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Abstract—Sparse linear algebra is a key component of many
scientific computations such as computational fluid dynamics,
mechanical engineering or the design of new materials to mention
only a few. The discretization of complex geometries in unstruc-
tured meshes leads to sparse matrices with irregular patterns.
Their distribution in turn results in irregular communication
patterns within parallel operations.

In this paper, we show how sparse linear algebra can be
implemented effortless on distributed memory architectures. We
demonstrate how simple it is to incorporate advanced partition-
ing, network topology mapping, and data migration techniques
into parallel HPC programs by establishing novel abstractions.

For this purpose, we developed a linear algebra library —
Parallel Matrix Template Library 4 — based on generic and
meta-programming introducing a new paradigm: meta-tuning.
The library establishes its own domain-specific language embed-
ded in C++. The simplicity of software development is not paid
by lower performance. Moreover, the incorporation of topology
mapping demonstrated performance improvements up to 29%.

I. MOTIVATION

Many scientific simulations, such as computational fluid

dynamics, mechanical engineering or the design of new ma-

terials use computations on unstructured grids as their core

method (§II-A). The operations are expressed as linear algebra

(LA) with sparse matrices. These matrices are very often

unstructured, that is, the distribution of non-zero values and

the data dependencies of typical operations, such as matrix-

vector multiplication, are irregular.

Many large-scale scientific HPC applications can highly

benefit from specialized data structures and domain-specific

algorithms operating on them. On the other hand, strongly

specialized implementations are very expensive to expand for

new algorithms and new data structures.

The introduction of PETSc [1] in the 90s provided reusable

algorithms and data structures for many applications leading

to a significant increase of productivity in scientific software

development. We aim to raise the productivity further with

techniques that did not exist yet at the time PETSc was created.

The goal is that the linear algebra library adapts itself

to the scientific application instead of applications designed

around libraries. Such adaption can be achieved thanks to

the expressiveness and efficiency of the template system of

C++ [2]. We developed the Parallel Matrix Template Library 4

(PMTL4 [3], [4]) that allows developers to:

• Program concisely in an intuitive mathematical notation;

• Replace algorithms (like linear solvers) without changing

the remainder of the application;

• Substitute data structures (like matrix types) with com-

patible ones without rewriting the calculations;

• Benefit from specialized codes (like hand-tuned BLAS

routines) without stating it explicitly;

• Mix and match orthogonal components leading to an

exponential growth of functionality over the size of the

library;

• Utilize user-defined and third-party types like quater-

nions, high-precision numbers, or rationals;

• Debug graphically like with C arrays [5];

• Tune implementations at the function call [6];

• Parallelize applications by simply substituting some type

definitions;

• Change the distribution of data without adapting data

structures and algorithms;

• Distribute unstructured sparse matrices automatically to

parallel processes with balanced load and minimized

communication (i.e. a good domain decomposition); and

• Map the parallel processes automatically to the physical

network topology (i.e. minimize network congestion or

dilation).

Most of the concepts are discussed in [3] and [4]. In this

work, we focus on the last two, distributing the unstructured

matrices and mapping the resulting communication graph

to the network topology. Ideally, these tasks are performed

without user assistance leading to convenient libraries that

allow developers to program with intuitive abstractions but

without sacrificing performance (§II-B–II-F).

Domain-decomposition techniques for structured and un-

structured grids have been intensively analyzed and libraries

that provide good decompositions are ready for use. In contrast

to it, mapping those unstructured grids and their accord-

ing irregular communication topologies onto static network

topologies just recently received the attention it deserves.

We integrate LibTopoMap—a library for generic topology

mapping—in a fully automatic way into PMTL4.

Today’s large-scale supercomputers consist of sparse net-

works with a relatively low connectivity and hierarchical

networks. Large multi- or many-core nodes provide fast intra-



node communication and are connected by multi-dimensional

high-performance network topologies. Manual optimization

for such architectures is difficult because parameters and

topologies change for each system and even from run-to-

run based on the current allocation of nodes. Even if the

network topology is understood, mapping the unstructured,

input-dependent application topology is a daunting task. Thus,

an automated and generic technique for mapping application

communication topologies to network topologies during run-

time is needed.

This fact is acknowledged in several parallel programming

frameworks: CHARM++ [7] provides transparent support for

topology mapping by process migration and the Message

Passing Interface (MPI) [8, §7] allows users to specify the

communication relations among processes of a parallel pro-

gram, enabling the MPI implementation to renumber processes

for efficient mapping.

Contributions: In this work, we propose an abstract library

interface for parallel sparse matrix computations and effective

mapping schemes. We show how the MPI-2.2 graph interface

and the topology mapping library can be integrated into

parallel applications without increasing code complexity.

We will show in §II-B–II-D that using our mapping in

the Parallel Matrix Template Library 4 (PMTL4) is as easy

as writing Matlab code. The partitioning and the topology

mapping is entirely orthogonal to the distributed data layout

and hidden from the user. The two transformations can be

specified by a single object applicable universally on matrices

and vectors. All information for partitioning and mapping

can be extracted from a sparse matrix allowing to write the

reorganization in a single statement.

A. Related Work

Parallel Linear Algebra: In addition to several libraries

for dense parallel LA—e.g., PLAPACK [9]—two libraries out-

stand for sparse parallel LA: PETSc and Trilinos [10]. PETSc

is written in C and can be easily interfaced with applications

in C, C++, and Fortran. The drawbacks of the library are the

not particularly concise interface and the restriction to one

scalar type, that is, programmers using both real and complex

arithmetic need two installations of the library. Trilinos is

implemented generically—thus enabling arbitrary arithmetic—

but the interface is still quite complicated. To our best knowl-

edge, no library uses MPI topology mapping.

Partitioning and Topology Mapping: We use the well

known library ParMETIS [11] to compute a domain de-

composition that minimizes the communication volume dur-

ing the computation. ParMETIS computes a (k,1+ǫ)-balanced

partitioning which is optimized for partitioning large input

domains.

Several researchers investigated techniques to optimize pro-

cess mappings on parallel computers. Different heuristics have

been applied to the problem. Träff [12] uses partitioning strate-

gies, similar to ParMETIS, for mapping to strictly hierarchical

networks (e.g., SMPs). Bokhari [13] uses the well-known

problem of graph isomorphisms to find mappings by ignoring

the influence of non-mapped edges. Lee and Agarwal [14]

define a more accurate model including all edges in a simple

greedy search strategy followed by a technique similar to

simulated annealing. Similar techniques have been discussed

by Bollinger and Midkiff [15]. The SCOTCH library offers

static mapping based on recursive bisections to map arbitrary

graphs [16].

Other, network- or topology-specific approaches exist for a

limited set of topologies and systems, such as BlueGene/L [17]

and Torus topologies [18].

Hoefler and Snir summarize known algorithms and develop

an algorithm based on graph similarity in a survey paper [19]

and proof that the problem of finding a mapping that mini-

mizes dilation or congestion is NP-complete.

Generic Programming and DSEL: The principles of

generic programming are consequently followed in the non-

parallel linear algebra library uBLAS [20]. Parallelism in a

generic manner is provided by Boost.MPI [21] and the Parallel

Boost Graph Library [22]. The genericity of the latter allowed

for expressing parallel sparse linear algebra computations by

means of distributed graphs [23]. The elegance and efficiency

of domain-specific embedded languages (DSEL) in scientific

computing is best demonstrated by the library Life [24]. It uses

the source-code transformation ability of the C++ compiler to

generate efficient executables from easy-to-read expressions in

the finite-element domain.

II. PARALLEL SPARSE LINEAR ALGEBRA

A. Why are Sparse Matrices Important in HPC

Parallel HPC computers are dominantly used to simulate

physical processes described by ordinary or partial differ-

ential equations (ODE/PDE). For illustration purpose, we

consider the 3D simulation of a droplet sliding down a rippled

ramp [25] as shown in Figure 1.

This process can be modeled by a diffuse domain Cahn-

Hilliard system:

∂t(φu) +∇ · (φuuT ) = −φ∇p+∇ · (νφD) +
σ̃

ǫ
φµ∇c

+ φF+BCu,

∇ · (φu) = g · ∇φ,

∂t(φc) +∇ · (φcu) = ∇ · (φM(c)∇µ) + BCµ,

φµ = φW ′(c)− ǫ2∇ · (φ∇c) +BCc,

where t is the time, φ a phase field function, u the velocity,

p the pressure, D = (∇u +∇uT ), c the phase field concen-

tration, BCu, BCµ, BCc are internal boundary conditions, g
the velocity of Γ, M(c) a mobility, µ the chemical potential,

ǫ the interface size of φ, and F the body force.

For numerical treatment, continuous domains are discretized

by meshes of simpler geometry like triangles or tetrahedra.

The continuous equations are discretized by methods like

finite elements (FEM) on specific mesh points. This results

in a sparse linear system whose solution approximates the

continuous one at the mesh points. The equations above

discretized with FEM on the before-mentioned 3D mesh yield



Fig. 1. Numeric simulation example of a droplet sliding down a ramp involving multiple coupled physical processes

a linear system where the sparse matrix has the sparsity pattern

shown in Figure 2.
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Fig. 2. Sparsity of the discrete problem’s matrix

The regularity of the discretization mesh directly affects the

pattern of the sparse matrix. If the mesh is an equi-distant grid

then the sparse matrix is a regular stencil. Accordingly, irreg-

ular meshes yield unstructured matrices. Especially, adaptive

mesh refinement (AMR) causes unstructured sparsity. Indus-

trial applications in particular need dominantly simulations

with unstructured sparse matrices. Therefore, their efficient

handling in large-scale parallel simulations is extremely im-

portant.

Solving linear systems iteratively requires local vector op-

erations, vector reductions, and matrix vector products. From

the topology prospective, only the latter matters and we focus

on its implementation.

B. Abstractions of Distributed Data

The development of parallel HPC software is typically

work-intensive. To decrease this effort it is very important

to provide highly reusable components. Unfortunately, many

approaches to reusability significantly impair performance,

e.g. using techniques of object-oriented programming (OOP)

at a fine-grained level can lead to slow-downs of one or more

orders of magnitude [26].

The static polymorphism of C++ templates avoids the run-

time overhead of OOP or function pointers, confer [2]. More-

over, the reusability with templates is even broader then with

OOP or function pointers because it is not limited to types

derived from a specific base class or to functions with a spe-

cific signature but can be used with every type providing the

according interface. This approach was formalized by Musser

and Stepanov as Generic Programming (GP) [27], [28] based

on the algebraic foundations of Formal Concept Analysis [29].

The prototype of generic software is the Standard Template

Library in C++ [30].

Generic programming establishes tremendous expressive-

ness when augmented with Meta-programming [31]. Infor-

mation on types are available within programs and can be

explored to select the best suitable algorithm. Veldhuizen has

shown that the template system of C++ is Turing complete [32].

In fact it can be considered a complete functional language.

Every expression in terms of integral values and types can be

evaluated during compilation.

The Matrix Template Library [4] utilized these paradigms

intensively. Incorporating meta-programming in numeric high-

performance software enabled a new kind of tuning, called

meta-tuning, that allows for generating tuned executables with

every standard C++ compiler [6]. For instance, loop unrolling

can be parametrized in the function call or by formulas taking

the argument type, the computed expression, or the underlying

platform into consideration. It has been demonstrated [6] that

the generated code has identical performance as its hand-

written counter-part.

In the remainder of this section we introduce abstractions

provided by the parallel MTL4 using the before-mentioned

paradigms.

1) Distribution: We defined a concept Distribution that

specifies how an index range can be divided into a given num-

ber of sub-sets. So far, we provide three types of Distribution:

• block distribution;

• cyclic distribution; and

• block cyclic distribution.

These are implemented as classes with functions to calculate:

• The number of local entries;

• The global index of a given local one;

• The location of a global index; . . .

With this abstraction we can implement vectors and matrices

of different distributions while using the same implementation.

2) Distributed vectors: This is defined by the two orthog-

onal abstractions of a local vector and a distribution:

template <typename LocalVector, typename Dist>
class distributed;

The parametrization of the local vector allows for sparse vector

and vector types from third-party libraries. The global indices

of the vector are mapped to the process according to the

vector’s distribution object. For instance, an object of type

block distribution always arranges the indices associated with



a process consecutively whereas the size of each block can be

set automatically or defined explicitly.

3) Distributed matrices: The design space for distributed

matrices is larger since there are already more types for local

matrices. Furthermore, we define a second distribution:

template <typename LocalMatrix, typename Dist1,
typename Dist2>

class distributed;

Matrices being finite-dimensional linear operators from one

vector space into another, a distributed matrix can accordingly

map a vector stored in distributed manner (i.e. Dist2) onto a

vector stored with a different distribution (i.e. Dist1). To avoid

name conflicts the two class templates distributed are defined

in the name spaces mtl::vector and mtl::matrix accordingly.

4) Migrations: A migration object provides a generic def-

inition of how distributed vectors and matrices are copied to

ones with other distributions, more details follow in §II-D.

C. Parallel Operations

Parallel operations constitute of local numeric operations

on blocks and communication. To support user-defined types,

e.g., high-precision arithmetic numbers, for elements of dis-

tributed matrices and vectors, we use the generic communica-

tion library Boost.MPI [21]. This library works with all types

that are serializable by Boost.Serialization [33].

1) Initializing Distributed Data: For this purpose we use

the same abstraction as for non-distributed data: inserter. The

concept is described in detail in the MTL4 tutorial [3] and we

only discuss its genericity in the parallel context here. Thus,

the following code snippet is valid for both distributed and

non-distributed matrices:

{
matrix::inserter<type of A, updater> ins(A);
for ( ... )

ins[i][j] << x;
}

In case that A is a distributed matrix, the inserter is specialized

to the distributed implementation. The indices are assumed

to be global. As in the non-distributed case, the behavior of

A is undefined as long as the inserter exists. The inserter’s

destructor sets up A including sending data to the owning

processes and creating buffers for future communications.

The inserter concept allows programmers to write initial-

ization functions that work both on distributed and non-

distributed matrices. For instance, in a finite element code

one can just insert the element matrices if the elements

are distributed in the parallel case (what they usually are).

Redundant insertions of entries are incorrect with incremental

updates and with overwriting update it is correct but rather

inefficient.

2) Calculations: Parallel calculations on distributed data

are syntactically equal with their non-parallel counterparts:

y= A * x;

represents in our library a parallel matrix vector product when

distributed matrix/vectors are used. The dispatching among

operations is entirely performed at compile time.

Internally, the operation above is implemented by the func-

tion template:

template <typename Matrix, typename VectorIn,
typename VectorOut>

void inline dist mat cvec mult(const Matrix& A,
const VectorIn& v, VectorOut& w)

{
dist mat cvec mult handle h=

dist mat cvec mult start(A, v, w);
local(w)= local(A) * local(v);
dist mat cvec mult wait(A, v, w, h);

}

The calculation is split into three parts: the start of the com-

munication, the operations on local blocks, and the completion

with the received remote data. The encircling communicative

parts will be realizable with eight schemes resulting from the

respective choices between:

• Blocking or non-blocking;

• Collective or point-to-point;

• Derived-type-based or packed.

Not all combinations are implemented yet. Our benchmarks

use non-blocking point-to-point communication overlapped

with computations.

D. Migration

To minimize communication by better locality, we perform

a graph partitioning on the matrix’s sparsity graph. The result

is a partition, i.e. a mapping from index to processor

p: I → P .

Subsequently, the processes can be optionally permuted ac-

cording to the topologies

π : P → P .

Both functions can be combined to a topology-aware parti-

tioning

p̂ = π ◦ p: I → P .

Sorting the indices by assigned processors yields a new

block distribution. The migration from old to new distribu-

tion is represented by a block migration object:

block migration migr= parmetis migration(A);
matrix type B(A, migr);

Passing the migration object to a matrix or vector constructor

provides a convenient way for migration (not the only one).

The entire partitioning, topology mapping, and migration can

be realized with a single statement like:

matrix type B(A, parmetis migration(A));

However, since multiple objects usually need to be migrated

consistently, it is better to keep the migration object as in

the first listing. This object can also be used for migrating

back results to the original distribution (as needed for post-

processing):
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Fig. 3. Domain distribution and topology Mapping of an Example Matrix (F1) running with eight processes on four dual-core compute nodes.

vector type x2(x, reverse(migr));

Figure 3 illustrates the impact of partitioning and topology

mapping on a sample matrix (F1 from Table I). First, the

matrix was read from file and stored block-wise with the rows

in the same order as in the file, see Figure 3(a). Although the

details are difficult to read in this representation it is obvious

that the sub-problems are almost completely connected. In a

matrix vector product 715,655 entries must be sent, that is all

vector entries are sent twice in average. The longest message

already contains 38,696 entries.

Repartitioning the matrix—Figure 3(b)—i.e. permuting the

rows for better locality reduces the connectivity of the sub-

domains, the overall message size to 13,310 entries and

the longest message to 2,970 entries. Let us assume that

the computations are performed on four dual-core nodes.

If the sub-domains are assigned in order to the cores as

depicted in Figure 3(c), the longest message would contain

5,800 entries and the entire communication is between nodes

without any intra-node communication, i.e. the total message

size is still 13,310. Mapping the sub-problems according to

their communication topology—as in Figure 3(d)—reduces the

communication load to 4,455 entries.

E. Complete Solution

The following example contains a complete application that

sets up a linear system, computes a partitioning including

topology mapping, migrates the data, solves the linear system

and migrates the data back:

#include <iostream>

#include <boost/numeric/mtl/mtl.hpp>
#include <boost/numeric/itl/itl.hpp>

int main(int argc, char* argv[])
{

using namespace mtl;
typedef mtl::vector::distributed<dense vector<double> >

vector type;
typedef matrix::distributed<compressed2D<double> >

matrix type;

par::environment env(argc, argv);

// Set up linear system
matrix type A(io::matrix market(”heat transfer.mtx”));

vector type b(num rows(A), 1.0);

// Migrate data
par::block migration migration= parmetis migration(A);
vector type b2(b, migration), x2(resource(b2));
matrix type A2(A, migration);

// Solve A2 * x2 = b2
itl::pc::ilu 0<matrix type, float> P(A2);
itl::cyclic iteration<double> iter(b2, 500, 1.e−8, 0.0, 100);
bicgstab 2(A2, x2, b2, P, iter);

// Migrate back and post−process
vector type x(x2, reverse(migration));
par::sout << ”solution is ” << x << std::endl;
return 0;

}

The preconditioner ILU0 (incomplete LU factorization without

fill-in) is specialized for distributed matrices and performs a

block-wise ILU on each local matrix. By default the values

of the precoditioners have the same type as those of the

preconditioned matrix. In our example, we explicitly used

single-precision as this allows for faster calculation without

significant loss of precision or convergence.

Although such comparisons are problematic, realizing the

same task with PETSc takes according to experts several

100 lines of code in order to achieve good performance.

Performing the preconditioner with a lower precision is not

possible at all. Figure 4 shows for a 2D Poisson equation

that our conjugate gradient (CG) solver performed slightly

better than PETSc for realistically large examples. In this

weak scaling the tests (from top down) contain about 1, 1/2,

and 1/4 millions unknowns per core, more details and other

benchmarks in [3].

F. Domain-specific Embedded Language

The manner how to define a DSEL in C++ is driven by

the fact that the language provides about 30 user-definable

operators but allows at the same time for the introduction

of an infinite number of types. Thus, in order to provide a

broad functionality with a compact notation, the user-definable

operators must be appropriately overloaded for multiple types.

For instance, the MTL4 contains a sub-matrix function:

sub matrix(A, i, j, k, l)
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Unless programmers work frequently with this function, they

will need to look up the documentation whether “j” is the last

row or the first column of the sub-matrix. One might even

wonder whether the matrix is the first or the last argument

of the function. In contrast to it, by introducing a right-open

index range the expression:

A[irange(i, j)][irange(k, l)]

is understandable intuitively. Although we are not able to

provide the same notation as in Matlab, we can still establish

a similar interface by defining operators type-dependently.

The bracket operator for matrices is currently overloaded

five-fold:

A[int][int] ⇒ matrix element;

A[irange][irange] ⇒ sub-matrix;

A[int][irange] ⇒ row vector;

A[irange][int] ⇒ column vector;

A[iset][iset] ⇒ sub-matrix;

iset is a set of indices and the sub-matrix resulting from the

last expression may refer to arbitrary rows and columns of the

referred matrix.

Using this notation, the implementation of an LU factoriza-

tion is compact and very readable:

for (std::size t k= 0; k < num rows(LU)−1; k++) {
if(abs(LU[k][k]) <= eps) throw matrix singular();
irange r(k+1, imax); // Interval [k+1, n−1]
LU[r][k]/= LU[k][k];
LU[r][r]−= LU[r][k] * LU[k][r];

}

A notation particularly introduced for performance tuning

is:

expr1 || expr2;

The combined expression declares two operations that are

usually calculated sequentially to be performed in parallel.

In parallel does not mean here that two threads are started

but the evaluation is fused. For example, the following two

calculations are calculated consecutively in an iterative solver:

r−= alpha * q;
rho= dot(r, r);

Merging this two operations into one single loop can provide

perceivable acceleration due to better locality. We established

a domain-specific notation for such fusion to be realized by

meta-programming:

(lazy(r) −= alpha * q) || (lazy(rho) = lazy unary dot(r));

Whether two operations can be merged depends on the ar-

gument types, e.g. column-major matrices are not suitable.

The meta-programming methods in MTL4 ascertain that only

fusible expressions are merged. A detailed description with

benchmark results will be published in the near future.

III. TOPOLOGY MAPPING

We use and adapt the open-source mapping library,

LibTopoMap [19], that incorporates all published algorithms

and provides topology mapping for arbitrary multicore archi-

tectures and topologies. LibTopoMap offers mappings based

on greedy, recursive bisection, graph similarity, and sim-

ulated annealing techniques. It also integrates support for

SCOTCH [16] static mapping.

We compare LibTopoMap’s greedy and reverse Cuthill

McKee (RCM) mapping strategies. Further, we apply threshold

accepting (TA) to improve the solution further. However, TA

can take prohibitively long at larger scales, cf. [19]. We

minimize the maximum congestion per link in order to achieve

the best runtime.

A. Example Matrices

In order to allow everybody reproducing our results we

switch here from the introduction example to publicly ac-

cessible matrices. We chose three real-world matrices from

the University of Florida Sparse Matrix Collection [34]: F1,

Ga41As41H72, and ldoor. All matrices represent unstructured

meshes. F1 and ldoor are symmetric stiffness matrices—

approximating elasticities in structural mechanics—of real-

world objects: F1 models an Audi engine crankshaft and

ldoor a van’s door. Ga41As41H72 belongs to a symmetric

eigenvalue problem in density functional theory. Table I lists

sizes and numbers of non-zero (nnz) entries for each matrix.

Matrix Name Rows/Columns NNZ (sparsity)

F1 343,791 26,837,113 (0.227‰)

ldoor 952,203 42,493,817 (0.047‰)

Ga41As41H72 268,096 18,488,476 (0.257‰)

TABLE I
MATRIX DIMENSIONS AND NUMBER OF NON-ZERO (NNZ) ENTRIES.

B. Network Topologies

We use two different test systems, Deimos and Odin.

Deimos consists of 729 quad-core nodes connected with three

288 port InfiniBand switches as shown in Figure 5(a). The

network has a rather low bisection bandwidth due to its unique

topology. The batch system on Deimos allocates cores and not

necessarily full nodes, thus, large jobs are usually scattered

across different nodes on the entire machine.



(a) Deimos with 729 nodes. (b) Odin with 128 nodes.
Fig. 5. Visualization of network topologies used in the experiments.
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Odin consists of 128 quad-core machines connected with

InfiniBand. The network is a two-stage folded Clos network

with full bisection width. The physical topology is shown in

Figure 5(b). However, the effective bisection bandwidth is only

80% due to static routing [35]. The batch system guarantees

the allocation of complete nodes. One important fact is that the

injection bandwidth in Odin is limited by a slow PCI-X link

to ≈ 500 MiB/s which is only half of the link bandwidth. The

resulting higher bandwidth in the network limits the effects of

congestion significantly.

C. Mapping Results

We first discuss the strategies’ theoretical improvements of

maximum congestion (from here on simply “congestion”) and

average dilation (from here on simply “dilation”) on different

process and network topologies. Congestion represents the

maximum number of data items that have to traverse a single

link in the communication network and can thus be seen

as a measure of performance. Dilation measures the average

distance that a message has to travel in the network and is

thus an indicator of power consumption. The optimization goal

can be chosen on a case-by-case basis. We saw very similar

optimization potential and results for the different matrices,

however, heavily depend on the underlying topology. Thus,

we discuss the matrix F1 as a representative example for all

matrices.

Figure 6 compares the congestion of the different mapping

strategies. The leftmost bar indicates the naive (identity)

mapping (cf. Figure 3(c)) followed by greedy mapping without

and with TA, and the RCM mappings without and with TA,

respectively. Each cluster of bars indicates a specific allocation

strategy, e.g., “30/2” means the job run on 30 nodes with 2
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Fig. 7. Deimos F1 Congestion.

ppn, that is 60 MPI processes. We see that while our greedy

strategy reduces the congestion significantly, RCM performs

much better. TA results in small improvement of all mappings.

We could not perform RCM mapping on Deimos because

the allocation policy does not guarantee the required “sym-

metric allocation”, where each physical node has exactly the

same number of processes (cf. [19]). Thus, Figure 7 shows

only greedy results that still perform well.

D. Benchmarks

Now we present benchmark results for sparse unstructured

matrix-vector multiplications (100 times) with a naive (round-

robin) distribution (cf. Figure 3(a)), simple graph partitioning

(cf. Figures 3(b) and 3(c)), and topology mapping of the

partitioned graph (cf. Figure 3(d)).

We found that the measured performance benefit of topology

mapping on Odin was less than 5% even though the simulation

(cf. Figure 6) suggests a 2x reduction in congestion. The link

bandwidth on Odin’s InfiniBand is nearly twice as high as the

injection bandwidth of each node and a two-fold improvement

congestion is not measurable. We show an example measure-

ment on Odin in Figure 8(a).

Figures 8(b) and 8(c) show the benchmark results on

Deimos which, unlike Odin, has full injection bandwidth. We

see improvements of up to 75% from partitioning the input and

an additional 26% after applying greedy topology mapping.

More matrices are examined in [19].

IV. DISCUSSION AND CONCLUSIONS

We show how to utilize generic programming techniques to

design and implement an efficient and productive linear alge-

bra library using advanced concepts such as graph partitioning

and topology mapping for unstructured matrices. Our generic

library design using operator overload provides essentially a

domain-specific language for linear algebra computations.

We demonstrate that an intuitive easy-to-use interface does

not conflict with the goal of achieving highest performance

on parallel computers. In the contrary, we show that the

full potential of partitioning and advanced topology mapping

can be provided “under the hood”. Our library follows the

guidelines for good MPI library design [36] and completely

hides all communication and data-distribution functions from

the user. Thus, it enables highest performance portability

across a wide variety of architectures and arbitrary network

topologies.
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Fig. 8. Benchmark Results for different numbers of cores. “naive” is a simple round-robin distribution (cf. Figure 3(a)), “partition” is using the migration
technique for graph partitioning (cf. Figures 3(b) and 3(c)), and “part+topomap” uses the topology-aware partitioning (cf. Figure 3(d).

Our automated and transparent partitioning and topology

mapping results show a significant speedup due to partitioning

and load-balancing (up to 75%) as well as due to topology

mapping (up to 26%). We showed that LibTopoMap can han-

dle communicators up to 1,024 processes with low overheads

in a realistic application run.

Facing larger systems with deeper hierarchies and more

heterogeneity, good topology mapping will be paramount. The

algorithms will certainly evolve to cope with the increasing

complexity of future architectures.
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