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ABSTRACT

Petascale parallel computers with more than a million processing cores are expected to
be available in a couple of years. Although MPI is the dominant programming inter-
face today for large-scale systems that at the highest end already have close to 300,000
processors, a challenging question to both researchers and users is whether MPI will

scale to processor and core counts in the millions. In this paper, we examine the issue
of scalability of MPI to very large systems. We first examine the MPI specification itself
and discuss areas with scalability concerns and how they can be overcome. We then
investigate issues that an MPI implementation must address in order to be scalable. To

illustrate the issues, we ran a number of simple experiments to measure MPI memory
consumption at scale up to 131,072 processes, or 80%, of the IBM Blue Gene/P system
at Argonne National Laboratory. Based on the results, we identified nonscalable aspects

of the MPI implementation and found ways to tune it to reduce its memory footprint.
We also briefly discuss issues in application scalability to large process counts and fea-
tures of MPI that enable the use of other techniques to alleviate scalability limitations
in applications.
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1. Introduction

We are fast approaching an era where the largest supercomputers in the world will

have more than a million processing cores. For example, the Sequoia machine to

be deployed at Lawrence Livermore National Laboratory in 2012 will have close to

1.6 million cores [1]. The Message-Passing Interface (MPI) [25] is currently the pre-

dominant model for programming large-scale parallel machines, the largest of which

today has close to 300,000 cores (the IBM Blue Gene/P at the Jülich Supercomput-

ing Center). As systems scale to millions of cores, many users and researchers are

concerned whether MPI (and applications written in MPI) will scale to that level.

There are multiple aspects to the scalability issue. First, is the MPI specification

itself scalable, or are there aspects of the interface that may have issues at large

scale? Related to this, is there missing functionality that would enable more scal-

able programming and/or enhance the utilization of large-scale systems? Second,

are typical MPI implementations scalable, and what do implementations need to

address to improve their scalability? Third, are the parallel algorithms that MPI

applications use themselves scalable to millions of cores? We examine these issues

in this paper.

Factors affecting scalability include time and space (memory) consumption. A

nonscalable implementation of an MPI function is an implementation whose run-

ning time or memory consumption per process increases linearly (or worse) with the

number of processes, all other things being equal. A nonscalable specification of an

MPI function is one that forces any implementation of the construct to consume

time or memory that grows linearly (or worse) with the number of processes. For

example, if the time taken by MPI Comm spawn increases linearly with the num-

ber of processes being spawned, it indicates a nonscalable implementation of the

function (or a scalability problem with the interface). Similarly, if the memory con-

sumption of MPI Comm dup increases linearly with the number of processes, it is

not scalable. An MPI function such as MPI Alltoallw that takes several array argu-

ments of size proportional to the total number of processes is a nonscalable MPI

construct, since no implementation can circumvent this requirement. Such examples

of nonscalability need to be identified and fixed, both in the MPI specification and

in implementations. The goal should be to design and use constructs whose time

and space requirements scale sublinearly with the number of processes.

2. Scalability Issues in the MPI Specification

Although the developers of MPI did not envision million-core systems when MPI

was first designed, MPI was nonetheless designed with scalability in mind. For

example, a design goal was to enable implementations of MPI that maintain very

little global state per process and require very little memory management within

MPI (all memory for communication can be in user space) [14]. MPI also defines

many operations as collective (called by a group of processes), which enables them

to be implemented scalably and efficiently. Nonetheless, examination of the MPI
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specification reveals that some parts of it may have issues at large scale, particularly

with respect to memory consumption.

For the discussion below, we use p to denote the number of processes in a com-

municator.

2.1. Irregular collectives

Many collectives in MPI have an irregular (or vector, “v”) version that allows users

to transfer unequal amounts of data among processes. These collectives take one

or more arguments that are arrays of size p, for example, the arrays of counts and

displacements in MPI Gatherv and MPI Scatterv. An extreme case is MPI Alltoallw,

which takes six such arrays as arguments: counts, displacements, and datatypes for

both send and receive buffers. Using such parameters is nonscalable: on a million

processes, each array will consume 4 MiB on each process (assuming 32-bit integers).

Furthermore, any MPI implementation is forced to scan most of these arrays to

determine which data have to be communicated.

Irregular collectives are often used in applications because MPI lacks other ways

to express communication within a sparse subset of processes in a communica-

tor. For example, in applications that require nearest-neighbor communication in a

Cartesian grid, each process may perform an MPI Alltoallv on MPI COMM WORLD and

specify 0 bytes for all processes other than its neighbors.a The PETSc library [35],

for example, uses MPI Alltoallv in this manner. While most MPI implementations

optimize this pattern by communicating only with processes that have nonzero data,

the MPI implementation must still scan through the entire array of data sizes to

know which processes have nonzero data, and the user must allocate and initialize

this array. On large numbers of processes, the time to read the entire array itself

can be large and increases linearly with system size, even though the number of

neighbors a process communicates with remains fixed. Figure 1 shows this effect on

an IBM Blue Gene/P for calling MPI Alltoallv with zero-byte messages (no actual

communication).

To avoid this problem, some computational libraries, such as PETSc, disable

MPI Alltoallv-based communication by default and instead perform direct point-to-

point communication among nearest neighbors, which may not be as efficient as a

concisely represented collective operation could be. The MPI Forum is discussing

ways to improve this situation in MPI-3 by means of sparse collective operations.

A concrete proposal has been put forth in [19].

aThis communication cannot be done easily by using subcommunicators because each process

may belong to many subcommunicators and the collectives would have to be carefully ordered to
avoid deadlocks. Such a scheme would also serialize much of the communication. Note that these
concerns would be partly alleviated by collectives with nonblocking semantics.
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Fig. 1. Zero-byte Alltoallv time on IBM Blue Gene/P (no actual communication).

2.2. Graph topology

One of the most nonscalable constructs in MPI (memorywise) is the general graph

topology. An MPI program can specify the communication pattern of the applica-

tion as a directed graph, with edges of the graph representing the communication

between processes. This allows the MPI implementation to optimize communica-

tion by appropriate reordering or placement of processes. The problem with the

specification is that it requires the entire communication graph to be supplied on

each process. It therefore requires Ω(p + e) or O(p2) space per process, where e

is the number of edges in the graph, and Ω(p2 + pe) or O(p3) in total (across all

processes). Other limitations of this interface are discussed in [44].

The latest version of the MPI Standard, MPI-2.2 [25], introduces a new graph

topology interface, MPI Dist graph create, which enables a fully distributed specifi-

cation of the communication topology with only O(p+ e) total memory consump-

tion, as further explained in [18]. A scalable implementation, where no single process

needs to store the entire graph at any time, is important at large scale.

2.3. MPI groups and communicators

An essential, but potentially nonscalable, feature of MPI is the functionality for

forming arbitrary subsets of process groups and building communicators. This rich

and general set of operations leads implementations to use explicit enumerations

for the mapping of processes to processors or cores. Such explicit enumerations,

which may be impossible to avoid in the general case, may become an issue at

large scale. Recently, researchers have explored compact representations for process

groups [22, 46], but further work is needed.
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2.4. Fault tolerance

On systems with millions of cores, the probability of failure or unrecoverable error

in some part of the system becomes very high. As a result, greater resilience against

failure is needed from all components of the software stack, from low-level system

software to libraries and applications. The MPI specification already provides some

support to enable users to write programs that are resilient to failure, given ap-

propriate support from the implementation [16]. For example, when a process dies,

instead of aborting the whole job, an implementation can return an error to any

other process that tries to communicate with the failed process. The application

then must decide what to do at that point.

However, more support from the MPI specification is needed for true fault tol-

erance. For example, the current set of error classes and codes needs to be extended

to indicate process failure and other failure modes. Support is needed in areas such

as detecting process failure, agreeing that a process has failed, rebuilding a com-

municator in the event of process failure or allowing it to continue to operate in

a degraded state, and timeouts for certain operations such as the MPI-2 dynamic

process functions. A number of other researchers have studied the issue of fault

tolerance in MPI in greater detail [3, 4, 10, 11, 12, 21]. The MPI Forum is actively

working on adding fault-tolerance capabilities to MPI-3 [27].

Some of the interfaces for detecting and reporting errors in MPI are also

not scalable. Consider the MPI dynamic process routines, MPI Comm spawn and

MPI Comm spawn multiple. When used with the soft info key, these routines pro-

vide a “best effort” attempt to spawn all of the processes, so that if some of the

spawn operations fail, the implementation is allowed to return less than the re-

quested number of processes. However, the error codes for the attempted spawn

operations are returned in an array of size equal to the number of processes be-

ing spawned. A more scalable approach would be for the MPI implementation to

allocate memory and return an array of size equal to the number of failures. This

approach, however, would be a departure from the current convention in MPI in

which the user allocates such memory. Another possible solution would be to ex-

tend the user-defined error handler mechanism to provide an iterator interface for

accessing error codes, which may reduce the memory required to represent the error

codes at the cost of requiring the application to iterate over each error code.

2.5. Collective communication

The collective communication operations in MPI have blocking semantics, and slight

load imbalances or delays (operating system or network noise) can lead to significant

process synchronization (waiting) times at large scale [34]. Synchronization issues

are worse for collective communications that potentially synchronize entire process

groups. Synchronization delays can often be mitigated by nonblocking communica-

tion operations [17], which relax the synchronization by splitting the operation into

separate start and wait phases. The time window between start and wait can be used



October 27, 2010 16:43

6 Parallel Processing Letters

as a buffer to mitigate the influence of load imbalance or delays. The MPI Forum

originally believed (as of MPI 2.0) that threads could be used to provide efficient

nonblocking collective operations. However, experience with systems that provide

only one thread per core and with systems where the necessary thread safety also

adds a significant performance overhead has caused the MPI Forum to consider the

addition of nonblocking collective operations in MPI-3 [26].

An alternative or orthogonal implementation approach is to design algorithms

for collective operations that are more resilient to nonsynchronized process arrival

patterns. A start in this direction has been outlined in [33].

3. MPI Implementation Scalability

In terms of scalability, MPI implementations must pay attention to two aspects as

the number of processes is increased: memory consumption of any function and the

performance of all collective functions (including functions such as MPI Init and

MPI Comm split).

3.1. Point-to-point communication

In communication patterns where there are unexpected messages (the sends occur

before the matching receives are posted), parts of the messages or control messages

need to be buffered at the receiver side [9]. At large scale, the number of unexpected

messages could become very large, requiring an inordinate amount of memory for

buffering. This problem needs to be dealt with, for example, by using some kind

of flow-control system. A protocol for the Blue Gene systems was designed and

evaluated in [13]. A related problem is the number of connections (p2) needed on

systems that are connection oriented and the need to establish connections in a lazy

(as-needed) manner (also see Section 3.5).

Another potential issue arises when MPI is implemented over RDMA networks.

Implementations often choose to expose a memory region, called mailbox, to remote

processes in order to facilitate fast RDMA puts without synchronization overheads.

A näıve implementation would create one mailbox for each communication peer

and thus occupy O(p) memory per process (depending on lazy connection estab-

lishment). A scalable implementation should limit the number of mailboxes and fall

back to synchronizing communication mechanisms. This can be done by dynami-

cally allocating a fixed pool of mailboxes to communication neighbors (i.e., a cache

of mailboxes).

3.2. Process mappings

MPI communicators usually contain a mapping from MPI process ranks to proces-

sor id’s. This mapping is typically implemented by an array of p entries for direct,

constant-time lookup, possibly with optimizations for particular mappings (iden-

tity mapping, other very regular patterns). A number of other mappings are often
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maintained, for instance, to enable fast navigation within and across the nodes of

an SMP cluster. Although convenient and very fast, this solution, which requires

linear space per process per communicator and quadratic space over the system, is

clearly not scalable.

To alleviate the problem, communicators with the same process-to-processor

mapping can share mappings. For example, if a communicator is dup’ed with

MPI Comm dup, the new communicator can share the mapping with the original

communicator.

A solution to this problem is needed. Simple (and very restricted) solutions

within the context of Open MPI were considered in [6]. A more general ap-

proach could be based on representations of mappings by simple linear functions,

ia+ b mod p. The identity mapping is often all that is needed for MPI COMM WORLD.

Such linear representations, when possible, can be easily detected and cover

many common cases, e.g., subcommunicators that form consecutive segments from

MPI COMM WORLD. A solution in this direction was explored in [46]. Other approaches,

incorporated into the FG-MPI implementation, were described in [22]. However, this

simple mapping covers only a very small fraction of the p! possible communicators,

most of which cannot be represented by such simple means. The regular structure

is often lost when process topologies are remapped (reorder=1 during creation),

and simple schemes will fail to compress the storage. For more general approaches

to compact representations of mappings, see the citations in [46].

3.3. Memory overheads in communicator creation

Creating duplicate communicators can consume a lot of memory at large scale if care

is not taken. In fact, an application (Nek5000) running on the IBM Blue Gene/P

at Argonne National Laboratory initially failed at large scale because it ran out of

memory after less than 60 calls to MPI Comm dup.

To study this issue, we ran experiments on the Argonne Blue Gene/P to measure

the memory overhead involved in creating new communicators. Figure 2 shows the

results of an experiment to determine, for different numbers of processes, how many

communicators can be created by calling MPI Comm dup of MPI COMM WORLD in a

loop until it fails. Note that the maximum number of communicators supported by

the implementation by default is 8,189 (independent of MPI Comm dup) because of

a limit on the number of available context ids.

With the default settings, the number of new communicators that can be created

drops sharply starting at about 2,048 processes. For 128K processes, the number

drops to as low as 264. Although the MPI implementation on the Blue Gene/P does

not duplicate the process-to-processor mapping in MPI Comm dup, it allocates some

memory for optimizing collective communication. For example, it allocates memory

to store “metadata” (such as counts and offsets) needed to optimize MPI Alltoall

and its variants. This memory usage is linear in p. Having such metadata per com-

municator is useful as it allows different threads to perform collective operations on
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Fig. 2. Maximum number of communicators that can be created with MPI Comm dup of
MPI COMM WORLD on IBM BG/P for different sizes of MPI COMM WORLD.

different communicators in parallel. However, the per communicator memory usage

increases with system size. Since the amount of memory per process is very limited

on the Blue Gene/P (512 MiB in virtual node mode), this optimization also limits

the total number of communicators that can be created with MPI Comm dup.

This scalability problem can be avoided in a number of ways. The simplest way

is to use a BG/P environment variable to disable collective optimizations, which

eliminates the extra memory allocation. However, it has the undesirable impact

of decreasing the performance of all collectives. Another approach is to use an

environment variable that delays the allocation of memory until the user actually

calls MPI Alltoall on the communicator. This approach helps only those applications

that do not perform MPI Alltoall.

A third approach that we have implemented is to use a buffer pool that is

sized irrespective of the number of communicators created. Since the buffers exist

solely to permit multiple threads to invoke MPI Alltoall concurrently on different

communicators, it is sufficient to have as many buffers as the maximum number

of threads allowed per node, which on the Blue Gene/P is four. By using a fixed

pool of buffers, the Nek5000 application scaled to the full system size without any

problem.

Figure 3 shows the memory consumption in all these cases after 32 calls to

MPI Comm dup. The fixed buffer pool enables all optimizations for all collectives

and takes up only a small amount of memory.

3.4. Memory overheads in one-sided communication

implementations

One-sided operations readily lend themselves to be implemented on architectures

that offer remote direct memory access (RDMA). In MPI one-sided communication,
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Fig. 3. MPI memory usage on BG/P after 32 calls to MPI Comm dup of MPI COMM WORLD (in
virtual node mode).

since the base of the window might have a different address at each process, an

RDMA put-based method seems to require a table of size Ω(p) at each process.

(Another parameter than can be different on each process and may require a table

of size Ω(p) is the “displacement unit” passed to MPI Win create.)

In order to retain the advantages of RDMA and also achieve constant mem-

ory overhead, an implementation could create a translation cache of fixed size at

each process (similar to a TLB). When a one-sided request cannot be served from

the cache, the library can fetch the required translation from the target process

(e.g., with RDMA-Get) and add it to the local cache. A similar technique could be

used for the displacement units; however, because the expected number of differ-

ent displacement units (architectures) is low, other techniques could be used (e.g.,

compression schemes similar to the ones proposed in Section 3.2).

3.5. Scalability of MPI Init

Since the performance of MPI Init is not usually measured, implementations may

neglect scalability issues in MPI Init. On large numbers of processes, however, a

nonscalable implementation of MPI Init may result in MPI Init itself taking several

minutes. For example, on connection-oriented networks where a process needs to

establish a connection with another process before communication, it is tempting

for an MPI implementation to set up all-to-all connections in MPI Init itself. This

operation involves Ω(p2) amount of work and is inherently nonscalable. A better

approach is to establish no connections in MPI Init and instead establish a connec-

tion when a process needs to communicate with another. This method does make

the first communication more expensive, but only those connections that are really

needed are set up. It also minimizes the number of connections, since applications
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written for scalability are not likely to have communication patterns where all pro-

cesses directly communicate with all other processes.

Figure 4 shows the time taken by MPI Init on a Linux cluster with TCP when

all connections are set up eagerly in MPI Init and when they are set up lazily. The

eager method is clearly not scalable.

3.6. Scalable algorithms for collective communication

Good MPI implementations have collectives with low latency (proportional to the

diameter of the communication network) for small messages and high bandwidth

for large messages. They also carefully adapt to and exploit the capabilities of the

underlying communication system (clustered, single- or many-ported, tree- or mesh-

shaped; special hardware capabilities; etc.). We note that some algorithms that are

attractive in principle may run into problems at large scale. For instance, a broad-

cast implemented as a scatter followed by an allgather [7, 42] may, if implemented

näıvely, give rise to very small blocks in the allgather phase. For example, for a

1 MiB broadcast on one million processes, the allgather phase may involve one-byte

messages. Such problems can be countered by less näıve implementations, which

switch from scatter to a logarithmic broadcast when message blocks go under a

certain threshold; the allgather phase will then consist of multiple simultaneous

allgather operations on disjoint subsets of processes [45]. Algorithms with similar

properties for reduction operations are given in [38].

Topology-specific optimizations are also essential at large scale. Most intercon-

nects have smaller diameters than the size of the network (O(log p) on switched net-

works and O( 3
√
p) on 3D torus networks). A pipelined algorithm that streams data

on a spanning tree embedded in the network topology will provide more scalable per-

formance because the throughput of the collective is determined by
message size
diameter

.
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For example, on the BG/P, the six-color torus algorithm can keep 95% of all the

links busy during an 8 MiB broadcast operation [24].

Global collective acceleration supported by many networks such as Quadrics, In-

finiBand, and Blue Gene may be another solution for collectives on MPI COMM WORLD.

On the Blue Gene/P, for example, the MPI Broadcast, MPI Reduce, MPI Allreduce,

MPI Scatter, MPI Scatterv, and MPI Allgather collectives take advantage of the com-

bine and broadcast features of the tree network [2].

4. Enabling Application Scalability

As emerging hardware architectures make greater degrees of parallelism available,

and even necessary, existing applications are facing the problem of scaling up. The

complexity of solving this problem depends entirely on the basic algorithms used

by the application, and so no completely general approach will do. In this section,

we describe some ways in which features of MPI, perhaps not being used in the

current version of a particular application, can play an important role in enabling

that application to run effectively on more processors. In many cases, it may be

possible to retain most of the existing application code, which is of course desirable

from the application’s point of view.

4.1. All-to-all communication

All-to-all communication is not a scalable communication pattern. Each process has

a unique data item to send to every other process, which leads to limited opportu-

nities for optimization compared with other collectives. This is not a problem with

the MPI specification but is something applications should be aware of and avoid

as far as possible. Avoiding the use of all-to-all may require new algorithms.

4.2. Higher-dimensional decompositions with MPI

One relatively straightforward case occurs when the application consists of calcu-

lations carried out on a rectangular two- or three-dimensional mesh with nearest-

neighbor communication, but the application has parallelized the computation with

a one-dimensional decomposition of the mesh. This approach results in contiguous

buffers for the MPI sends and receives, which simplifies the application. Straight-

forward arithmetic shows that as the number of processors and mesh cells scales

up, it becomes more efficient to use a two- or three-dimensional decomposition of

the mesh. This results in noncontiguous communication buffers for sending and re-

ceiving edge or face data. MPI can help by providing the functions for assembling

MPI datatypes that describe these noncontiguous areas of memory. Modern MPI

implementations then use particularly efficient algorithms for communicating these

areas [40, 47].



October 27, 2010 16:43

12 Parallel Processing Letters

4.3. Enabling topology mapping

The MPI-2.2 standard allows a scalable specification of graph communication

topologies, and the reorder argument allows for optimized mappings to the un-

derlying topology. Especially on sparse topologies like 3D tori, an efficient process-

to-node mapping can be crucial to large-scale application performance. MPI users

should consider specifying their communication topologies and reordering the ap-

plication data as indicated by the MPI library (according to the new ranks in the

distributed graph communicator).

4.4. Use of threads with MPI

In the earlier parts of this paper, we treated “MPI on millions of cores” as if it

meant that the application would have millions of separate MPI ranks. This is un-

likely to be the case in practice. As the amount of memory per core decreases,

applications will be increasingly motivated to use a shared-memory programming

model on multicore nodes, while continuing to use MPI for communication among

address spaces. MPI supports this transition by having clear semantics for inter-

operation with threads, based on four levels of thread safety that can be required

by an application and provided by an MPI implementation. Although no particular

thread system is mentioned in the MPI standard, the MPI specification of levels

of thread safety meshes particularly well with the OpenMP standard. This fea-

ture has made OpenMP+MPI the currently most widely used hybrid programming

method [8, 37, 39]. The MPI Forum is also discussing extensions to MPI in MPI-3

for more efficient support of hybrid programming [28].

4.5. Use of MPI-based libraries to hide complexity

We describe an example of how MPI enables the development of libraries that make

it easier to write applications.

One of the most obviously nonscalable approaches to parallel programming is

the “manager-worker” paradigm [15], which can achieve good load balancing at

the expense of having a single manager process to coordinate the dispensing of

work to the worker processes, collection of results, and perhaps addition of new

work to the work queue. We recently worked with a Monte Carlo application in

nuclear physics [36] that used a variation of this approach and was stuck at about

2,000 processors, with the ambition of going to tens of thousands. MPI helped solve

this problem by enabling the construction of a general-purpose library called ADLB

(Asynchronous Dynamic Load Balancing) [5] that eliminated the single manager as a

bottleneck by providing a simple put/get interface to a distributed work queue. The

application actually became simpler than before because the MPI communication

disappeared; any application process simply puts new work to the queue or retrieves

work from it. The ADLB implementation, however, is relatively complex and for

scalability and efficiency requires a full range of MPI features, including thread
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safety, multiple communicators, derived datatypes, asynchronous sends and receives,

and the “ready” send operation, all of which are hidden from the application. In

this way, MPI supports application scalability while actually simplifying application

code.

4.6. Performance and debugging tools

An important feature of the MPI standard is a clever definition of an interface, called

PMPI, that enables portable profiling of the MPI calls in an application without

modifying (or even having access to) the application’s source code. This feature has

enabled the development of a number of performance and debugging tools, which

immensely help application development, testing, and tuning. Examples of these

tools include TAU [41], Intel Trace Collector and Trace Analyzer [20], Vampir [48],

Paraver [32], mpiP [30], KOJAK [23], Paradyn [31], and TotalView [43]. More work

is needed in this area, however, particularly tools that will scale to jobs running

on millions of cores. The MPI Forum is also addressing this issue by investigating

additional support for tools in MPI-3 [29].

5. Conclusions

We believe MPI is ready for scaling to millions of cores, although issues such as

those discussed in this paper need to be fixed in both the MPI standard and in

MPI implementations. Examples of nonscalable parts of the MPI standard include

irregular collectives and some other functions that take array arguments of size pro-

portional to the total number of processes. There is also a need for investigating

systematic approaches to compact, adaptive representations of process groups. MPI

implementations must pay careful attention to the memory requirements of func-

tions and systematically root out data structures whose size grows linearly with the

number of processes. To obtain scalable performance for collective communication,

MPI implementations may need to become more topology aware or rely on global

collective acceleration support. MPI also provides other features, such as support

for building complex libraries and clear semantics for interoperation with threads,

that enable applications to use other techniques to scale when limited by memory

or data-size constraints.
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[46] J. L. Träff. Compact and efficient implementation of the MPI group operations. In
Recent Advances in Message Passing Interface. 17th European MPI Users’ Group
Meeting, volume 6305 of Lecture Notes in Computer Science, pages 170–178. Springer-
Verlag, 2010.
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