64B 128B 256B 512B 1K 2K 4K
Batch size

0
1
2
3
4
5
6

Ba
nd

wi
dt

h
(G

iB
/s

)

Figure 8: Latency and bandwidth of batching 64-byte RDMA
Writes. Note log scale of Y axis for the latency plot.

credit to the leader which limits its number of outstanding RDMA
replicate requests. Setting limits on incoming replication requests
allows followers to process replication requests at their own pace.

Batching of RDMAWrites. The shortcoming of RDMA push
replication is that replication gets triggered for each new record. As
a result, a flood of small records could potentially exhaust CPU and
RNIC resources if no batching is enabled. To address this problem,
KafkaDirect tries opportunistically to batch contiguous RDMA
Writes into a single Write. It helps to increase the bandwidth of
replication when producers append small records to the same TP.

We ran a microbenchmark to find an optimal batch size for
replication requests. The microbenchmark has been implemented
in C/C++ to find the best batch size for replication in the case of
an overloaded leader. The test emulates the case when the leader
receives small entries at a higher rate than it can replicate them.
Particularly, the leader writes 64-byte individual records to a local
file at 6 GiB/sec and tries to replicate the entries at the same rate,
however, the entries have not been batched by a producer.

Figure 8 shows the effect of batching on the latency and goodput
of replication with an increasing batch size in bytes. The latency
of replication with no batching is approximately 2.4 us, which is
the lowest latency value as the data is sent immediately. However,
replication of small objects achieves only 0.5 GiB/sec, which is only
8% of the maximum bandwidth. As the batch size increases, the
goodput gradually grows until it reaches the link bandwidth of 6
GiB/sec. In contrast, the latency stays approximately the same for
smaller batch sizes and then sharply increases for batches larger
than 1 KiB. This is because the packet size in our network is 2
KiB, and the write requests become bottlenecked by the bandwidth
of the link. As a result, current write requests get delayed by the
preceding write requests.

Based on the result, in further experiments, we configure our
system with batching enabled and a maximum batch size of 1 KiB,
as its goodput is by an order of magnitude higher than the base-
line with no batching, and that batch size does not significantly
compromise the latency.

4.4 Consume datapaths
4.4.1 TCP consume datapath. AKafka consumer periodically sends
a fetch request to the brokers to poll new records, similar to fol-
lowers. A fetch request contains the list of TPs and corresponding
Kafka offsets from which to fetch records. The broker sends re-
quested records to the client or it replies with an empty reply if no
new records are available. Fetch requests incur a significant CPU
overhead, as brokers can serve thousands of consumers and each
consumer periodically sends fetch requests regardless of whether
the broker has new records.

4.4.2 RDMA consume datapath. The main goal of our RDMA con-
sume design is to offload the processing of fetch requests to RNICs
by exploiting one-sided RDMA Reads. However, this seemingly
easy step entails subtle technical challenges. The first challenge
is to prevent clients from reading not fully replicated records that
would violate Kafka’s consistency model. The second one is to allow
clients to learn about new records without the involvement of the
CPU of the broker. The last challenge is to avoid reading partial
records even in the presence of variable-length records. We further
describe techniques that are employed by KafkaDirect to address
the aforementioned challenges.

Getting RDMA access. To start using RDMA Reads to fetch
records, a consumer sends via TCP a request containing a target
TP and starting offset from which it wants to read records. The
broker registers the requested TP file for RDMA access and replies
with information about the file including its virtual address, its last
readable byte, and whether it ismutable. An RDMA consumer never
reads beyond the last readable byte, which indicates the position
after the last fully replicated record of the requested file, thereby
preventing reading uncommitted records.

In Kafka, a file is immutable if data cannot be appended to it.
Therefore, the head file of a TP is mutable and other files are im-
mutable (see Figure 1).When the consumer receives the information
about an immutable file, it periodically initiates RDMA Reads until
it reaches the end of the file. After the file is fully read, the con-
sumer gets access to the next file of the requested TP. Therefore,
the RDMA consumer only needs to request RDMA access after
a whole immutable file is read. Note that RDMA registration in-
volves mapping the file to the main memory of the broker, so an
RDMA consumer also notifies the broker about the files that can
be unregistered from RDMA access to reduce memory usage.

RDMAmetadata slots. If the requested file is mutable, its last
readable byte gets incremented when new records are appended.
Therefore, the RDMA consumer needs to periodically update that
information. We propose to use RDMA Reads for reading the last
readable byte values of TPs: when a mutable file is registered for
RDMA Reads, the broker creates ➑ an RDMA-readable metadata
memory slot associated with the file, which contains the last read-
able byte of the file and whether the file is still mutable. The mutable
bit value allows consumers to recognize that the file has become
immutable and they need to request access to the new head file.

An RDMA consumer periodically reads, using RDMA, metadata
slots of subscribed TPs to get informed whether new records have
been appended to them. Since a consumer can be subscribed to
several TPs, a naive reading of a single metadata slot at a time could
waste CPU and RNIC resources. Thus, for each RDMA consumer,
KafkaDirect brokers allocate a contiguous RDMA-accessible region
that is used for storing metadata slots of all mutable files requested
by the consumer (see Figure 9). As the metadata region is contigu-
ous, a consumer only needs a single RDMA Read to update the
metadata for all files from which it is actively reading.

The consumer uses a single RDMA Read request to fetch meta-
data even if some of the slots are unassigned (i.e., free). The con-
sumer always reads the smallest contiguous region containing all
active slots (i.e., all not free slots). For example, the consumer 0
from Figure 9 needs to read all four slots (including two free slots)
to update its metadata, whereas consumers 1 and 2 can read only

Slot for file 1
Slots of Consumer 0
Free

Free

Slot for file 2

Slot for file 2

Free

Free Free

Slot for file 1 Slot for file 3 Slot for file 2 Free

List of slots:
{0,0}, {2,0}

List of slots:
{1,3},{1,1},{2,2}

List of slots:
{2,1}

Slots of Consumer 1

Slots of Consumer 2

File 3

File 2

File 1

Figure 9: RDMA readable metadata slots for mutable files.
KafkaDirect creates a contiguous region of slots for each
consumer. Each registered file has a list of slots associated
with it, so the slots may be updated as the file grows.

their active slots. The broker tries to keep assigned slots in close
proximity to each other to reduce the size of this contiguous region.

When an active file is read by multiple consumers, its metadata
will be present in multiple metadata slots as depicted in Figure 9.
Each RDMA-readable file has a list of metadata slots assigned to it.
When the mutability or the last readable byte of the file is changed,
the broker updates all the metadata slots associated with it.

Fetch size for RDMA Reads An RDMA consumer only knows
how many bytes it can fetch from a current TP file, but it is not
aware of how many records it contains and what their sizes are.
Thus, the fetched bytes may not exactly start and end at record
borders and can include bytes of the succeeding record. To address
this issue, the RDMA consumer API only returns fully read records,
and the partially read records are kept until all their bytes are
fetched with RDMA Reads.

The fetch size is a configurable parameter of a KafkaDirect con-
sumer. The default fetch size is 2 KiB as it provides a good trade-
off between latency (less than 3 us) and bandwidth (more than 5
GiB/sec) for RDMAReads. Even though the current implementation
fetches a constant number of bytes using RDMA, it is possible to
tune this parameter dynamically during execution. One approach
is to estimate the expected size of a record and tune the fetch size
accordingly. Alternatively, if the header of a partial record is fully
fetched, it is possible to read the size of the record and tune the
fetch size accordingly. This alternative approach is helpful when
large data entries are stored in the TP.

5 EVALUATION
We evaluate the performance of KafkaDirect using a series of bench-
marks to thoroughly assess the effect of our zero-copy design. For
that, we extended the standard Kafka [13], OpenMessaging [40],
and the event processing [56] benchmarks to support our RDMA
API and to make measurements with microsecond precision. To
evaluate the overall impact of our RDMA datapaths, we evaluate
the performance of each KafkaDirect’s RDMA module in isolation
using Kafka and OpenMessaging benchmarks [13, 40]. First, we con-
figure KafkaDirect to enable RDMA only in the produce datapath
and study the performance of exclusive and shared RDMA pro-
duce protocols (§5.1). Second, we deploy KafkaDirect in distributed
mode and measure the latency and bandwidth of the RDMA replica-
tion module (§5.2). Then, we study the performance of the RDMA
consume module for fetching new data records and checking the
availability of new records (§5.3). Lastly, we show results for event
processing benchmark [56] to show how KafkaDirect improves the
performance of data processing frameworks such as Spark [61].

Implementation. Our implementation of KafkaDirect is based
on Kafka 2.2.1. We use DiSNI [47], a low-latency RDMA library
allowing applications to access RNICs directly from within the Java
Virtual Machine through Java Native Interface calls. For this work,
we also extended the DiSNI library to support RDMA atomics.

We compare the performance of KafkaDirect with the origi-
nal Apache Kafka 2.2.1, and an RDMA-enabled Kafka [33] pro-
posed by the Ohio State University. We refer to them as Kafka
and OSU Kafka in our experiments. OSU Kafka does not use one-
sided RDMA requests to access records and only uses RDMA Sends
that entail copying requests from and to network buffers, result-
ing in loss of performance. In the experiments, Kafka represents
the performance of the unmodified Kafka over high-bandwidth
RDMA-capable networks, and OSU Kafka represents the Kafka
that uses two-sided RDMA networking only for request messaging,
and KafkaDirect represents our design with full offload of data
accesses using one-sided RDMA networking.

Settings. The experiments are conducted on a 12-node Infini-
Band cluster, where each machine is equipped with a 56 Gbit/s
Mellanox ConnectX-4 network card. Each machine has two 8-core
Intel Xeon CPU E5-2630 v3 CPUs and 256 GiB of DDR4 DRAM.

In all experiments, Kafka was deployed over the same network
to have a fair comparison with RDMA-enabled systems. All im-
plementations are deployed with 1 GiB log files and enabled file
preallocation, i.e., Kafka immediately allocates storage for each
created file. Unless otherwise specified, Kafka-based systems were
deployed with default parameters that include eight API threads
and three network threads.

To be completely oblivious of the performance of storage de-
vice used for storing log and TP files, Kafka’s files are created in
tmpfs [46], which is backed by DRAM. Otherwise, the performance
of Kafka would be bottlenecked by the speed of the storage device.
By making this change we do not compromise the reliability guaran-
tees of Kafka, as Kafka’s failure tolerance only relies on replication
and is independent of the availability of persistent storage. The
bottleneck of the persistent storage can be alternatively removed
by several techniques including the use of faster NVMe devices
(e.g., AORUS Gen4 AIC that achieves 110 Gbit/sec read and write
bandwidth [54]) or the use of multiple storage media at each broker.
We leave this exploration for future work.

5.1 The effect of RDMA on produce datapath
Latency.We measure the median latency of produce requests. The
latency is a round-trip time measured by a produce client: it sends
a single produce request and waits for an acknowledgment from
the broker. The topic was created with a single partition and with
no replication enabled.

Figure 10 shows that OSU Kafka reduces the latency of the orig-
inal Kafka by about 90 us for small sizes, however, for 128 KiB
records, OSU Kafka has the same latency as the original Kafka. The
lowest latency is observed for KafkaDirect clients: 90 us for small
messages and approximately 345 us for large 128 KiB messages.
Overall, KafkaDirect provides 3.3x and 2x improvement over Kafka
and OSU Kafka, respectively.

The latency of an exclusive RDMA producer is 2.5 us lower than
the shared TCP/RDMA producer. The difference comes from the

32B 64B 128B 256B 512B 1K 2K 4K 8K 16K 32K 64K 128K
Record size

0
100
200
300
400
500
600

La
te

nc
y

(u
s) Kafka

OSU Kafka
Exclusive KafkaDirect
Shared KafkaDirect

Figure 10: Latency of produce request when replication is
disabled. Producers do not batch requests.

32B 64B 128B 256B 512B
Record size

0

20

40

60

80

Ba
nd

wi
dt

h
(M

iB
/s

ec
)

1K 2K 4K 8K 16K 32K
Record size

0
300
600
900

1200
1500

Kafka OSU Kafka Exclusive KafkaDirect Shared KafkaDirect

Figure 11: Bandwidth of produce request to one partition.
Replication is disabled. Producers do not batch requests.

requirement of the shared approach to issue an RDMA FAA op-
eration. Interestingly, the latency of an RDMA produce request is
not as low as the latency of an RDMAWrite request, which is ap-
proximately 2.5 us. The overhead of 88 us comes from two Kafka’s
design decisions: the producer API makes a copy of user data to
prevent mutation of it during transmission; and Kafka has differ-
ent threads for API and network workers, incurring inter-thread
communication (forwarding a request takes 11 us). A processing of
a small record takes on average 14 us for an API thread, including
CRC32C checksum calculation. The rest of the overhead comes
from the thread invocations due to blocking polling of the RNIC
events, the network, and producer’s API.

The experiment shows that the zero-copy produce datapath of
KafkaDirect significantly outperforms the Send/Recv approach used
by Kafka and OSU Kafka in terms of latency.

Bandwidth. In this experiment, we measure the goodput of pro-
duce requests. The producer dispatches asmany requests as possible
to a single TP. The TP is not replicated to show the performance of
the produce datapath only.

Figure 11 shows that KafkaDirect achieves the highest perfor-
mance, whereas the lowest performance is observed for the original
Kafka. The low performance comes from extra data copies induced
by the TCP/IP stack and copies from network buffers to TP file
buffers. OSU Kafka removes some of these copies and, on the ex-
periment with 512-byte records, achieves a 2x improvement. In the
same experiment KafkaDirect shows a 10x speedup for the exclu-
sive produce datapath and a 5x improvement for the shared pro-
duce datapath. On average in all experiments, an exclusive RDMA
producer achieved a 7x speedup compared to Kafka and 3.8x com-
pared to OSU Kafka. In the experiment, the RDMA producer could
achieve 1.65 GiB/sec with 32 KiB records, whereas the original
Kafka achieved only 280 MiB/sec. A shared producer also has a
significantly improved bandwidth with large records and shows a
5x improvement compared to Kafka.

Figure 12 shows the effect of partitioning on the bandwidth
of producers. The bandwidth of all systems increases with the
number of partitions as each TP file can be accessed by at most one

1 2 4 8 16
Number of partitions

0
1
2
3
4
5

Ba
nd

wi
dt

h
(G

iB
/s

ec
) KafkaDirect Exclusive

KafkaDirect Shared
Kafka

Figure 12: Bandwidth of
produce requests for 32
KiB records.

1 2 3 4 5 6 7
Number of producers

0

200

400

600

800

Ba
nd

wi
dt

h
(M

iB
/s

ec
) KafkaDirect exclusive

Kafka

Figure 13: Total bandwidth of
producers for 4 KiB records. Bro-
ker is deployed with one worker.

API worker at a time due to locking. Thus, four partitions can be
concurrently written by four workers, thereby improving overall
bandwidth. The performance saturates at 8 partitions, which is the
number of API workers processing new records in a Kafka broker.
KafkaDirect achieves 4.5 GiB/sec for the exclusive RDMA datapath
and 3 GiB/sec for the shared RDMA datapath, which is a 9x and
4.5x improvement over Kafka, respectively.

The experiments show that the produce datapaths of Kafka and
OSU Kafka are bottlenecked by extra data copies, and that our RDMA
extension removes this bottleneck.

We did not achieve the performance of our C/C++ microbench-
marks (see Figure 6). The reduction in bandwidth comes from the
difference in processing new records and thread scheduling between
Kafka and our C++ prototypes. In our C/C++ microbenchmarks,
the producer could send data without copies, whereas Kafka al-
ways makes a copy of records at the producer to prevent their
mutation. In addition, the C++ prototype did not perform integrity
checks of records required by Kafka. Finally, Kafka uses different
threads for API and network workers, incurring costly inter-thread
communication, whereas our C++ prototypes were single-threaded.

Bandwidth of a single API worker. To evaluate the maximum
bandwidth that can be achieved by a single API worker, we deployed
systems with one API worker. To plot the bandwidth curve, we
vary the worker’s load by increasing the number of producers.
Each producer writes 4 KiB records to its private TP, to eliminate
contention between producers. The main goal of this configuration
is to remove contention between threads at polling the request
queue (see Figure 2).

Figure 13 reveals that the performance of the KafkaDirect broker
plateaus at 630 MiB/sec when the system must process the records
from more than four clients. For Kafka, the top performance is only
190 MiB/sec. Thus, to achieve the line rate of 6 GiB/sec KafkaDirect
should be deployed with at least 10 API workers, whereas for the
original Kafka more than 33 workers are required.We conclude that
KafkaDirect provides a 3.3x reduction in CPU load.

5.2 The effect of RDMA on replication
Latency. We measure the latency of produce requests when the
system is deployed with replication enabled. The latency is a round-
trip timemeasured by a producer that waits for an acknowledgment.
The acknowledgment is received when the data is fully replicated to
all replicas. We measure latency when 1) RDMA is enabled only for
produce datapath, 2) RDMA is enabled only for replication datapath,
and 3) RDMA is enabled for both datapaths.

32B 64B 128B 256B 512B 1K 2K 4K 8K 16K 32K 64K 128K
Record size

0
200
400
600
800

1000
1200

La
te

nc
y

(u
s)

Kafka OSU Kafka RDMA Prod. RDMA Repl. RDMA Prod.+Repl.

Figure 14: Latency of producer for 3-way replication.

32B 64B 128B 256B 512B
Record size

0

20

40

60

80

Ba
nd

wi
dt

h
(M

iB
/s

ec
)

1K 2K 4K 8K 16K 32K
Record size

0
300
600
900

1200
1500

Kafka OSU Kafka RDMA Prod. RDMA Repl. RDMA Prod.+Repl.

Figure 15: Bandwidth of producer for three-way replication.

According to Figure 14, the latency of Kafka with three-way
replication is approximately 700 us for small records, which is twice
that of a produce request with no replication. Enabling either RDMA
modules of KafkaDirect reduces the latency by 300 us. Interestingly,
when both modules are enabled the latency decreases to about
100 us. OSU Kafka only reduces the latency by 300 us, similar to
KafkaDirect when either one of the two RDMA modules is in use.
Overall, KafkaDirect provides a 7x improvement over Kafka and a
4x improvement over OSU Kafka for three-way replication.

Our RDMA replication module has the lowest latency since the
leader broker starts replication immediately, rather than waiting for
replicas to pull the data.

Bandwidth. We measure the average goodput of produce re-
quests when the topic is three-way replicated (the leader replicates
data to two other machines). We were not able to measure all data
points for OSU Kafka as it was crashing for experiments with large
records. Figure 15 shows that the highest performance is observed
for KafkaDirect, which achieves a 14x speedup for 32 KiB records
compared to Kafka. Interestingly, just enabling RDMA replication
does not contribute much to the total bandwidth since the per-
formance is bottlenecked by the slow TCP producer. The RDMA
producer can achieve more than 500 MiB/sec, which is 420 MiB/sec
faster than the original Kafka.

The data unveils that the performance of the RDMA producer is
limited by the speed of the pull replication. Our RDMA replication
module manages to mitigate the bottleneck and to double the per-
formance. The speedup of KafkaDirect is from 9x to 14x depending
on the size of the records.

To understand the role of the replication on performance, we
measure the bandwidth of a producer with increasing replication
factor. Figure 16 shows the bandwidth for 32 KiB records when
data is replicated from one to four times (a replication factor of
one means data is stored only on the leader). An RDMA producer
achieves 1.5 GiB/sec when the replication is disabled. However,
when records are replicated using TCP, the performance drops to 0.5
GiB/sec. In contrast, our RDMA replication module replicates data
at the required rate and avoids this one-third slowdown, providing
a 14x speedup compared to the original Kafka.

1 2 3 4
Replication factor

0
300
600
900

1200
1500

Ba
nd

wi
dt

h
(M

iB
/s

ec
)

Kafka
RDMA Prod.

RDMA Repl.
RDMA Prod.+Repl.

Figure 16: Bandwidth of
produce request for 32 KiB
records.

32B 64B 128B 256B 512B 1K
Replication batch size

2

3

4

5

6

Ba
nd

wi
dt

h
(M

iB
/s

ec
)

2-way repl. 3-way repl.

Figure 17: Bandwidth of 32-
byte produce requests with
increasing batch size.

The main observation is that the increase in the number of repli-
cas does not significantly reduce the overall performance of all
tested systems. This due to the original Kafka optimization [38]
that enables transferring content of mapped files over the TCP/IP
without incurring extra copies. At the receiver side, however, each
follower still performs twomemory copies: from the driver’s receive
buffer to one of Kafka’s receive buffers, and from the receive buffer
to the file buffer. These two copies are avoided by our KafkaDirect
design, thereby reducing CPU utilization on the replica brokers.

Batching of replication requests.KafkaDirect supports batch-
ing of consecutive contiguous writes into a single RDMA operation
during replication (§4.3.2). The goal of batching is to increase the
bandwidth of replication when producers dispatch many small pro-
duce requests. To evaluate the effect of batching on replication
performance we measure the bandwidth of produce requests when
KafkaDirect is deployed with RDMA replication enabled, and the
RDMA producer injects 32-byte records that are not batched.

Figure 17 shows the average bandwidth of produce requests for
two- and three-way replication with increasing maximum batch
size of the RDMA replication module. No batching achieves a band-
width of 3.8 MiB/sec for both two- and three-way replication. The
bandwidth increases with increasing batch size and plateaus at 5.2
MiB/sec. In general, the speed of RDMA Write can be as high as
200 MiB/sec for such small writes, however, the performance was
bottlenecked by the speed of the API worker which commits new
records to TP files: the workers need to calculate checksum over
the new records and acquire an exclusive write lock. Therefore, the
replication module was replicating records at 5.2 MiB/sec, thereby
underutilizing the network. To improve network utilization one can
delay the replication requests by a constant timeout to batch more
requests, which would, however, incur higher replication latency.

We did not observe the performance numbers achieved in our
C/C++ benchmark (§4.3.2). Nonetheless, we believe that our batch-
ing mechanism can be still beneficial for other publish-subscribe
systems, especially, for ones without integrity checks, since our
batching is opportunistic meaning that the replication worker does
not wait for requests to accumulate, and can dispatch a batch of a
smaller size than the maximum batch size.

5.3 The effect of RDMA on consume datapath
Latency.Wemeasure the round-trip time measured by a consumer.
We load Kafka-based systems with 10,000 records to a single parti-
tion and the consumer fetches them one by one. Note that the client
latency is independent of produce and replication latency in this

32B 64B 128B 256B 512B 1K 2K 4K 8K 16K 32K 64K 128K
Record size

0
50

100
150
200
250
300

La
te

nc
y

(u
s)

4.2 us

Kafka KafkaDirect

Figure 18: Latency of consumer with increasing record size.

experiment, as all records are preloaded. All systems are deployed
with a default file size of 1 GiB. We could not measure the latency
of fetch requests for OSU Kafka, as we did not have access to the
source code to instrument the consumer API. Instead, we measure
its end-to-end latency in the next experiment.

Figure 18 shows that the latency of the original Kafka is at least
200 us for all tested record sizes. The latency is composed of a
TCP/IP round trip and the processing of the fetch request. Our
RDMA consumer fetches a record within 4.2 us, which is a 50x
improvement over the original Kafka. The latency is so low because
the data was preloaded to the broker and the RDMA consumer
could read all the remote records with RDMA without requesting
access to new TP files. In general, if an RDMA consumer reads
entries from a TP consisting of many files, it needs to request file
access after reading each 1 GiB of data.

The latency of an RDMA fetch request is 4.2 us, which is 2
us greater than the latency of a pure RDMA Read request. The
overhead comes from Kafka’s consumer API design which requires
returning a native Java buffer (i.e., allocated in Java’s heap) to
the user. The DISNi RDMA Java library only works with off-heap
buffers, therefore our implementation always needs to copy the
fetched records to a native Java buffer. One possible solution to
this problem is to extend the Kafka API to allow users to provide
an off-heap buffer where the records can be fetched without extra
copies.

Latency of empty fetch requests. We evaluate the cost of
checking the availability of new records in a TP. For Kafka, it is
the latency of a fetch request in the case when the broker does not
have new records. For KafkaDirect, it is the latency of reading a
remote metadata slot using RDMA Read (§4.4.2). The experiment
reveals that the latency of an empty TCP fetch request is at least
200 us, whereas the latency of reading a remote metadata slot is
only 2.5 us. What is more, the RDMA fetch metadata request does
not involve the broker’s CPU and is completely offloaded to the
RNIC. As a result, our KafkaDirect can serve thousands of RDMA
fetch requests without any CPU involvement.

End-to-end Latency. The previous experiment measures the
latency of consumers when they fetch data from immutable files.
Therefore, each RDMA consumer does not need to frequently up-
date the metadata of TP files to discover new records. In this experi-
ment, we measure an end-to-end latency where a single client plays
the role of producer and consumer. The client sends one record to
Kafka and then fetches it with the consumer API to measure the
round-trip latency consisting of produce and fetch requests. Since
KafkaDirect supports enabling only particular RDMA modules we
measure latency for when 1) RDMA is enabled only for the produce
datapath, 2) RDMA is enabled only for the consume datapath, and
3) RDMA is enabled for both datapaths.

32B 64B 128B 256B 512B 1K 2K 4K 8K 16K 32K 64K
Record size

0
200
400
600
800

La
te

nc
y

(u
s)

Kafka OSU Kafka RDMA Prod. RDMA Cons. RDMA Prod.+Cons.

Figure 19: End-to-end latency with increasing record sizes.

32B 64B 128B 256B 512B
Record size

0
10
20
30
40
50
60
70

Ba
nd

wi
dt

h
(M

iB
/s

ec
) Kafka

OSU Kafka
KafkaDirect

1K 2K 4K 8K 16K 32K
Record size

0
200
400
600
800

1000 Kafka
OSU Kafka
KafkaDirect

Figure 20: Consume bandwidth with increasing record size.

Figure 19 shows the median end-to-end latency of Kafka is about
600 us for small records. OSU Kafka gives approximately the same
latency as the original Kafka, but at some data points, we observe a
50 us reduction in latency. The use of RDMA for either the produce
or consume datapath reduces the latency by at least 200 us. When
both RDMA modules are enabled the latency is as low as 100 us.
Interestingly, as the latency of RDMA produce is about 93 us, the
actual latency of RDMA fetch was about 7 us which consists of data
fetching (4.2 us) and metadata update (2.8 us). We conclude that
KafkaDirect offers a 5.8x reduction in end-to-end latency, and that
our RDMA consumer efficiently works with frequently updated TPs.

Bandwidth. We measure the average goodput of a consumer
for the systems that were loaded by a producer to one partition. In
addition, to avoid the effect of batching, the broker was configured
to reply with one record for each fetch request. We were not able to
measure all data points for OSU Kafka as it was crashing for some
experiments.

Figure 20 shows that the highest throughput was observed for
our RDMA consumer. OSU Kafka and the original Kafka have ap-
proximately the same performance, which is less than 150 MiB/sec
even for large records. The RDMA consumer, on the other hand,
shows a 9x improvement over the original Kafka and managed to
achieve 1 GiB/sec bandwidth.

It is worth noting that the performance of our RDMA consumer
is bottlenecked by the consumer’s implementation, whereas in the
original Kafka it is limited by the broker. It comes from the fact
that the RDMA fetch request is completely offloaded to the RNIC
and does not require the involvement of brokers’ CPU. As a result,
the number of RDMA consumers is only limited by the capabilities
of the RNIC, allowing KafkaDirect brokers to serve thousands of
consumer clients without incurring any CPU overhead.

The maximum bandwidth achievable by our RNIC is about 6
GiB/sec, however, KafkaDirect only achieved 5.2 GiB/sec even for
large records (the experiment is not plotted here). The reduction
in bandwidth comes from the fact that the RDMA consumer must
check the integrity of the fetched data and copy the data from the
internal off-heap buffers used for RDMA into Java native buffers,
that are returned to the caller.

0
0.5
1

1.5
2

La
te

nc
y

(m
s)

constant-rate publisher, no replication constant-rate publisher, 2x replication

0s 100s 200s 300s 400s
0
2
4
6
8

La
te

nc
y

(m
s)

periodic-burst publisher, no replication

0s 100s 200s 300s 400s

periodic-burst publisher, 2x replication

Kafka OSU Kafka KafkaDirect

Figure 21: Event delays under constant-rate and periodic-
burst workloads for no and 2x replication settings.

Throughput of empty fetch requests. The main shortcom-
ing of Kafka’s consume datapath is that consumers periodically
send fetch requests regardless of the availability of new records.
As a result, brokers spend a lot of CPU cycles on processing fetch
requests and sending empty replies to clients. We call such re-
quests as empty fetch requests. We deployed Kafka with default
parameters and measured how many empty fetch requests it can
process. The experiment showed that a broker could not process
more than 53K empty fetch requests per second and the perfor-
mance was bottlenecked by the TCP network module. A broker of
KafkaDirect managed to process 8,300K empty fetch requests per
second providing a 156x improvement over the original Kafka. The
speedup comes from the fact that RDMA consumers use RDMA
Reads to find out about newly available records by reading remote
metadata slots (§4.4.2). Note that the processing of empty fetch
requests in KafkaDirect does not involve the CPU of brokers and is
bottlenecked by the RNIC speed.

5.4 Improving Data Processing Applications.
We integrated KafkaDirect into Apache Spark 2.4.4 [61] and mea-
sured its performance for the streaming benchmark [56]. The bench-
mark emulates events generated by an IoT traffic sensor that mea-
sures the number of cars and their average speed for road lanes. The
IoT device publishes these events in JSON format into two separate
topics, that are polled by event processing engines. To be oblivious
from the processing speed of streaming engines we report the delay
between the timestamp when the sensor generated an event and
the time when the processing engine read the event.

Figure 21 reports themeasured delays for twoworkloads: constant-
rate and periodic-burst. The first workload has a constant publish-
ing rate (400 messages per second), whereas, in the periodic burst
one, every ten seconds an enlarged batch is published. The plot
shows that the lowest delays were achieved by KafkaDirect for
all workloads, especially for the setting with replicated topics. For
the constant-rate workload, KafkaDirect has higher variance than
competitors as the fetching process was affected by commit offset
requests. The commit offset request helps consumers acknowledge
the reception of records to avoid processing of the same records
twice in the case of node failures. Since KafkaDirect does not use
RDMA for that request, its performance was decreased by the use
of the TCP/IP stack. KafkaDirect could implement an accelerated
commit offset requests with the use of RDMA FAA, which is an
interesting direction for future research.

Despite that limitation of KafkaDirect, it had much lower vari-
ations in latency for the periodic-burst workload. What is more,
Kafka and OSU Kafka experienced a short period of unavailability
for the replicated settings. The experiment shows that KafkaDirect
performs well in the case of bursty data, and provides a 3.3x latency
reduction on average.

6 RELATEDWORK
Publish-subscribe systems. Corfu [2] and Scalog [14] are shared
log systems that maintain total order across records stored on dif-
ferent servers. Unlike Kafka, Corfu and Scalog have a single logical
TP that is partitioned across servers. To publish records, a Corfu’s
client determines the available position in the shared log (similar
to Kafka offsets) using a dedicated sequencer node, and then writes
data to that position. Corfu’s clients are also responsible for data
replication. Unlike Corfu, a client of Scalog appends records to any
server, which then replicates the records. Periodically, each storage
server of Scalog talks to the sequencer node that assigns a unique
position to all fully replicated records. Scalog’s sequencer algorithm
ensures global ordering across all stored records. Fuzzylog [30] is
a partially ordered log that tracks order between records stored
in geo-replicated shards using Skeen’s algorithm [17]. We believe
that the mentioned systems could reuse our RDMA datapaths with
slight modifications since they store immutable records with a log-
structured design as Kafka. In particular, sequencer nodes besides
logical positions of records could also return their virtual addresses
to enable RDMA accesses.

RDMA-enabled log-structured storage systems.HERD [20],
FlatStore [11], and RamCloud [36] are log-structured key-value
stores that use index structure as a level of indirection between
keys and storage location. Since the traversal of the index may
result in multiple RDMA operations, they only use RDMA-based
RPCs for request processing and do not expose direct object ac-
cess to clients. HERD also optimizes RPCs to deliver requests to
buffers in the proximity of the expected storage location. Hyper-
Loop [25] is a framework that offloads chain replication to RNICs
with cross-channel communications support [53]. HyperLoop im-
proves the replication performance of write-ahead transactional
logs and can be employed by log-structured systems. DaRE [39] is
a replicated state-machine that implements a replication protocol
using one-sided RDMAWrites to write data directly to remote logs.
Additionally, DaRE employs RDMA Reads to verify the execution
progress of replication followers.

7 DISCUSSION
Memory usage. The main disadvantage of KafkaDirect is that it
has higher memory usage compared to the original Kafka. The in-
crease in memory comes from a requirement of RDMA networking
to have files mapped and be present in the main memory. Since the
default file size is 1 GiB, each memory-mapped file increases the
DRAM usage by 1 GiB. To alleviate this overhead, one can employ
on-demand paging capability offered by modern RDMA controllers,
which allows the OS to swap out RDMA accessible memory [27].
Since on-demand paging is not widely available, our current im-
plementation does not use it, so that it can be deployed on any
commodity RDMA-enabled network.

Batching requests targeting different TPs. In the original
Kafka, a producer can batch produce requests to different TPs if
they target the same broker to ease TCP/IP overheads. Our RDMA
datapaths cannot batch RDMA requests that target different TP
files. Thus, our RDMA producer needs to issue an RDMA write per
target TP. Nonetheless, RDMA networking allows having multiple
outstanding write requests, that are processed independently by
the broker. Thus, we believe that this disadvantage is negligible.

Similarly, a TCP consumer can batch consume requests target-
ing the same broker. Our RDMA datapath requires multiple read
requests to fetch new records from different TPs. However, our im-
plementation allows RDMA consumers to fetch metadata of several
TPs using a single RDMA request to check for new records (§4.4.2).
In addition, an RDMA consumer can have multiple outstanding
read requests to concurrently fetch records from different TPs.

Reliability of RDMA.We use reliable RDMA connections (sim-
ilar to TCP), which guarantee that RDMA messages are delivered
from a requester to a responder at most once, in order, and without
corruption. In addition, RDMA reliable transport notifies appli-
cations about connection failures, allowing us to reuse failover
mechanisms of the original Kafka.

Security of RDMA. The security of current RDMA data cen-
ter networks highly depends on isolation [44], as the InfiniBand
architecture does not offer a secure transport and application-level
encryption (e.g., based on TLS [42]) is not possible with RDMA
operations that bypass the CPU. Thus, users of Kafka that relied
on TLS [42] for secure networking will not be able to securely
migrate to RDMA networking. Nonetheless, a proposal for a se-
cure RDMA transport, sRDMA [52], has been recently released
to provide authentication and encryption for RDMA networking
without changes to the programming interface of RDMA. If sRDMA
is adopted, our KafkaDirect will offer secure networking similar
to TLS by requiring only a small change to the RDMA connection
establishment process.

8 CONCLUSION
This paper explores challenges and solutions for the efficient ac-
celeration of Apache Kafka with zero-copy RDMA networking.
Our implementation, KafkaDirect, employs RDMA Writes and the
immediate data capability to write data directly to storage and, at
the same time, to notify the broker, avoiding the need for extra
messages. KafkaDirect also makes use of RDMA atomics to en-
able shared write access to a single file. KafkaDirect empowers
consumers to use RDMA Reads to fetch records directly with no
CPU involvement on the broker. We demonstrate the effective-
ness of these techniques in multiple settings. Our evaluation shows
that RDMA can significantly improve the performance of publish-
subscribe systems and enable scaling to a larger number of clients.

ACKNOWLEDGEMENTS
This work was partially supported by the European
Research Council (Project PSAP, No. 101002047),
Project RED-SEA, No. 955776, and by Microsoft
Research through its Swiss Joint Research Center.

REFERENCES
[1] InfiniBand Trade Association et al. 2020. The InfiniBand Architecture Specification

1.4. https://www.infinibandta.org/ibta-specification/.
[2] Mahesh Balakrishnan, Dahlia Malkhi, Vijayan Prabhakaran, Ted Wobbler,

Michael Wei, and John D. Davis. 2012. CORFU: A Shared Log Design for Flash
Clusters. In Proceedings of the 9th USENIX Symposium on Networked Systems
Design and Implementation (NSDI’12). USENIX Association, 1–14.

[3] Claude Barthels, Gustavo Alonso, and Torsten Hoefler. 2017. Designing Databases
for Future High-Performance Networks. IEEE Data Engineering Bulletin 40, 1
(2017), 15–26.

[4] Claude Barthels, Simon Loesing, Gustavo Alonso, and Donald Kossmann. 2015.
Rack-Scale In-Memory Join Processing Using RDMA. In Proceedings of the 2015
ACM International Conference on Management of Data (SIGMOD’15). Association
for Computing Machinery, 1463–1475. https://doi.org/10.1145/2723372.2750547

[5] Carsten Binnig, Andrew Crotty, Alex Galakatos, Tim Kraska, and Erfan Zamanian.
2016. The End of Slow Networks: It’s Time for a Redesign. Proceedings of the
VLDB Endowment 9, 7 (2016), 528–539. https://doi.org/10.14778/2904483.2904485

[6] Andrew D. Birrell and Bruce Jay Nelson. 1984. Implementing Remote Procedure
Calls. ACM Transactions on Computer Systems 2, 1 (1984), 39–59. https://doi.org/
10.1145/2080.357392

[7] Mark S Birrittella, Mark Debbage, Ram Huggahalli, James Kunz, Tom Lovett,
Todd Rimmer, Keith D Underwood, and Robert C Zak. 2015. Intel® Omni-path
Architecture: Enabling Scalable, High Performance Fabrics. In Proceedings of
the 23rd IEEE Symposium on High-Performance Interconnects (HOTI’15). IEEE
Computer Society, 1–9.

[8] Matthew Burke, Sowmya Dharanipragada, Shannon Joyner, Adriana Szekeres,
Jacob Nelson, Irene Zhang, and Dan R. K. Ports. 2021. PRISM: Rethinking the
RDMA Interface for Distributed Systems. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles (SOSP’21). Association for Computing
Machinery, 228–242. https://doi.org/10.1145/3477132.3483587

[9] Haibo Chen, Rong Chen, Xingda Wei, Jiaxin Shi, Yanzhe Chen, Zhaoguo Wang,
Binyu Zang, and Haibing Guan. 2015. Fast In-Memory Transaction Processing
Using RDMA and HTM. In Proceedings of the 25th Symposium on Operating
Systems Principles (SOSP’15). Association for Computing Machinery, 87–104.

[10] Youmin Chen, Youyou Lu, and Jiwu Shu. 2019. Scalable RDMA RPC on Re-
liable Connection with Efficient Resource Sharing. In Proceedings of the 14th
EuroSys Conference (EuroSys’19). Association for Computing Machinery, Article
19, 14 pages. https://doi.org/10.1145/3302424.3303968

[11] Youmin Chen, Youyou Lu, Fan Yang, Qing Wang, Yang Wang, and Jiwu Shu.
2020. FlatStore: An Efficient Log-Structured Key-Value Storage Engine for
Persistent Memory. In Proceedings of the Twenty-Fifth International Confer-
ence on Architectural Support for Programming Languages and Operating Sys-
tems (ASPLOS’20). Association for Computing Machinery, 1077–1091. https:
//doi.org/10.1145/3373376.3378515

[12] Alibaba Cloud. 2018. Super computing cluster. https://www.alibabacloud.com/
product/scc.

[13] Inc. Cloudera. 2019. kafka-*-perf-test. https://docs.cloudera.com/runtime/7.2.0/
kafka-managing/topics/kafka-manage-cli-perf-test.html.

[14] Cong Ding, David Chu, Evan Zhao, Xiang Li, Lorenzo Alvisi, and Robbert Van
Renesse. 2020. Scalog: Seamless Reconfiguration and Total Order in a Scalable
Shared Log . In Proceedings of the 17th USENIX Symposium on Networked Systems
Design and Implementation (NSDI’20). USENIX Association, 325–338.

[15] Aleksandar Dragojević, Dushyanth Narayanan, Miguel Castro, and OrionHodson.
2014. FaRM: Fast Remote Memory. In Proceedings of the 11th USENIX Symposium
on Networked Systems Design and Implementation (NSDI’14). USENIX Association,
401–414.

[16] Ken Goodhope, Joel Koshy, Jay Kreps, Neha Narkhede, Richard Park, Jun Rao,
and Victor Yang Ye. 2012. Building LinkedIn’s Real-time Activity Data Pipeline.
IEEE Data Engineering Bulletin 35, 2 (2012), 33–45.

[17] R. Guerraoui and A. Schiper. 1997. Total order multicast to multiple groups. In
Proceedings of the 17th International Conference on Distributed Computing Systems
(ICDCS’97). IEEE Computer Society, 578–585.

[18] Torsten Hoefler, Salvatore Di Girolamo, Konstantin Taranov, Ryan E. Grant, and
Ron Brightwell. 2017. sPIN: High-performance Streaming Processing In the
Network. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC’17). Association for Computing
Machinery, Article 59, 16 pages.

[19] Sagar Jha, Jonathan Behrens, Theo Gkountouvas, Matthew Milano, Weijia Song,
Edward Tremel, Robbert Van Renesse, Sydney Zink, and Kenneth P. Birman. 2019.
Derecho: Fast State Machine Replication for Cloud Services. ACM Transactions
on Computer Systems 36, 2, Article 4 (2019), 49 pages. https://doi.org/10.1145/
3302258

[20] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2014. Using RDMA
Efficiently for Key-Value Services. In Proceedings of the 2014 ACM Conference
on SIGCOMM (SIGCOMM’14). Association for Computing Machinery, 295–306.
https://doi.org/10.1145/2619239.2626299

[21] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2016. Design Guidelines
for High Performance RDMA Systems. In Proceedings of the 2016 USENIX Annual

Technical Conference (USENIX ATC’16). USENIX Association, 437–450.
[22] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2016. FaSST: Fast, Scalable

and Simple Distributed Transactions with Two-Sided (RDMA) Datagram RPCs.
In Proceedings of the 12th USENIX Conference on Operating Systems Design and
Implementation (OSDI’16). USENIX Association, 185–201.

[23] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ranganathan,
Tipp Moseley, Gu-Yeon Wei, and David Brooks. 2015. Profiling a Warehouse-
Scale Computer. In Proceedings of the 42nd Annual International Symposium on
Computer Architecture (ISCA’15). Association for Computing Machinery, 158–169.
https://doi.org/10.1145/2749469.2750392

[24] Tejas Karmarkar. 2015. Availability of linux RDMA on Microsoft Azure. https:
//azure.microsoft.com/en-us/blog/azure-linux-rdma-hpc-available.

[25] Daehyeok Kim, Amirsaman Memaripour, Anirudh Badam, Yibo Zhu,
Hongqiang Harry Liu, Jitu Padhye, Shachar Raindel, Steven Swanson, Vyas
Sekar, and Srinivasan Seshan. 2018. Hyperloop: Group-Based NIC-Offloading to
Accelerate Replicated Transactions in Multi-Tenant Storage Systems. In Proceed-
ings of the 2018 Conference of the ACM Special Interest Group on Data Com-
munication (SIGCOMM’18). Association for Computing Machinery, 297–312.
https://doi.org/10.1145/3230543.3230572

[26] Jay Kreps, Neha Narkhede, Jun Rao, et al. 2011. Kafka: A distributed messaging
system for log processing. In Proceedings of the 2011 IEEE International Workshop
on Networking Meets Databases (NetDB’11). 1–7.

[27] Ilya Lesokhin, Haggai Eran, Shachar Raindel, Guy Shapiro, Sagi Grimberg, Liran
Liss, Muli Ben-Yehuda, Nadav Amit, and Dan Tsafrir. 2017. Page fault support
for network controllers. ACM SIGARCH Computer Architecture News 45, 1 (2017),
449–466.

[28] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu, Yongqiang Xiong, Andrew
Putnam, Enhong Chen, and Lintao Zhang. 2017. KV-Direct: High-Performance
In-Memory Key-Value Store with Programmable NIC. In Proceedings of the 26th
Symposium on Operating Systems Principles (SOSP’17). Association for Computing
Machinery, 137–152. https://doi.org/10.1145/3132747.3132756

[29] Feng Li, Sudipto Das, Manoj Syamala, and Vivek R. Narasayya. 2016. Accelerating
Relational Databases by Leveraging Remote Memory and RDMA. In Proceedings
of the 2016 International Conference on Management of Data (SIGMOD’16). As-
sociation for Computing Machinery, 355–370. https://doi.org/10.1145/2882903.
2882949

[30] Joshua Lockerman, Jose M. Faleiro, Juno Kim, Soham Sankaran, Daniel J. Abadi,
James Aspnes, Siddhartha Sen, and Mahesh Balakrishnan. 2018. The FuzzyLog:
A Partially Ordered Shared Log. In Proceedings of the 13th USENIX Conference on
Operating Systems Design and Implementation (OSDI’18). USENIX Association,
357–372.

[31] Microsoft. 2020. Azure Service Bus Messaging. https://azure.microsoft.com/en-
us/services/service-bus/.

[32] Christopher Mitchell, Yifeng Geng, and Jinyang Li. 2013. Using One-Sided RDMA
Reads to Build a Fast, CPU-Efficient Key-Value Store. In Proceedings of the 2016
USENIX Annual Technical Conference (USENIX ATC’16). USENIX Association,
103–114.

[33] The Ohio State University Network-Based Computing Laboratory. 2018. RDMA-
based Apache Kafka (RDMA-Kafka). http://hibd.cse.ohio-state.edu/#kafka.

[34] Oracle. 2020. Oracle Cloud. https://www.oracle.com/cloud/hpc/.
[35] Oracle. 2020. Oracle Messaging Cloud Service. https://www.oracle.com/technical-

resources/articles/cloud/wilkins-ocms.html.
[36] John Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita Kejriwal, Collin Lee,

Behnam Montazeri, Diego Ongaro, Seo Jin Park, Henry Qin, Mendel Rosenblum,
Stephen Rumble, Ryan Stutsman, and Stephen Yang. 2015. The RAMCloud
Storage System. ACM Transactions on Computer Systems 33, 3, Article 7 (Aug.
2015), 55 pages. https://doi.org/10.1145/2806887

[37] Kay Ousterhout, Ryan Rasti, Sylvia Ratnasamy, Scott Shenker, and Byung-Gon
Chun. 2015. Making Sense of Performance in Data Analytics Frameworks. In
Proceedings of the 12th USENIX Symposium on Networked Systems Design and
Implementation (NSDI’15). USENIX Association, 293–307. https://www.usenix.
org/conference/nsdi15/technical-sessions/presentation/ousterhout

[38] Sathish K Palaniappan and Pramod B Nagaraja. 2008. Efficient data transfer
through zero copy. IBM developerworks (2008).

[39] Marius Poke and Torsten Hoefler. 2015. DARE: High-Performance State Ma-
chine Replication on RDMA Networks. In Proceedings of the 24th International
Symposium on High-Performance Parallel and Distributed Computing (HPDC’15).
Association for Computing Machinery, 107–118. https://doi.org/10.1145/2749246.
2749267

[40] OpenMessaging Project. 2017. OpenMessaging Benchmark Framework. https:
//github.com/openmessaging/openmessaging-benchmark.

[41] Renato Recio, Bernard Metzler, Paul Culley, Jeff Hilland, and Dave Garcia. 2007.
A Remote Direct Memory Access Protocol Specification. Technical Report RFC 5040.
Network Working Group.

[42] Eric Rescorla. 2018. The Transport Layer Security (TLS) Protocol Version 1.3.
Technical Report RFC 8446. Network Working Group.

[43] Wolf Rödiger, Tobias Mühlbauer, Alfons Kemper, and Thomas Neumann. 2015.
High-Speed Query Processing over High-Speed Networks. Proceedings of the

https://www.infinibandta.org/ibta-specification/
https://doi.org/10.1145/2723372.2750547
https://doi.org/10.14778/2904483.2904485
https://doi.org/10.1145/2080.357392
https://doi.org/10.1145/2080.357392
https://doi.org/10.1145/3477132.3483587
https://doi.org/10.1145/3302424.3303968
https://doi.org/10.1145/3373376.3378515
https://doi.org/10.1145/3373376.3378515
https://www.alibabacloud.com/product/scc
https://www.alibabacloud.com/product/scc
https://docs.cloudera.com/runtime/7.2.0/kafka-managing/topics/kafka-manage-cli-perf-test.html
https://docs.cloudera.com/runtime/7.2.0/kafka-managing/topics/kafka-manage-cli-perf-test.html
https://doi.org/10.1145/3302258
https://doi.org/10.1145/3302258
https://doi.org/10.1145/2619239.2626299
https://doi.org/10.1145/2749469.2750392
https://azure.microsoft.com/en-us/blog/azure-linux-rdma-hpc-available
https://azure.microsoft.com/en-us/blog/azure-linux-rdma-hpc-available
https://doi.org/10.1145/3230543.3230572
https://doi.org/10.1145/3132747.3132756
https://doi.org/10.1145/2882903.2882949
https://doi.org/10.1145/2882903.2882949
https://azure.microsoft.com/en-us/services/service-bus/
https://azure.microsoft.com/en-us/services/service-bus/
http://hibd.cse.ohio-state.edu/#kafka
https://www.oracle.com/cloud/hpc/
https://www.oracle.com/technical-resources/articles/cloud/wilkins-ocms.html
https://www.oracle.com/technical-resources/articles/cloud/wilkins-ocms.html
https://doi.org/10.1145/2806887
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/ousterhout
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/ousterhout
https://doi.org/10.1145/2749246.2749267
https://doi.org/10.1145/2749246.2749267
https://github.com/openmessaging/openmessaging-benchmark
https://github.com/openmessaging/openmessaging-benchmark

VLDB Endowment 9, 4 (Dec. 2015), 228–239. https://doi.org/10.14778/2856318.
2856319

[44] Benjamin Rothenberger, Konstantin Taranov, Adrian Perrig, and Torsten Hoefler.
2021. ReDMArk: Bypassing RDMA Security Mechanisms. In Proceedings of the
30th USENIX Security Symposium (USENIX Security’21). USENIX Association.

[45] Amazon Web Services. 2020. Amazon Simple Queue Service. https://aws.amazon.
com/sqs/.

[46] Peter Snyder. 1990. tmpfs: A virtual memory file system. In Proceedings of the
Autumn 1990 European UNIX Users’ Group Conference (EUUG’90). 241–248.

[47] Patrick Stuedi, Bernard Metzler, and Animesh Trivedi. 2013. JVerbs: Ultra-Low
Latency for Data Center Applications. In Proceedings of the 4th ACM Symposium
on Cloud Computing (SoCC’13). Association for Computing Machinery, Article
10, 14 pages. https://doi.org/10.1145/2523616.2523631

[48] Patrick Stuedi, Animesh Trivedi, Bernard Metzler, and Jonas Pfefferle. 2014.
DaRPC: Data Center RPC. In Proceedings of the 5th ACM Symposium on Cloud
Computing (SoCC’14). Association for Computing Machinery, 1–13. https://doi.
org/10.1145/2670979.2670994

[49] Maomeng Su, Mingxing Zhang, Kang Chen, Zhenyu Guo, and Yongwei Wu. 2017.
RFP: When RPC is Faster than Server-Bypass with RDMA. In Proceedings of
the 12th European Conference on Computer Systems (EuroSys’17). Association for
Computing Machinery, 1–15. https://doi.org/10.1145/3064176.3064189

[50] Yacine Taleb, Ryan Stutsman, Gabriel Antoniu, and Toni Cortes. 2018. Tailwind:
Fast and Atomic RDMA-based Replication. In Proceedings of the 2018 USENIX
Annual Technical Conference (USENIX ATC’18). USENIX Association, 851–863.

[51] Konstantin Taranov, Rodrigo Bruno, Gustavo Alonso, and Torsten Hoefler. 2021.
Naos: Serialization-free RDMA networking in Java. In Proceedings of the 2021
USENIX Annual Technical Conference (USENIX ATC’21). USENIX Association,
1–14.

[52] Konstantin Taranov, Benjamin Rothenberger, Adrian Perrig, and Torsten Hoefler.
2020. sRDMA – Efficient NIC-based Authentication and Encryption for Remote
Direct Memory Access. In Proceedings of the 2020 USENIX Annual Technical
Conference (USENIX ATC’20). USENIX Association, 691–704.

[53] Mellanox Technologies. 2015. RDMA Aware Networks Programming User Manual,
Rev 1.7. https://www.mellanox.com/related-docs/prod_software/RDMA_Aware_
Programming_user_manual.pdf.

[54] Gigabyte Technology. 2021. AORUS Gen4 AIC SSD 8TB. https://www.gigabyte.
com/Solid-State-Drive/AORUS-Gen4-AIC-SSD-8TB.

[55] Hung-Wei Tseng, Qianchen Zhao, Yuxiao Zhou, Mark Gahagan, and Steven Swan-
son. 2016. Morpheus: Creating Application Objects Efficiently for Heterogeneous

Computing. In Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA’16). IEEE Press, 53–65. https://doi.org/10.1109/ISCA.2016.15

[56] Giselle van Dongen and Dirk Van den Poel. 2020. Evaluation of Stream Processing
Frameworks. IEEE Transactions on Parallel and Distributed Systems 31, 8 (2020),
1845–1858.

[57] Guozhang Wang, Joel Koshy, Sriram Subramanian, Kartik Paramasivam, Mam-
mad Zadeh, Neha Narkhede, Jun Rao, Jay Kreps, and Joe Stein. 2015. Building a
Replicated Logging System with Apache Kafka. Proceedings of the VLDB Endow-
ment 8, 12 (Aug. 2015), 1654–1655. https://doi.org/10.14778/2824032.2824063

[58] Michael Wei, Amy Tai, Christopher J. Rossbach, Ittai Abraham, Maithem Mun-
shed, Medhavi Dhawan, Jim Stabile, Udi Wieder, Scott Fritchie, Steven Swanson,
Michael J. Freedman, and Dahlia Malkhi. 2017. vCorfu: A Cloud-Scale Object
Store on a Shared Log. In Proceedings of the 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI’17). USENIX Association, 35–49.

[59] Xingda Wei, Zhiyuan Dong, Rong Chen, and Haibo Chen. 2018. Deconstructing
RDMA-enabled Distributed Transactions: Hybrid is Better!. In Proceedings of
the 13th USENIX Symposium on Operating Systems Design and Implementation
(OSDI’18). USENIX Association, Carlsbad, CA, 233–251. https://www.usenix.
org/conference/osdi18/presentation/wei

[60] Jilong Xue, Youshan Miao, Cheng Chen, Ming Wu, Lintao Zhang, and Lidong
Zhou. 2019. Fast Distributed Deep Learning over RDMA. In Proceedings of the
14th European Conference on Computer Systems (EuroSys’19). Association for
Computing Machinery, Article 44, 14 pages. https://doi.org/10.1145/3302424.
3303975

[61] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion
Stoica. 2010. Spark: Cluster Computing with Working Sets. In Proceedings of the
2nd USENIX Conference on Hot Topics in Cloud Computing (HotCloud’10). USENIX
Association, 10.

[62] Erfan Zamanian, Carsten Binnig, Tim Harris, and Tim Kraska. 2017. The End of
a Myth: Distributed Transactions Can Scale. Proceedings of the VLDB Endowment
10, 6 (2017), 685–696. https://doi.org/10.14778/3055330.3055335

[63] Erfan Zamanian, Xiangyao Yu, Michael Stonebraker, and Tim Kraska. 2019. Re-
thinking Database High Availability with RDMA Networks. Proceedings of the
VLDB Endowment 12, 11 (July 2019), 1637–1650. https://doi.org/10.14778/3342263.
3342639

[64] Tobias Ziegler, Sumukha Tumkur Vani, Carsten Binnig, Rodrigo Fonseca, and
Tim Kraska. 2019. Designing Distributed Tree-Based Index Structures for Fast
RDMA-Capable Networks. In Proceedings of the 2019 International Conference
on Management of Data (SIGMOD’19). Association for Computing Machinery,
741–758. https://doi.org/10.1145/3299869.3300081

https://doi.org/10.14778/2856318.2856319
https://doi.org/10.14778/2856318.2856319
https://aws.amazon.com/sqs/
https://aws.amazon.com/sqs/
https://doi.org/10.1145/2523616.2523631
https://doi.org/10.1145/2670979.2670994
https://doi.org/10.1145/2670979.2670994
https://doi.org/10.1145/3064176.3064189
https://www.mellanox.com/related-docs/prod_software/RDMA_Aware_Programming_user_manual.pdf
https://www.mellanox.com/related-docs/prod_software/RDMA_Aware_Programming_user_manual.pdf
https://www.gigabyte.com/Solid-State-Drive/AORUS-Gen4-AIC-SSD-8TB
https://www.gigabyte.com/Solid-State-Drive/AORUS-Gen4-AIC-SSD-8TB
https://doi.org/10.1109/ISCA.2016.15
https://doi.org/10.14778/2824032.2824063
https://www.usenix.org/conference/osdi18/presentation/wei
https://www.usenix.org/conference/osdi18/presentation/wei
https://doi.org/10.1145/3302424.3303975
https://doi.org/10.1145/3302424.3303975
https://doi.org/10.14778/3055330.3055335
https://doi.org/10.14778/3342263.3342639
https://doi.org/10.14778/3342263.3342639
https://doi.org/10.1145/3299869.3300081

	Abstract
	1 Introduction
	2 Background on RDMA networking
	3 Publish-Subscribe systems
	4 RDMA design for Kafka
	4.1 Network Layer
	4.2 Produce datapaths
	4.3 Replication datapaths
	4.4 Consume datapaths

	5 Evaluation
	5.1 The effect of RDMA on produce datapath
	5.2 The effect of RDMA on replication
	5.3 The effect of RDMA on consume datapath
	5.4 Improving Data Processing Applications.

	6 Related work
	7 Discussion
	8 Conclusion
	References

