
Model-Driven, Performance-Centric HPC

Software and System Design and Optimization

Torsten Hoefler

With contributions from: William Gropp, William Kramer, Marc Snir

Scientific talk at Jülich Supercomputing Center

April 8th Jülich, Germany

Imagine …

• … you’re planning to construct a multi-million

Dollar Supercomputer …

• … that consumes as much energy as a small

[european] town …

• … to solve computational problems at an

international scale and advance science to the

next level …

• … with “hero-runs” of [insert verb here] scientific

applications that cost $10k and more per run …

2T. Hoefler: Model-Driven, Performance-Centric HPC Software and System Design and Optimization

… and all you have (now) is …

• … then you better plan ahead!

3T. Hoefler: Model-Driven, Performance-Centric HPC Software and System Design and Optimization

Imagine …

• … you’re designing a hardware to achieve 1018

operations per second …

• … to run at least some number of scientific

applications at scale …

• … and everybody agrees that the necessary

tradeoffs make it nearly impossible …

• ... where pretty much everything seems completely

flexible (accelerators, topology, etc.) …

4T. Hoefler: Model-Driven, Performance-Centric HPC Software and System Design and Optimization

… and all you have (now) is …

• … how do you determine what the system needs

to perform at the desired rate?

• … how do you find the best system design (CPU

architecture and interconnection topology)?

5T. Hoefler: Model-Driven, Performance-Centric HPC Software and System Design and Optimization

State of the Art in HPC – A General Rant 

• Of course, nobody planned ahead 

• Performance debugging is purely empirical

• Instrument code, run, gather data, reason about

data, fix code, lather, rinse, repeat

• Tool support is evolving rapidly though!

• Automatically find bottlenecks and problems

• Usually done as black box! (no algorithm knowledge)

• Large codes are developed without a clear process

• Missing development cycle leads to inefficiencies

6T. Hoefler: Model-Driven, Performance-Centric HPC Software and System Design and Optimization

Performance Modeling: State of The Art!

• Performance Modeling (PM) is done ad-hoc to

reach specific goals (e.g., optimization, projection)

• But only for a small set of applications (the manual

effort is high due to missing tool support)

• Payoff of modeling is often very high!

• Led to the “discovery” of OS noise [SC03]

• Optimized communication of a highly-tuned

(assembly!) QCD code [MILC10]  >15% speedup!

• Numerous other examples in the literature

7

[SC03]: Petrini et al. “The Case of Missing Supercomputer Performance …”

[MILC10]: Hoefler, Gottlieb: “Parallel Zero-Copy Algorithms for Fast Fourier Transform …”

Performance Optimization: State of the Art!

• Two major “modes”:

1. Tune until performance is sufficient for my needs

2. Tune until performance is within X% of optimum

• Major problem: what is the optimum?

• Sometimes very simple (e.g., Flop/s for HPL, DGEMM)

• Most often not! (e.g., graph computations [HiPC’10])

• Supercomputers can be very expensive!

• 10% speedup on Blue Waters can save millions $$$

• Method (2) is generally preferable!

8[HiPC’10]: Edmonds, Hoefler et al.: “A space-efficient parallel algorithm for computing Betweenness Centrality …

Ok, but what is this “Performance” about?

• Is it Flop/s?

• Merriam Webster “flop: to fail completely”

• HPCC: MiB/s? GUPS? FFT-rate?

• Yes, but more complex

• Many (in)dependent features and metrics

• network: bandwidth, latency, injection rate, …

• memory and I/O: bandwidth, latency, random access rate, …

• CPU: latency (pipeline depth), # execution units, clock speed, …

• Our very generic definition:

• Machine model spans a vector space (feasible region)

• Each application sits at a point in the vector space!

9T. Hoefler: Model-Driven, Performance-Centric HPC Software and System Design and Optimization

Example: Memory Subsystem (3 dimensions)

• Each application has particular coordinates

10T. Hoefler: Model-Driven, Performance-Centric HPC Software and System Design and Optimization

L
a

te
n

c
y

Injection Rate

some graph or

“informatics”

applications regular mesh

computations

highly irregular

mesh computations

• Application A

• Application B

• Machine Model spans n-dimensional space

• Elements are rates or frequencies (“operations per second”)

• Determined from documentation or microbenchmarks

• Netgauge’s memory and network tests [HPCC’07,PMEO’07]

• Application Model defines requirements

• Determined analytically or with performance counters

• Lower bound proofs can be very helpful here!

• e.g., number of floating point operations, I/O complexity

• Time to solution (“performance”):

Our Practical and Simple Formalization

11

[HPCC’07]: Hoefler et al.: “Netgauge: A Network Performance Measurement Framework”

[PMEO'07]: Hoefler et al: "Low-Overhead LogGP Parameter Assessment for Modern Interconnection Networks"

Should Parameter X be Included or Not?

• The space is rather big (e.g., ISA instruction types!)

• Apply Occam’s Razor wherever possible!
• Einstein: “Make everything as simple as possible, but not simpler.”

• Generate the simplest model for our purpose!
• Not possible if not well understood, e.g., jitter [LSAP’10,SC10]

12

[SC10]: Hoefler et al.: "Characterizing the Influence of System Noise … by Simulation" (Best Paper)

[LSAP'10]: Hoefler et al.: "LogGOPSim – Simulating … Applications in the LogGOPS Model" (Best Paper)

A Pragmatic Example: The Roofline Model

• Only considers memory bandwidth and floating point rate

but is very useful to guide optimizations! [Roofline]

• Application model is “Operational Intensity” (Flops/Byte)

13[Roofline] S. Williams et al.: “Roofline: An Insightful Visual Performance Model …”

The Roofline Model: Continued

• If an application reaches the roof: good!

• If not …

• … optimize (vectorize, unroll loops, prefetch, …)

• … or add more parameters!

• e.g., graph computations, integer computations

• The roofline model is a special case in the “multi-

dimensional performance space”

• Picks two most important dimensions

• Can be extended if needed!

14[Roofline] S. Williams et al.: “Roofline: An Insightful Visual Performance Model …”

Caution: Resource Sharing and Parallelism

• Some dimensions might be “shared”

• e.g., SMT threads share ALUs, cores share

memory controllers, …

• Needs to be considered when dealing with

parallelism (not just simply multiply performance)

• Under investigation right now, relatively complex

on POWER7

15T. Hoefler: Model-Driven, Performance-Centric HPC Software and System Design and Optimization

How to Apply this to Real Applications?

1. Performance-centric software development

• Begin with a model and stick to it!

• Preferred strategy, requires re-design

2. Analyze and model legacy applications

• Use performance analysis tools to gather data

• Form hypothesis (model), test hypothesis (fit data)

16T. Hoefler: Model-Driven, Performance-Centric HPC Software and System Design and Optimization

Performance-Centric Software Development

• Introduce Performance Modeling to all steps of the

HPC Software Development Cycle:

• Analysis (pick method, PM often exists [PPoPP’10])

• Design (identify modules, re-use, pick algorithms)

• Implementation (code in C/C++/Fortran - annotations)

• Testing (correctness and performance! [HPCNano’06])

• Maintenance (port to new systems, tune, etc.)

17

[HPCNano’06]: Hoefler et al.: “Parallel scaling of Teter's minimization for Ab Initio calculations”

[PPoPP'10]: Hoefler et al.: "Scalable Communication Protocols for Dynamic Sparse Data Exchange"

Tool 1: Performance Modeling Assertions

• Idea: The programmer adds model annotations to

the source-code, the compiler injects code to:

• Parameterize performance models

• Detect anomalies during execution

• Monitor and record/trace performance succinctly

• Has been explored by Alam and Vetter [MA’07]

• Initial assertions and potential has been

demonstrated!

18[MA’07] Vetter, Alam: “Modeling Assertions: Symbolic Model Representation of Application Performance

Tool 2: Middleware Performance Models

• Algorithm choice can be complex

• Especially with many unknowns, e.g.,

• performance difference between reduce and allreduce?)

• scaling of broadcast, it’s not O(S*log2(P))

• Detailed models can guide early stages of software

design but such modeling is hard

• See proposed MPI models for BG/P in [EuroMPI’10]

• Led to some surprises!

19[EuroMPI’10]: Hoefler et al.: “Toward Performance Models of MPI Implementations …”

Example: Current Point-to-Point Models

• Asymptotic (trivial):

• Latency-bandwidth models:

• Need to consider different protocol ranges

• Exact model for BG/P:

• Used Netgauge/logp benchmark

• Three ranges: small, eager, rendezvous

20[EuroMPI’10]: Hoefler et al.: “Toward Performance Models of MPI Implementations …”

Example: Point-to-Point Model Accuracy

• Looks good, but there are problems!

21

<5% error

[EuroMPI’10]: Hoefler et al.: “Toward Performance Models of MPI Implementations …”

Example: The not-so-ideal (but realistic) Case I

• Strided data-access (p2p model assumed stride-1)

• Benchmark: Netgauge: one_one_dtype, 16 kiB MPI_CHAR data

22

Stride 1!

DDT overhead

Cache

[EuroMPI’10]: Hoefler et al.: “Toward Performance Models of MPI Implementations …”

Example: The not-so-ideal (but realistic) Case II

• Matching queue overheads (very common)

• R requests:
• Benchmark: Netgauge/one_one_req_queue

23

Latency factor of 35!

[EuroMPI’10]: Hoefler et al.: “Toward Performance Models of MPI Implementations …”

Example: The not-so-ideal (but realistic) Case III

• Congestion is often ignored

• Very hard to determine but worst-case can be

calculated (assuming rectangular 3D Torus on BG/P)

• effective Bisection Bandwidth

• Average bandwidth of a random perfect matching

• Upper bound is congestion-less (see p2p model)

• Lower bound assumes worst-case mapping

• Assume ideal adaptive routing (BG/P)

• Congestion of per link

24[EuroMPI’10]: Hoefler et al.: “Toward Performance Models of MPI Implementations …”

Example: Worst-case vs. Average-case Congestion

• Average seems to converge to worst-case (large P)
• Benchmark: Netgauge/ebb

25

285 MB/s (P=64)

17.9 MB/s (P=32k)

375 MB/s (P=2)

[EuroMPI’10]: Hoefler et al.: “Toward Performance Models of MPI Implementations …”

Tool 3: Modeling for Legacy Applications

• Current programming models don’t support

performance modeling well

• Performance analysis tools to gather data

• Costly manual analysis

• Automatic modeling tools?

• Detection of regions

• changes in IPC

• Example: MILC, detect

five “critical regions”, same

result as manual modeling

26T. Hoefler: Model-Driven, Performance-Centric HPC Software and System Design and Optimization

data collected with NCSA perfsuite/papi

Performance-centric Software Development

• Performance models allow to explain application

performance

• Find problems, not a solutions

• Mostly a scientific exercise to understand

• Integrate modeling and the programming model

to allow performance-centric design

• Understand and avoid problems by design

• Structured approach to “Performance Engineering”

27T. Hoefler: Model-Driven, Performance-Centric HPC Software and System Design and Optimization

Tool 1: Performance-transparent Abstractions

• Abstractions allow for performance portability and

ease of programming!

• How to choose an abstraction? What to expect?

• Determine application requirements!  PM

• e.g., nonblocking collectives, sparse collectives

• Trade-off between performance, portability, and

programmability is most important!

• Performance must be first class citizen in HPC

programming models (yet it isn’t!)!

28

[PPL]: Balaji, Hoefler et al.: "MPI on Millions of Cores", [SciDAC'10] "MPI at Exascale“

[SC07]: Hoefler et al.: "Implementation and Performance Analysis of Non-Blocking Collective Operations for MPI“

[PPoPP’11,ISC’11]: Willcock, Hoefler et all. “Active Pebbles: Parallel Programming for Data-Driven Applications”

Tool 2: Model-driven Topology Mapping

• Can optimize performance significantly, nearly no

impact on programmability (MPI-2.2 [CCPE])!

• Computing a mapping is expensive!

• Scalable algorithms in [ICS’11]

29

[ICS’11]: Hoefler and Snir: Generic Topology Mapping Strategies for Large-Scale Parallel Architectures

[CCPE]: Hoefler et al.: "The Scalable Process Topology Interface of MPI 2.2"

80% reduction
18% reduction

PERCS Network - simulated BG/P Network - measured

Tool 3 (Idea): Power-aware programming?

• Provide models and abstractions for power usage

• Mostly data-movement centric

• Flops-metric is not predictive for energy consumption

• But: performance and energy consumption

correlate (finish faster = use less power)

• detailed analysis

for networks in

[CiSE’10]

30

[CiSE’10]: Hoefler: “Software and Hardware Techniques for Power-Efficient HPC Networking”

[CAC’09]: Hoefler et al.: “A Power-Aware, Application-Based, Performance Study Of … Networks”

RAxML

Tool 4: Model-guided System Design

• Systems and Applications need to evolve in parallel

• Applications need to be ready when a machine goes online!

• Co-design is attractive, models as “communication medium”

• Application-specific interconnection optimization:

• Optimized general routing [IPDPS’11]

• Application-specific routing

• Novel topologies [HotI’10]

• Reconfigurable architectures or

topologies

31
[IPDPS'11]: Domke, Hoefler, Nagel: "Deadlock-Free Oblivious Routing for Arbitrary Topologies“

[HotI'10]: Arimilli, Hoefler et al.: "The PERCS High-Performance Interconnect"

Summarizing the Big Picture

• Develop performance modeling as a science discipline

• Observation, measurement, hypothesis, test

• Enables us to explain application performance

• Foster wide adoption of modeling techniques

• Establish methodology, provide tool support

• Static applications work, many open problems though

• Transform results into an engineering discipline

• Not only explain performance but indicate how to

program or tune code for best performance

32T. Hoefler: Model-Driven, Performance-Centric HPC Software and System Design and Optimization

References to Previous Work

[IPDPS'11]: Domke, Hoefler, Nagel: "Deadlock-Free Oblivious Routing for Arbitrary Topologies"

[PPL]: Balaji, Hoefler et al.: "MPI on Millions of Cores", [SciDAC'10] "MPI at Exascale"

[SIAM-CSE'10]: Gropp, Hoefler, Snir: "Performance Modeling for Systematic Performance Tuning"

[PROPER'10]: Hoefler: "Bridging Performance Analysis Tools and Analytic Performance Modeling"

[SC10]: Hoefler et al.: "Characterizing the Influence of System Noise … by Simulation" (Best Paper)

[CCPE]: Hoefler et al.: "The Scalable Process Topology Interface of MPI 2.2"

[HotI'10]: Arimilli, Hoefler et al.: "The PERCS High-Performance Interconnect"

[LSAP'10]: Hoefler et al.: "LogGOPSim – Simulating … Apps. in the LogGOPS Model" (Best Paper)

[PPoPP'10]: Hoefler et al.: "Scalable Communication … for Dynamic Sparse Data Exchange"

[PMEO'07]: Hoefler et al: "Low-Overhead LogGP Parameter Assessment …"

[HPCC'07]: Hoefler et al: "Netgauge: A Network Performance Measurement Framework"

[SC07]: Hoefler et al.: "Implementation and Performance Analysis of Non-Blocking Collective

Operations for MPI“

[HPCNano’06]: Hoefler et al.: “Parallel scaling of Teter's minimization for Ab Initio calculations”

33T. Hoefler: Model-Driven, Performance-Centric HPC Software and System Design and Optimization

