
Naos: Serialization-free RDMA networking in Java

Konstantin Taranov1, Rodrigo Bruno2†, Gustavo Alonso1, and Torsten Hoefler1

1Department of Computer Science, ETH Zurich 2INESC-ID / Técnico, ULisboa

Abstract
Managed languages such as Java and Scala do not allow

developers to directly access heap objects. As a result, to send
on-heap data over the network, it has to be explicitly converted
to byte streams before sending and converted back to objects
after receiving. The technique, also known as object serial-
ization/deserialization, is an expensive procedure limiting the
performance of JVM-based distributed systems as it induces
additional memory copies and requires data transformation
resulting in high CPU and memory bandwidth consumption.
This paper presents Naos, a JVM-based technique bypassing
heap serialization boundaries that allows objects to be directly
sent from a local heap to a remote one with minimal CPU in-
volvement and over RDMA networks. As Naos eliminates the
need to copy and transform objects, and enables asynchronous
communication, it offers significant speedups compared to
state-of-the-art serialization libraries. Naos exposes a simple
high level API hiding the complexity of the RDMA protocol
that transparently allows JVM-based systems to take advan-
tage of offloaded RDMA networking.

1 Introduction

Managed programming languages, such as Java and Scala,
are a common vehicle for developing distributed platforms
such as Spark [36], Flink [6], or Zookeeper [11]. However, the
high level abstractions available in managed languages often
cause significant performance overheads. In particular, to ex-
change data over the network, Java applications are currently
forced to transform structured data via serialization, causing
a high CPU overhead and requiring copying the data multiple
times. While less of an issue in single-node applications, the
overhead is substantial in distributed settings, especially in
big data applications. Serialization already accounts for 6%
of total CPU cycles at Google datacenters [15].

Data transfer with object serialization/deserialization
(OSD) is a complex process involving five steps: graph

†This author was at ETH Zurich during this project.

1 Gbit/s

10 Gbit/s

100 Gbit/s

Serialization De-serialization

0.176 0.236 0.286 0.266

0.244 0.314 0.05 0.356

0.250 0.328 0.05 0.370

Data transformation Graph traversal Transmission Data traversal Object construction
Network

Normalized Time breakdown

Figure 1: Impact of network bandwidth on OSD time.

traversal to identify all objects that should be serialized;
data transformation to convert the objects into a byte stream
(network-friendly format); transmission to send the serial-
ized data over the network; data traversal at the receiver
to decode the received data; and object construction that
involves allocating memory and object re-initialization.

To illustrate the CPU overhead caused by OSD, we bench-
marked the Kryo [26] serializer and measured its CPU utiliza-
tion while sending objects over different networks. Figure 1
shows the fraction of time spent on each OSD step for the
transfer of an array of 1.28M objects, all of the same exact
type. Each object has two fields, each encapsulating a primi-
tive type. Results show that the time spent in OSD increases as
networks get faster. For a 10 Gbit/s network, it takes less than
3% of the time to send data over the network, but it takes more
than 31%/35% of the time in data transformation/object con-
struction. This discrepancy is even more evident in 100 Gbit/s
networks in which the network time drops to less than 0.01%
and the time spent on the CPU performing OSD accounts for
almost 100% of the transfer time. While networks are getting
faster, the pressure is moving away from the network and into
the CPU (and memory bandwidth), further aggravating the
already well-known CPU-bottleneck problems encountered
in distributed applications [22, 32]. Furthermore, existing dis-
tributed platforms that heavily rely on OSD are not able to
take advantage of faster networks such as RDMA.

With the widespread use of Java in large scale data pro-
cessing and the increased availability of RDMA, it is time to
rethink current OSD techniques so that part of the load of ob-
ject shifts from the CPU back to the network. In this paper, we
aim to develop native runtime support for serialization-free

Sender with Kryo
1: buffer = ByteBuffer.allocate(512);
2: person = new Person(18, "Mike");
3: kryo = new Kryo();
4: kryo.register(Person.class);
5: out = new Output(buffer);
6: kryo.writeObject(out, person);
7: connection.write(buffer)

Sender with Naos
1: person = new Person(18,"Mike");
2: connection.writeObject(person);

Data format

"Mark"18"app.Person"

"Mark"418header ref header

4

p = new Person(18, "Mark"); new char[](4, {'M','a','r','k'});

"char[]"

User
code
JVM
heap

Java

Kryo +
register

"Mark"418Naos

"Mark"181 42

headerrefheader

Receiver with Kryo
1: buffer = ByteBuffer.allocate(512);
2: connection.read(buffer);
3: kryo = new Kryo();
4: kryo.register(Person.class);
5: in = new Input(buffer);
6: obj = kryo.readObject(in,Person.class);
7: person = (Person)obj;

Receiver with Naos
1: object = connection.readObject();
2: person = (Person)object;

Figure 2: Serialization, Data format, Deserialization for Kryo and Naos

networking that avoids superfluous memory copies and data
transformation by sending objects directly from the source
heap into the remote heap. Sending and receiving data with-
out data marshalling enables the use of zero-copy RDMA
networking, bypassing not only serialization but the need to
copy data. Such a design significantly reduces the pressure on
the CPU at the cost of higher data volumes to be transferred,
since objects are sent in their uncompressed memory format.

To test and evaluate these ideas, we have developed Naos
(Naos stands for Not Another Object Serializer), a library and
runtime plugin for OpenJDK 11 HotSpot JVM that allows
objects in the source heap to be directly written into a remote
heap, avoiding data transformations and excessive data copies.
Naos is designed to accelerate object transfers in distributed
applications by taking advantage of RDMA communication
(although it also supports conventional TCP sockets).

Naos allows applications to directly send objects without
employing serialization libraries. Its API requires no type reg-
istration nor serialization snippets, guaranteeing developers a
close to zero effort when building systems using Naos. Finally,
Naos is the first (to the best of our knowledge) library inte-
grating RDMA into JVM allowing the user to communicate
on-heap objects transparently, thereby easing the adoption of
RDMA networking by JVM-based distributed applications.
Our evaluation shows that Naos provides a 2x throughput
speedup over serialization approaches for transferring con-
tiguous objects and for moderately sparse object graphs. Naos
improves latency-sensitive applications such as RPCs by pro-
viding a 2.2x reduction in latency.

Contributions. Naos is the first serialization-free com-
munication library for JVM that allows applications to send
objects directly through RDMA or TCP connections. Naos
unlocks efficient asynchronous RDMA networking to JVM
users hiding all the burden of low-level RDMA programming
from the users, thereby facilitating the adoption of RDMA.
For that, Naos solves several complex design issues such
as sending unmodified memory segments across Java heaps
without employing intermediate buffers, and interacting with
concurrent garbage collection without compromising JVM’s
memory safety. For the first issue, Naos proposes a novel
algorithm that writes objects directly to the remote heap and
makes them valid on the receiver’s address space (§3.3). For
the second one, Naos proposes techniques preventing a con-
current JVM garbage collector from moving unsent objects

that may be accessed by RNIC and from accessing unrecov-
ered received objects (§3.2). Finally, Naos enables pipelining
communication and serialization, which was previously im-
possible with the OSD approach (§3.4).

2 Object Serialization

Overview. Many third-party libraries [12, 16, 26] have been
developed to perform OSD in Java. Some of them provide
Java bindings for popular cross-language OSD approaches
(e.g., Protobuf [12]), allowing serializing arbitrary data struc-
tures into well-defined messages that can then be exchanged
using any network protocol. While remaining independent of
programming languages or operating systems, such libraries
suffer from low performance [21]. Therefore, JVM-based
big-data applications (e.g., Spark, Flink) rely on specialized
libraries such as Kryo [26], designed specifically for JVMs.

Figure 2 presents a serialization example of a Java object
and its data formats: memory layout (JVM heap), and seri-
alization formats (Java, Kryo). All Java objects start with a
JVM-specific header (red) followed by a number of primitive
(gray) or reference fields (blue). The object of type Person
has one primitive int field followed by a reference field to a
character array (char[]). The character array starts with the
length of the array followed by all characters.

Serializing an object involves traversing the object graph
starting from that object and, upon visiting each reachable
object, copying all primitive fields into the pre-allocated byte
buffer. During native Java serialization, headers are replaced
by class descriptors in textual format (app.Person) and field
references are replaced by the contents of the pointed object.
Deserialization follows a similar logic; upon visiting a serial-
ized object, a new object must be allocated, and all primitive
fields are copied out of the buffer into the allocated object.

Kryo. Kryo [26], one of the most widely used OSD li-
braries, addresses some limitations of native Java serializa-
tion by requiring manual registration of classes to achieve a
more compact representation of the serialized data. Figure 2
shows a serialized data format in Kryo with class registration
(Kryo+register). Kryo can represent all primitive types and
classes using integer identifiers, thereby reducing the amount
of space needed for storing type names. Although the class
registration is trivial in this example, this task is cumbersome

Sender
RDMAGraph traversal

ptr: 0xFF00
len: 16

ptr: 0xFF30
len: 32

ptr: 0xFF20
len: 16

Send list

Back-pointers
ref id: 4

offset: 0x40
ref id: 5

offset: 0x00

writeObject(obj)

1

DFS traversal Interval tree

2 3

4

readObject() HEAPClass Pointer Fixing

Speculative
Type Graph

RDMA

Cached class
pointers

Remote class
resolution

5

Circular
message buffer

7

Metadata
messages

Replication with
RDMA Writes

Preallocated
buffers

ptr:0x700000
len: 2 MiB

ptr:0xB00000
len: 2 MiB

ptr:0x900000
len: 2 MiB

68

Field Pointer Fixing
Receiver

10

Object

9

Naive pointer
recovery

Back pointer
recovery

1113

14

Class name
service

12RPC

ptr:0xE00000
len: 2 MiB

Figure 3: Naos’ workflow for sending and receiving a Java object.

A

B D

C

Logical View

A

D

B

C

Sender Memory

A

B

C

D

Network

ref id:4, offset:0x40
Back-pointers

Data Objects
1

2

3

4

5

1
2

3

4

5

A

C

Receiver Memory

B

D

1 2

34

5
ref id:5, offset:0x00

Object reference Trivial-pointer Back-pointer

0xFF00

0x00

0xFF10

0xFF50

0xFF20

0x10

0x20

0x30

Figure 4: Object views of Naos’ graph
traversal and pointer recovery.

for applications with hundreds of data types. Compared to
Kryo, Naos provides a cleaner interface (see Figure 2) with
no need for developer involvement. To send a Java object,
one can directly write it (writeObject) to the network. The
receiver can directly read the object with readObject.

Accelerated OSD. To address the overhead of having to
transform the data, Cereal [13] and Optimus Prime [24] resort
to dedicated hardware accelerators for OSD. These acceler-
ators are co-designed with the serialization format to paral-
lelize the OSD process. Even though their data formats are
not portable across different JVMs, their simulation results
promise 15x speedup in serialization throughput on average
over Kryo at the expense of requiring specialized hardware.

Zero-transformation OSD. The trade-off portability vs.
performance is also exploited by the serialization library Sky-
way [21]. By dropping portability, Skyway manages to par-
tially avoid data transformations and object construction by
serializing Java objects in their JVM formats, i.e., the objects
are written to communication buffers in the same binary for-
mat they are stored in the heap. Like Skyway, Naos sends
objects in the JVM heap format, assuming that communi-
cating parties run on the same JVM software. Unlike Naos,
however, Skyway is a serialization library requiring to copy
objects to and from communication buffers. Naos, on the
other hand, completely removes the need to explicitly seri-
alize and deserialize objects to send objects between Java
heaps even with RDMA. What is more, Skyway’s memory
management prevents the use of RDMA networking (§4).

Naos integration and applicability. Naos is not a serial-
ization library. Naos only covers end-to-end transfers (see
Table 1) and cannot replace OSD in systems that do not use it
for communication (e.g., for writing objects to disks). Naos
has been primarily designed for future systems that want to
take advantage of serialization-free zero-copy RDMA net-
working.

In several existing Java frameworks the main obstacle to
using Naos is that some of these systems do not consider the
possibility to send objects without serialization. For example,
Spark and Hadoop completely decouple serialization from
communication: their serialization modules are designed to
serialize objects only to files, and their shuffle modules are
designed to communicate only files. Such file-centric design

simplifies inter-node communication, as processes can share
file descriptors instead of sending data, and helps to reduce
memory usage by dumping data to disks. However, it makes
integrating Naos very difficult. For such use-cases, conven-
tional OSD libraries are a better fit than Naos if a redesign for
true zero-copy is infeasible.

Table 1: APIs of Naos RDMA.
API Description
void writeObject(Object) Blocking send of a single object
Object readObject() Blocking read of an object from heap
boolean isReadable() Check whether an object can be read
long writeObjectAsync(Object) Nonblocking send of a single object
int waitHandle(long) Wait for a send request to complete
int testHandle(long) Tests completion of a send request

3 System Overview

Naos allows Java applications to send/receive objects directly
through RDMA or TCP connections. Naos uses a collec-
tion of algorithms and data structures to efficiently transmit
large complex data structures. Figure 3 presents a graphi-
cal overview of Naos’ workflow, including the main algo-
rithms and data structures. An object transfer starts with a
writeObject 1 triggering a DFS graph traversal 2 (§3.1).
During the traversal, pointers to already visited objects are
detected using an interval tree. After the traversal, both the
objects 3 and metadata 4 are sent over the network using
RDMA 5 (§3.2). Naos uses a circular message buffer to send
metadata 8 and writes objects directly to the remote heap 6 .
Upon reception of the data and metadata, the receiver starts
recovering (§3.3) the object graph by fixing class pointers 11
and field pointers 13 . Once pointers are fixed, the head of the
object graph is returned 14 to the caller of readObject 9 .

The writeObject call in Naos is blocking, that is, the call
returns once the object transmission is completed. It ensures
that the object is received by the destination. In contrast to
the classical TCP/IP semantics, all RDMA operations are exe-
cuted asynchronously by design, allowing overlapping compu-
tation with communication. Naos also provides a nonblocking
writeObjectAsync call enabling asynchronous communica-
tion for RDMA connections (§3.2). The nonblocking call
initiates the send operation but does not fully complete it.

Instead, it returns a request handle, that is used by a user to
wait for the completion using waitHandle call or to verify
whether the request is completed using testHandle call.

The length of the send list Traversal time (us)
Structure (1-0-0) (1-1-0) (1-2-0) (1-1-1) (1-0-0) (1-1-0) (1-2-0) (1-1-1)
BFS 1 2048 3072 3072 42 194 315 271
DFS 1 2 2 1 42 57 74 76

Table 2: Graph traversal of the object array.

3.1 Object Graph Traversal
Java objects can contain reference fields pointing to other
Java objects and therefore, when an object is passed as an
argument to writeObject 1 , all objects reachable from it
need to be sent. To find all objects reachable from a particular
object, Naos traverses the object graph 2 in Depth-First-
Search (DFS) order. Figure 4 illustrates a simple example
of an object graph’s (Logical View), sender memory layout,
format sent over the network, and receiver memory layout.
The sender memory starts at address 0xFF00 and all objects
occupy 16 bytes. Edges are numbered according to DFS order.

When an object is visited for the first time, it is included
in the Send list 3 : a list of memory blocks that will be sent
over the network. Each memory block has two elements: the
starting virtual address, and the length. The send list contains
objects ordered according to DFS order, and the objects are
sent in this order over the network. Naos also merges the
memory blocks that are adjacent in the send list to reduce
its length. For that, during traversal Naos checks whether a
new visited memory block is a continuation of the last block
of the send list: if yes, then Naos increases the length of the
last block, otherwise, Naos adds a new block to the list. The
resulting send list is presented in 3 , which contains three
elements: for object A, for objects B and C as they are adjacent
in memory and in DFS order, and for object D.

DFS vs BFS traversal. Even though Skyway [21] uses
BFS traversal for serialization, Naos exploits DFS due to the
fact that Java objects are constructed in DFS order (i.e., a JVM
first allocates memory for an object and then recursively for
all its fields). Thus, DFS traversal has better memory locality
that can be illustrated by traversing an object array from the
following code snippet. Let us consider a class Person that
has different graph structures denoted as (L0-L1-L2), where
Li is the number of objects on the level i of the object graph
(e.g., the object in Figure 4 has structure (1-2-1)).

1: Person[] array = new Person[1024];
2: for(int i=0; i<1024; i++)
3: array[i] = new Person();

Table 2 reports the length of the send list after BFS and DFS
traversals and corresponding traversal time for several object
graphs. The data shows that for complex graph structures DFS
provides much shorter send lists and faster traversal time.

Back-pointers. Naos sends objects directly from one heap
to another. As a result, objects are sent containing pointers

Algorithm 1 Was object o already visited?
1: if o.addr = curr.addr+ curr.len∧o.addr 6= next.addr then
2: curr.len← curr.len+o.size . hot-path
3: return f alse
4: if o.addr > curr.addr∧o.addr < next.addr then
5: curr← tree.insert_be f ore(next,o) . warm-path
6: return f alse
7: node,success← tree.insert(o) . cold-path
8: if success then
9: curr← node

10: next← curr.next()
11: return f alse
12: return true . is a back-pointer

that are valid only in the sender address space, but not in
the receiver’s. Naos addresses this problem by sending extra
metadata along with data objects, which is used by the receiver
to efficiently recover the pointers (§3.3).

Naos is designed to send as little metadata as possible. The
metadata contains a 24-byte header with object and metadata
sizes and, if present, pointers to already visited objects 4 .
These pointers are redundant edges after building a spanning
tree over the object graph using DFS. We call them back-
pointers since they always point to already visited objects in
the send list (see Figure 4). For each back-pointer, a reference
identifier representing the order by which the reference was
visited in DFS order, and an offset within the send list where
this reference should point to are sent to the receiver as meta-
data. In our example in Figure 4, only references 4 (D −→ C)
and 5 (C −→ A) are sent.

All edges of the spanning tree (we call them trivial-pointers
for simplicity) can be automatically inferred during a DFS
traversal in the receiver (§3.3). This allows Naos to send
no information about trivial-pointers resulting in a massive
reduction of metadata sent over the network. Note the graphs
without cycles do not contain back-pointers, which covers the
vast majority of the most popular Java data structures.

Back-pointer/Cycle detection. To detect pointers to al-
ready visited objects (i.e., back-pointers), Naos uses a memory
interval tree that keeps tracks of all visited memory intervals
during DFS traversal. The interval tree is implemented using
a red-black tree, which is selected over a hashtable (as Java
and Kryo do) for two reasons. First, for large data structures,
the hashtable grows (one entry per visited object) to large
sizes and will lead to expensive lookups due to hash collision.
Second, references to already visited objects are very rare and
references pointing to objects in nearby memory positions
are common in most Java popular data structures. Therefore,
an interval tree, in most cases, contains a few large memory
intervals, thereby ensuring fast lookups. We further optimize
our interval tree by providing different fast paths.

Algorithm 1 presents how Naos decides whether a partic-
ular object o has been already visited. Two helper variables
are used: curr points to the last node inserted into the tree;
next points to the tree node that follows curr in the tree. All

writeObject

readObject

return

return

graph
traversal

metadata

ACK

write

writes
heap

pointer
fixing

S:

R:
RDMA Write

RDMA Acknowledgemnt
RDMA Write with Imma)

writeObject

pointer

returngraph
traversal

metadata

ACK

write

writes
heap

fixing

heap
request

writes
heap

heap
reply

S:

R:

readObject returnb)

writeObject

pointer

returngraph
traversal

ACK

fixing

heap
request

heap
reply

writes
heap

S:

R:

readObject returnc)

Figure 5: Blocking communication mechanism for three scenarios: (a) the sender can fit data to the pre-allocated receiver heap;
(b,c) the sender needs to request extra heap memory. The receiver was not ready to receive data in (b), and it was ready in (c).

tree nodes keep an initial address addr and its length length.
If the object’s address is adjacent to the last memory interval
inserted into the tree, the insertion is performed in O(1) time
(hot-path). If the memory pointer is higher than the current
tree node and lower than the next tree node, then insertion is
performed in O(1) (warm-path), unless the tree needs to be
re-balanced, taking O(log(n)) time . Otherwise, the memory
pointer is inserted in the tree in O(log(n)) time (cold-path).

As a comparison, Skyway does not use complex structures
for cycle detection and simply extends the JVM header of Java
objects by 8 bytes. Even though it ensures that the newness
of an object can be be checked in O(1), it results in a 15.4%
increase in memory usage [21].

3.2 Network exchange of on-Heap Objects

Naos adds native RDMA communication to JVM without
compromising JVM’s memory safety. Naos’ interface does
not expose explicit RDMA access to the remote or local heap
memory. Instead, its API allows only sending and receiving
Java objects, hiding all the burden of low-level RDMA pro-
gramming from the user. Internally, though, Naos fully relies
on efficient one-sided RDMA communication to completely
avoid redundant data copies. Naos also supports TCP for
sending objects directly from its heap, but the use of RDMA
requires overcoming peculiarities of managed languages such
as concurrent garbage collection.

Blocking RDMA protocol. This section describes the
blocking RDMA protocol for a single connection. All connec-
tions are handled independently and do not share resources.
The core idea of Naos RDMA is that the receiver pre-registers
buffers of fixed size in its heap and registers them for RDMA
Write access. The sender uses RDMA Writes 6 to write the
objects from its local heap directly to the known reserved
buffers in the remote heap 7 . The metadata is sent separately
using a circular buffer 8 for RDMA messaging [8, 23].

The protocol allows the sender to start writing memory to
the remote heap even if the receiver did not call readObject,
as illustrated in Figure 5(a). The sender can continue writing
the data while it has enough free remote memory. Once the
sender completes writing all objects to the remote heap using
RDMA, it sends a separate completion message with meta-
data via the circular message buffer 8 . The remote circular
buffer is filled using RDMA Write with immediate data, which

generates a completion event on the receiver after the write
completes. The sender can unblock from sending once it re-
ceives an acknowledgment from the network indicating that
all data has been written to the receiver. The acknowledgment
is generated by the network and does not require the receiver’s
interaction. The receiver fetches the received object when it
calls readObject, after all pointers are recovered (§3.3).

Sender’s heap management. Naos utilizes object pinning
to prevent a JVM garbage collector (GC) from moving ob-
jects until they are fully transmitted by the RNIC. Object
pinning is already offered by some garbage collectors, such
as Shenandoah [9]. Shenandoah is a high-performance GC
that is supported by upstream OpenJDK. Besides object pin-
ning, Naos also utilizes Shenandoah’s memory allocator, that
maintains the heap as the collection of fixed size Shenandoah
regions. To pin and unpin objects efficiently, Naos pins whole
Shenandoah regions containing the affected objects instead
of pinning individual objects. During a send request, Naos
pins and remembers all affected Shenandoah memory regions.
Once the request completes, Naos unpins the regions associ-
ated with the request. Shenandoah allows pinning a region
multiple times, and each region needs to be unpinned as many
times as it has been pinned, thereby successfully preventing
Naos from accidentally unlocking the GC for unsent objects.

RNICs cannot simply send data from any buffer and com-
munication buffers must be registered at the RNIC*. Thus,
the sender must register the memory addresses of all objects
it needs to send. However, RDMA memory registration is an
expensive process that may take hundreds of microseconds
for a single buffer [14,20,30]. Therefore, naive registration of
all objects from the send list may completely cancel all per-
formance advantages of RDMA. Naos addresses this issue by
registering large fixed-size memory regions (i.e., Shenandoah
regions) where the objects are allocated. It enables reusing a
single memory registration for all objects stored in it, exploit-
ing spatial locality. Naos also caches memory registrations to
reuse them later for future sends, exploiting temporal locality.

Receiver’s heap management. When the sender runs out
of the remote buffers for writing, it sends a request to the
receiver to register more on-heap memory, as illustrated in
Figure 5(b,c). Thus, the sender can block until the receiver

*Modern RNICs support implicit on-demand paging (ODP) [17] that
removes the need to register buffers. In our preliminary experiments, however,
ODP performed worse than conventional explicit memory registration.

replies with new heap buffers, as in Figure 5(b). However,
when the receiver is ready to receive data it can immediately
reply to the heap request and do not obstruct the sender as in
Figure 5(c). The receiver can reply to heap requests when it
calls readObject or isReadable. During these calls, Naos
checks for received requests by polling completion events
from the RNIC. The process of handling requests is invisible
to the caller, which hides the complexity of the underlying
protocol from the user.

Upon receiving a heap request, the receiver allocates a new
Java byte array buffer of fixed size inside the Java heap and
registers its payload for RDMA Write access and replies with
the RDMA address of the registered buffer. To prevent the
GC from moving the reserved on-heap buffers, Naos utilizes
object pinning offered by Shenandoah [9]. Importantly, the
sender writes data to the payload of the pre-allocated byte
array as it prevents the GC from reading invalid data. The
main reason for that is that the unrecovered received objects
have invalid class and object pointers (§3.3). Thanks to this
enclosure, the GC observes only the array and skips reading
objects stored in the payload.

The sender fills the remote buffers in the order it received
them from the receiver, constituting a queue of remote heap
buffers. Since pre-registered RDMA heap buffers are of fixed
size, the sender is not always capable of fully utilizing them.
To address this issue, the sender informs the receiver about
how many bytes were unused in each finalized heap buffer
by sending heap truncate request. A buffer becomes finalized
when the sender jumps to the next buffer in the queue. After
receiving the data, the receiver revokes RDMA access to
finalized buffers and then unpins them to enable the GC for
received objects. It also deallocates unused memory of the
finalized buffer and removes the array header to make all
received objects visible to the GC.

Nonblocking object sending. The main difference be-
tween the blocking writeObject and the nonblocking
writeObjectAsync is that the later returns right after the dis-
patching metadata write request to the device. The nonblock-
ing call submits all communication requests to the RNIC but
does not wait for a network acknowledgment. Instead, Naos
returns a request handle that can be used by an application
to confirm the delivery of the object using testHandle call.
Compared to the blocking call, Naos prevents the GC from
moving affected objects even after the call returns. Naos pins
the affected objects before exiting the JVM, and unpins them
later once the corresponding acknowledgment is received.

Naos TCP. Naos supports sending objects directly from
the heap using TCP as well. Unlike RDMA connections, a
traditional TCP socket connection has a single datapath. Thus,
to send the objects to the remote heap, the TCP sender first
writes the metadata to the socket and then all elements of
the send list. The receiver first reads metadata to a temporal
buffer from its socket, then, to avoid redundant data copies,
it directly reads the data from the socket to the heap. For

that, it allocates a byte array buffer of the required size inside
the Java heap, and then reads the data from the socket to the
payload of the allocated buffer.

Network buffering. Naos is designed to send data directly
from the heap without intermediate buffering. However, the
size of a JVM object can be as small as 24 bytes. Thus, a
highly sparse object graph can result in a lot of small writes
to the network, which can significantly reduce the network
performance. To address this issue, Naos may buffer small
objects before sending them to the remote heap. Large objects
are still sent directly from the heap. Naos sends buffered
objects once it batches enough bytes to utilize the network,
or when a large object needs to be flushed to preserve DFS
object order (§3.1).

An alternative approach is to use scatter-gather capability of
RNICs [18] for RDMA networking and scatter-gather I/O for
TCP sockets. The scatter-gather networking enables building
a network message from multiple buffers without intermediate
buffering. The current version of Naos does not implement it,
but it is an interesting direction for future research.

Memory safety of Naos. Naos uses reliable transport to
ensure the delivery of transmitted data. Naos materializes
only fully received objects, which prevents returning partially
received objects from a faulty sender. Faulty sends can be
detected during graph recovery from the network errors pro-
vided by the reliable transport. If an error is detected, the
receiver revokes RDMA access to pre-allocated buffers and
deallocates the unused memory.

Naos’ implementation follows all security advice related
to RDMA networking [25, 31], therefore, we believe that
Naos does not open security breaches. In particular, the pre-
allocated heap buffers are not shared between connections
preventing remote JVMs to access buffers of each other. In ad-
dition, each sender registers its heap only for local read access
preventing other remote JVMs to access it. Finally, remote
read access is always disabled, and Naos only temporarily
enables write access to pre-allocated in-heap buffers, which
are private for each sender. Once the in-heap buffer is full, the
write access is revoked.

For compatibility between communicating applications,
Naos requires that communicating JVMs have the same mem-
ory layout of in-heap objects. This can be achieved by running
the same JVM with the same settings including GC.

3.3 Object Graph Recovery

Naos sends unmodified memory segments from one heap
to another. As a result, objects are sent containing pointers
that are valid only on the sender address space, but not on
the receiver’s. Naos’ graph recovery algorithm overwrites
these pointers making them valid on the receiver’s address
space. Java objects have two types of pointers: class pointers
and object pointers. Class pointers point to JVM-internal
data structures that describe Java types. Object pointers are

Algorithm 2 Object Graph Recovery
1: bu f f er . the buffer with received objects
2: re f id← 0 . the number of traversed references
3: o f f set← 0 . current offset in the receive buffer
4: stack.push(new f ield(),new hint()) . push dummy field and hint
5: while stack.is_not_empty() do
6: f ield, hint← stack.pop()
7: FIX_FIELD_POINT ER(f ield,hint)
8: re f id← re f id +1

Phase 1 – Fix Field Reference

9: procedure FIX_FIELD_POINTER(f ield,hint)
10: if re f id = cur_back_pointer.id then . a back-pointer
11: f ield.ptr← bu f f er+ cur_back_pointer.o f f set
12: cur_back_pointer← get_next_back_pointer()
13: else . a trivial-pointer
14: ob j← (ob j)(bu f f er+o f f set)
15: f ield.ptr← ob j
16: FIX_CLASS_POINT ER(ob j,hint)
17: IT ERAT E_FIELDS(ob j,hint)
18: o f f set← o f f set +ob j.size

Phase 2 – Fix Class

19: procedure FIX_CLASS_POINTER(ob j,hint)
20: if hint.rem_class = ob j.class then
21: // hint is correct, do nothing . hot-path
22: else
23: if class_cache.contains(ob j.class) then
24: new_hint← class_cache.get(ob j.class) . warm-path
25: hint.update(new_hint)
26: else
27: new_hint← class_service(ob j.class) . cold-path
28: class_cache.put(ob j.class,new_hint)
29: hint.update(new_hint)
30: ob j.class← hint.loc_class

Phase 3 – Iterate Fields

31: procedure ITERATE_FIELDS(ob j,hint)
32: for f ield, f ield_hint in hint. f ields do
33: stack.push({ob j+ f ield.o f f set, f ield_hint})

reference fields that point to other on-heap Java objects.
Naos uses a recovery approach different from the one used

in Skyway [21]. Since Skyway copies objects to communica-
tion buffers, it can afford modifying data before sending. Thus,
Skyway simply replaces class pointers with integers (as Kryo
does) and object pointers with their relative offsets within
the communication buffer. Such design allows the receiver to
simply replace class integers with corresponding class point-
ers and relative object offsets with corresponding absolute
addresses. Unlike Skyway, Naos sends objects directly from
the heap using RDMA requiring more sophisticated algorithm
for pointer fixing in return for not requiring data copying.

Algorithm 2 describes the Naos’ graph recovery approach
that starts with a DFS traversal of the object fields (lines 5-8).
The traversal is initialized by pushing a dummy field pointing
to the first received object. The graph recovery terminates
when the DFS stack is empty. At that point, all pointers are
valid in the receiver’s heap and the first object can be safely
returned to the user.

Fixing Field References. For every object field, the algo-

rithm applies FIX_FIELD_POINTER procedure, which in-
vestigates whether the tested reference is a back-pointer or
a trivial-pointer by checking whether the received metadata
contains the current reference ID (line 10). For back-pointers,
the offset associated with the current pointer is used to fix the
reference. If the reference is a trivial-pointer, the new memory
address can be determined by just using the current offset in
the receive buffer (line 14). For a trivial-pointer, the next step
is to fix the class field of the pointed unvisited object (line 16).
Note that Naos sends no metadata for trivial pointers, since
the sender and the receiver traverse the graph in the same DFS
order, providing a significant reduction in metadata size.

Fixing Class References. Updating class pointers is a par-
ticularly expensive operation if not designed carefully, since
the class pointer needs to be fixed for every object. To achieve
high performance, Naos proposes a 3-way approach:

Class Service (cold-path) is an RPC service 12 that is
started upon creation of a Naos connection. Once a receiver
needs to determine the class of a particular sender’s class
pointer, it issues an RPC request to the sender to translate the
pointer to the full class name. The full class name can be used
locally to query local JVM internal data structures.

Class Map (warm-path) is a per-connection table that
caches all class translations. However, accessing a table for
every object reference still produces a large overhead, es-
pecially in large graphs. To overcome this limitation, Naos
proposes the use of Speculative Type Graphs (STG), a type
of polymorphic cache inspired by [10].

STG (hot-path) is a data structure that dynamically captures
type relations in the object graph, providing a translation hint
for each class pointer. Each STG hint caches: i) a translation
between a local and remote class pointer; ii) class description
including object fields; iii) pointers to other hints for each field
allowing to build hints recursively (lines 32-33). Using STG,
Naos can speculate on the type of a particular object using a
hint. If the hint is correct the class translation and retrieval
of a class descriptor takes O(1) time (line 20). Speculation
might fail due to type polymorphism in Java (line 22) and, in
that case, the cache is used for resolving the class pointer and
the STG is updated (line 25) with the new translation hint. In
practice, however, most data structures have very regular type
graphs allowing the STG to guess correctly most of the times.

After the class pointer of an object is fixed, Naos iterates
all its reference fields (line 17). Naos utilizes object’s class
pointer translation hint to create translation hints for its refer-
ence fields (lines 32-33), which are then pushed into the stack
together with the corresponding object reference.

3.4 Overlapping network and graph traversal

An important disadvantage of conventional serialization ap-
proach is that it does not support overlapping serialization
and communication: an object must be fully serialized before
sending it over a network. Similarly, the receiver cannot start

Serialization: 3 ms
Send: 3 ms

Receive: 3 ms

Sender

Receiver Deserialization: 3 ms

OSD approach. Total is 9 ms.
Sender

Receiver

Naos TCP. Total is 7 ms.
Sender

Receiver

Naos RDMA. Total is 5 ms.
Ser.: 1 ms Ser.: 1 ms Ser.: 1 ms

Send: 1 ms Send: 1 ms Send: 1 ms

Recv: 1 ms Recv: 1 ms Recv: 1 ms
Des.: 1 ms Des.: 1 ms Des.: 1 ms

Ser.: 1 ms Ser.: 1 ms
Send: 1 ms Send: 1 ms

Ser.: 1 ms
Send: 1 ms

Recv: 1 ms Recv: 1 ms
Des.: 1 ms Des.: 1 ms

Recv: 1 ms
Des.: 1 ms

Figure 6: The communication benefits of Naos’ pipelining compared to the conventional OSD approach.

deserialization unless it receives all the data (see Figure 6). As
a result, applications can suffer from high end-to-end latency
for large object graphs.

Naos supports pipelining graph traversal with communi-
cation on the sender and pointer fixing with object receiving
on the receiver. Both Naos TCP and Naos RDMA benefit
from pipelining as it allows the receiver to start pointer fixing
of partially received object graphs, thereby reducing end-to-
end latency. Using offloaded RDMA communication, Naos
RDMA can continue traversing the graph after submitting
write requests to the RNIC, thereby overlapping communica-
tion and graph traversal on both the sender and the receiver.

Pipelining in Naos is implemented by pausing the object
traversal and sending partial graphs to the remote heap. A
partial graph contains only objects and back-pointers found
at a given traversal stage. The receiver can read the partial
graph and start pointer fixing. Once all received objects are
traversed, the receiver reads the next fragment of the graph.

Figure 6 illustrates how Naos with pipelining improves
communication latency of large object graphs compared to the
OSD approach. The OSD approach cannot break serialization
of a single graph, which results in 9 ms latency. Naos TCP
can send partially traversed graphs reducing the latency by
2 ms, but cannot overlap computation with communication.
Naos RDMA enables overlapping communication and graph
traversal, which reduces the latency by another 2 ms.

4 Evaluation

We evaluate the performance of Naos† and compare it with
Java, Kryo, and Skyway‡ serialization engines using four
different classes of workloads. First, the performance of Naos
is studied by transferring data structures that are commonly
used in distributed applications. The goal is to measure the
performance benefits of the different techniques proposed in
Naos and the trade-offs involved depending on the shape of
object graph. In addition, it also shows the impact of using
RDMA instead of TCP. Second, we study the role of data
streaming and pipelining in OSD performance. Then, we
show results for integrating the Naos library into Apache
Dubbo [2], a high-performance RPC framework developed in
Java, to show the impact of Naos on RPC workloads. Lastly,

†The source code is available at https://github.com/spcl/naos/.
‡We could not compare with the original Skyway as it is not open-source.

Therefore, we re-implemented Skyway following the instruction provided
in the paper [21]. Note that we did not extend object headers by 8 bytes for
cycle detection and simply evaluated Skyway without cycle detection.

we use a map-reduce implementation of PageRank to measure
the performance of Naos for data processing workloads.

Experimental setup. All experiments were performed on
a cluster of 4 nodes interconnected by 100 Gbit/s Mellanox
ConnectX-5 NICs. Each node is equipped with an Intel(R)
Xeon(R) CPU 6154 @ 3.00 GHz and 384 GB of RAM.

Implementation details. Naos is implemented and tested
for OpenJDK HotSpot 11.0.6 [1], a widely-used production
JVM. Naos does not require changes to the internals of the
JVM and is implemented as a JNI plugin and a Java-level
library that allows users to write objects directly to TCP
and RDMA connections. Naos TCP provides constructors
to create a Naos connection from TCP connections of vari-
ous network libraries (e.g., java.net.Socket). Naos RDMA
does not rely on existing JVM RDMA libraries and fully im-
plements a specialized RDMA network library including an
API to create and connect RDMA endpoints. Our plugin is
implemented in Java and C++ and depends on: libibverbs,
an implementation of the RDMA verbs, and librdmacm, an
implementation of the RDMA connection manager.

RDMA communicators for Java and Kryo serializers have
been implemented using Disni [27] RDMA library, a high-
performance Java RDMA library that encapsulates native C
RDMA verbs API. The Disni library is used by Java applica-
tions such as Spark [19], Crail [29], and DaRPC [28]. Note
that Skyway cannot be used with existing RDMA libraries,
including Disni, as these libraries can only work with spe-
cialized off-heap memory residing outside of the Java heap
memory, whereas Skyway requires the memory buffers reside
inside the heap memory to deserialize objects. These limi-
tation stems from the fact that garbage collection can move
on-heap buffers while they are being accessed by the RNIC.

In all experiments, the JVM was configured with default
parameters and enabled Shenandoah garbage collector as it is
the only collector that is currently supported by Naos. Shenan-
doah was configured with 32 MiB memory regions. Naos was
configured with 20 MiB receive buffers. If not stated differ-
ently, Naos and all serialization algorithms were deployed
without graph cycle detection and with no pipelining (§3.4).

4.1 Serializing Java Data Structures
The performance of OSD approaches is measured using three
data structures that are among the most common serialized
data structures in real-world workloads deployed in platforms
such as Spark, Hadoop, and Flink: a) an array of float primi-
tive types, which is common for machine learning workloads;

https://github.com/spcl/naos/

24 26 28 210 212 214 216

Array length

10

100

1000

L
at

en
cy

(u
s)

TCP network

a)
Java Kryo Skyway Naos

24 26 28 210 212 214 216

Array length

RDMA network

22 24 26 28 210 212 214

Array length

10

100

1000

10000

L
at

en
cy

(u
s)

TCP network

b)
Java Kryo Skyway Naos Naos+cycles NaosIt

22 24 26 28 210 212 214

Array length

RDMA network

22 24 26 28 210 212 214

Array length

10

100

1000

10000

L
at

en
cy

(u
s)

TCP network

c)
Java Kryo Skyway Naos Naos+cycles NaosIter

22 24 26 28 210 212 214

Array length

RDMA network

Figure 7: Latency in us for a) an array of floats b) an array of Points c) an array of Pairs. The y-axis is in log scale.

b) an array of class Point containing only two primitive
types, which represents a 2D Euclidean point; c) an array of
class Pair containing an integer and a char array, which
represents a key-value pair, in many algorithms such as Word
Count. In our experiments the char array had length 5, the
average word length in the English language.

Benchmarks are carefully designed to guarantee the op-
timal configuration of all serializers. In particular, for Java,
Kryo, and Skyway, all buffers are pre-allocated with the cor-
rect size to avoid re-allocation and memory copies during the
serialization process. Besides, all types were pre-registered in
Kryo to guarantee maximum data format compression. Mea-
surements are taken after a JVM warmup (of at least 100 ms)
until convergence of the JIT compiler to achieve maximum
performance. All experiments run in complete isolation for
several seconds and the aggregated statistics are reported.

Latency. Figure 7 shows the average latency of transferring
the aforementioned data types with increasing their size.

Naos performs excellently for contiguous data structures
such as the array of float, as it can send them from the heap
without making extra copies and using fewer RDMA requests.
For comparison, Kryo, Java, and Skyway must first serialize
objects to a dedicated send buffer. RDMA-Naos’ latency can
be as small as 8 us, which is at least a 2x and a 2.4x im-
provements over Kryo and Java serializers, respectively, for
small arrays, and at least a 4.5x for large arrays. For example,
Naos RDMA needs only 42 us to send 216 floats, whereas
serialization approaches need at least 190 us.

Naos RDMA has lower latency than Skyway, however, Sky-
way performs better than TCP-Naos for small arrays because
of two reasons. First, Naos buffers small objects (less than
256B) to better utilize the network (§3.2). Second, Naos TCP
allocates on-heap memory after data arrives, whereas Skyway
has all buffers preallocated in our experiments. Both reasons
give an advantage to Skyway over Naos TCP for small ar-
rays. For large arrays, Naos TCP provides a 9.1% reduction
in latency over Skyway as it incurs fewer data copies.

An array of float is the simplest object graph for graph
traversal as it contains a single contiguous object. An array
of Point, however, is non-contiguous in memory as this array
contains references to objects of class Point, which are 32
bytes each. Nonetheless, Naos provides a 2x and a 4x improve-

ments on average over Java and Kryo for RDMA networks,
even with cycle detection enabled (+cycles). Naos+cycles
benefits from our hot-paths of Algorithm 1 as the JVM tends
to collocate objects in memory even for the potentially sparse
object graphs. The experiment shows that moderately sparse
graphs with small objects are not an issue for Naos.

An array of Pair is even sparser graph than the array of
Point, as the class Pair has more references than the class
Point. Naos RDMA still achieves the lowest latencies for all
sizes. However, with cycle detection, Naos’ traversal is slower
for long arrays is slower compared to Kryo. The main problem
is that Naos sends more data than conventional serializers
since it needs to send a JVM header of 16 bytes for each
Java object. We conclude that Naos does not always provide
lower latency compared to conventional OSD approaches and
that its performance depends on sparsity and the number of
traversed objects.

A shortcoming of Skyway’s and Naos’ data format is that
they do not compress arrays with references and are forced to
send long arrays with (invalid) references, whereas Kryo can
encode this information in few bytes. To address this issue,
we designed a specialized send call for Naos, namely NaosIt,
that sends only objects stored in an array. The receiver of such
compressed message creates a new array and then fills it with
received objects. NaosIt reduces the size of communicated
data, but requires extra memory allocation on the receiver.
Overall, NaosIt provides a small improvement over Naos, as
the experiments are performed on 100 Gb/s network. Such
compression would be more beneficial for slower networks.

CPU and network costs. To show the key differences be-
tween Naos networking and the traditional OSD approaches,
Table 3 shows the time breakdown of transferring various data
structures and their network cost. Naos as a serialization-free
approach always has zero cost for serialization and deseri-
alization. Naos’ graph traversal time is included in the send
time. The OSD approaches with RDMA has zero receive cost
as the data delivered directly to pre-allocated receive buffers
by the RNIC. Naos, on the other hand, has non-zero cost as
the receive time includes the graph recovery.

22 24 26 28 210212214216

Array length

0K

250K

500K

750K

1000K

1250K

1500K

1750K

TCP network

a)

214 216
0K

10K
20K
30K
40K
50K

Java Kryo Skyway Naos NaosAsync

22 24 26 28 210212214216

Array length

RDMA network

22 24 26 28 210 212 214

Array length

0K

250K

500K

750K

1000K

1250K

TCP network

b) Java Kryo Skyway Naos

212 214
0K

4K

8K

12K

16K

NaosAsync NaosAsync+cycles NaosIt

22 24 26 28 210 212 214

Array length

RDMA network

212 214
0K

4K

8K

12K

16K

22 24 26 28 210 212 214

Array length

0K

100K

200K

300K

400K

500K

600K

700K

TCP network

c) Java Kryo Skyway Naos

212 214
0.0K

0.4K

0.8K

1.2K

1.6K

NaosAsync NaosAsync+cycles NaosIt

22 24 26 28 210 212 214

Array length

RDMA network

212 214
0.0K

0.4K

0.8K

1.2K

1.6K

Figure 8: Throughput in objects/sec for a) an array of floats b) an array of Points c) an array of Pairs.

TCP RDMA
Test Ser. Send Receive Deser. Ser. Send Receive Deser. Size (B)

Array of native float with 8192 elements
Java 15-18 6-9 6-8 17-24 14-17 0-1 0 15-20 32795
Kryo 24-29 7-10 6-8 26-31 24-27 0-1 0 25-86 32772
Skyway 2-3 7-9 7-8 0-1 NA NA NA NA 32792
Naos 0 7-9 16-52 0 0 10-11 0-1 0 32792

Array of class Point with 1024 elements
Java 109-116 5-7 4-6 94-102 112-119 0-1 0 113-121 14469
Kryo 44-47 4-6 2-3 36-39 43-47 0-1 0 38-41 8132
Skyway 23-26 6-8 6-8 10-11 NA NA NA NA 28696
Naos 0 22-26 27-76 0 0 25-26 13-15 0 28696
NaosIt 0 22-23 28-39 0 0 24-25 15-17 0 24576

Array of class Pair with 1024 elements
Java 216-664 7-19 10-12 208-222 211-223 0-1 0 217-230 30864
Kryo 135-231 5-10 6-8 79-83 135-148 0-1 0 80-83 18436
Skyway 149-154 9-13 15-31 23-24 NA NA NA NA 61464
Naos 0 161-168 84-137 0 0 199-206 34-39 0 61464
NaosIt 0 159-164 109-138 0 0 200-206 36-40 0 57344

CPU sender CPU receiver CPU sender CPU receiver Network

Table 3: CPU time breakdown (in us) and Network cost for
transferring arrays. Percentiles 5 and 95 are reported.

Object serialization in TCP experiments takes longer than
for RDMA. The difference comes from the fact that in TCP
experiments the data is serialized to on-heap buffers, which
can be affected by the GC, whereas RDMA requires data to
be serialized to off-heap buffers, that are invisible to the GC.

Java and Kryo for RDMA have the same send cost which
is the cost of submitting offloaded RDMA request to RNIC.
Blocking Naos RDMA has higher cost to send as it needs to
wait for a network acknowledgment to finish sending.

For all data types, Naos RDMA shows at least a 2x re-
duction in CPU time for receiver over Kryo and Java. The
main reason is that conventional serialization libraries need
to allocate and initialize memory for each received object.
Naos does not construct objects and only fixes pointers in the
received data. For senders, however, Naos is better at reducing
CPU cost for simple graphs such as arrays of floats and points.
Note that Naos TCP has a longer receive time than Skyway as
it needs to allocate receive memory, whereas Skyway worked
with pre-allocated buffers in our experiments.

The network cost of Naos and Skyway increases with the
number of transmitted Java objects. For an array of floats,
therefore, the size of the transmitted data is approximately the
same for all approaches. On the other hand, for an array of
Points or Pairs, the network cost of Naos is about 2x higher in
comparison with Java and about 3.5x over Kryo. Kryo has the

lowest network costs as it replaces the class descriptors with
integer identifiers significantly compressing object graphs.
Naos and Skyway have the same network cost as they have
the same data format, but our NaosIt provides a reduction in
the network size for array containers.

Throughput. In this experiment, senders continuously
send objects to the receiver. For RDMA approaches with
serializers, we provide at the sender and the receiver a large
number of send and receive buffers to enable asynchronous
communication so that the sender can start serializing and
sending the next object without the need to wait for the com-
pletion of the previous requests.

Figure 8(a) shows that Naos TCP was not able to signifi-
cantly outperform Skyway for small arrays, as the throughput
of Naos was mostly limited by the receive buffer allocation,
whereas Skyway, with pre-allocated memory, achieved 750K
req/sec. For arrays larger than 212 elements, however, Naos
TCP outperforms Skyway as the cost of data copies at the
sender overwhelms the cost of memory allocation at the re-
ceiver, showing the advantage of our zero-copy design.

The performance of blocking Naos RDMA is bound by the
network latency, which prevented the application to send re-
quests at a higher rate. The NaosAsync RDMA, which avoids
waiting for an acknowledgment, achieves the highest perfor-
mance showing the importance of asynchronous communica-
tion. For the array of 512 floats, Naos achieves 1600 Kreq/sec,
which is a 2x speedup over existing serialization approaches.

Figures 8(b,c) show that the throughput of Naos RDMA
was limited by the network bandwidth since NaosIt, that com-
municates less data, outperforms NaosAsync RDMA. This
observation indicates the benefit of our data compression.

The cycle detection decreases the throughput of Naos by
less than 3% for moderately sparse graphs. For sparser graphs
such as an array of Pairs the slowdown increases to 19%,
which is explained by the growth of the Naos’ interval tree for
cycle detection. Therefore, Naos has lower performance than
Kryo, but still outperforms the Java serializer. We think that,
in real systems, Naos can be used together with traditional
OSD libraries depending on the sparsity of the object graph.

Streaming data transfers. Data processing frameworks
such as Spark and Flink rely on data streaming to enable pro-
cessing of continuous streams of data. The continuous data
stream is generated by sending small chunks of data to the

24 26 28 210 212 214 216

Batch size

0

0.1

0.2

T
im

e
(s

ec
)

Array of Points

24 26 28 210 212 214 216

Batch size

0.1

0.2

0.3
Array of Pairs

Java Kryo TCP-Skyway Naos NaosIt

Figure 9: Streaming an array of 220 elements.

214 216 218 220 222 224

Pipeline block size (B)

0.01

0.1

1

T
im

e
(s

ec
)

Array of Points

214 216 218 220 222

Pipeline block size (B)

0.2

0.3

0.4

0.5
0.6
0.7

Array of Pairs

Java Kryo TCP-Skyway Naos NaosIt
Naos+Pipeline NaosIt+Pipeline

Figure 10: Pipelining an array of 220 elements.

24 25 26 27 28 29 210 211 212

Echo length (B)

0

100

200

300

400

L
at

en
cy

(u
s)

Array of chars

TCP-Kryo RDMA-Naos

Figure 11: Dubbo RPC latency.

processing nodes. To represent this use-case we implemented
the streaming of long data arrays over RDMA networks. Fig-
ure 9 shows the streaming time of an array of Points and Pairs
with increasing the chunk size.

For the array of Points, Naos RDMA outperforms all seri-
alizers for all chunk sizes, and decreases the streaming time
of Kryo by 2.1x. For the array of Pairs, Kryo has the high-
est performance, by sending 256 objects at a time, due to its
ability to compress the objects efficiently. For larger chunks,
Naos and Skyway take less time than Kryo, since Kryo starts
suffering from longer object construction for larger chunks,
whereas Skyway and Naos do not need to construct objects.

Even though Skyway and Naos have the same data for-
mat, Skyway streamed the array of Pairs faster than Naos.
The difference comes from the complexity of Naos’ com-
munication algorithm, leading to the higher CPU cost at the
sender (see Table 3). Skyway’s serialization code only copies
traversed objects to send buffers, whereas Naos as a commu-
nication library needs to take more factors into account: build-
ing send lists, RDMA memory registration, and triggering
multiple RDMA requests. Naos could employ various mod-
ern RDMA techniques for optimized memory accesses [18],
which are interesting directions for future research.

Pipelining data transfers. Naos supports pipelining graph
traversal with communication on the sender, and pointer fixing
with communication on the receiver. Unlike Naos, conven-
tional OSD approaches require an object to be fully serialized
before sending it over the network. In this experiment, we
show the effect of pipelining for large object graphs by mea-
suring the time of transferring arrays with 220 elements.

The latencies of Java, Kryo, Skyway, and Naos with no
pipelining are depicted as straight lines in Figure 10 as they
are independent of the pipeline size. Naos with pipelining
provides a 20% reduction in latency in comparison with a non-
pipelined variant, since the receiver can start pointer recovery
earlier. Note that in the previous experiments with streaming
large sparse object graphs, Kryo outperformed Naos as it
could split the graph into chunks. For inseparable large graphs,
however, Naos takes less time even for highly sparse graphs.

Workload (50:50) (95:5) (100:0)
TCP-Kryo 14-24 Kreq/sec 16-24 Kreq/sec 23-25 Kreq/sec
RDMA-Naos 194-266 Kreq/sec 196-266 Kreq/sec 219-281 Kreq/sec

Table 4: Throughput under YCSB workloads with various
(read:write) ratios. Percentiles 5 and 95 are reported.

4.2 Accelerating applications with Naos
Naos provides a simple programming interface (see Table 1)
hiding all the burden of low-level RDMA communication. In
particular, RDMA benchmarks from the previous experiments
take only 10 lines for Naos and over 300 lines for the Disni
RDMA library. Thus, we believe that it is simple to build
systems using Naos. As proof, we have extended Apache
Dubbo with Naos communicator, and implemented a Naos-
enabled map-reduce framework.

Zero-copy RPC messages with Dubbo. To show that
Naos is easy to use, we extended an RPC library Apache
Dubbo with the Naos communicator. For that we added a new
Naos-enabled communication module that has no serializa-
tion module.

In the first experiment we measure the latency of an RPC
function that echoes back a Java String. Naos’ performance
was compared with the default TCP network library, Mina [3],
with Kryo serializer. Naos was deployed with cycle detec-
tion. Note that Dubbo besides an RPC arguments also sends
an RPC metadata resulting in sending several Java objects.
Figure 11 shows that employing Naos RDMA decreases the
latency by at least 55% for all tested sizes.

To understand the performance of Naos under a realistic
throughput workload, we built a key-value store (KVS) using
a Java concurrent hashtable and Dubbo library for commu-
nication. We populated the KVS with one million entries of
1 KiB each. We benchmark it under different YCSB [7] work-
loads. Table 4 shows that Naos RDMA achieves an average
speedup of 11x over TCP-Kryo. The speedup comes from the
fact that TCP-Kryo was bottlenecked by the CPU, whereas
Naos consumes less CPU time to send a KVS request. The ex-
periment shows that Naos can be utilized for KVS workloads
as KVS requests and responses have low sparsity.

In comparison with microbenchmarks (§4.1), the perfor-
mance difference between Naos and Kryo is much higher for
the current workload than for the microbenchmarks, where
Kryo’s performance was measured after JIT compilation that

LiveJournal [4] (2 nodes) Orkut [35] (3 nodes)
TCP RDMA TCP RDMA

Test Total Stage Total Stage Total Stage Total Stage
Java 413.46 3.67-4.04 406.87 3.53-3.99 364.53 3.20-3.38 365.29 3.10-3.44
Kryo 410.94 3.62-4.06 411.33 3.63-3.99 357.58 2.98-3.47 354.06 2.91-3.42
Skyway 394.32 3.52-3.77 NA NA 350.48 3.07-3.24 NA NA
Naos 393.05 3.54-3.76 395.05 3.59-3.70 342.06 2.85-3.32 343.00 2.84-3.35
NaosIt 394.49 3.56-3.77 386.01 3.48-3.69 345.94 2.82-3.45 333.16 2.72-3.24

Skyway† 386.31 3.54-3.78 NA NA 340.82 2.95-3.30 NA NA
Naos† 373.04 3.27-3.72 369.10 3.16-3.63 331.31 2.86-3.22 335.50 2.85-3.22

† PageRank with sparsity-aware implementation.

Table 5: Total and per stage processing times in seconds for
100 iterations of PageRank algorithm. Percentiles 5 and 95
are reported for PageRank iterations.

significantly improved its performance for repetitive sending
of the same object. Since Naos does not depend on Java run-
time optimizations, it can achieve much higher performance
than Kryo for dynamic workloads.

Improving Data Processing Applications. We could not
integrate Naos into Spark as its shuffle module is designed to
communicate files with serialized objects. Integration of Naos
would require a substantial redesign of Spark’s code base.
Therefore, we implemented our own map-reduce framework
that takes advantage of Naos. Our framework supports all
discussed serializers including Skyway and also offers RDMA
networking with Disni. It was designed to resemble Spark but
perform shuffle completely in-memory.

We evaluate the OSD approaches by running PageRank on
real-world graphs as input: LiveJournal [4] and Orkut [35].
The LiveJournal dataset was processed with two shuffle work-
ers and Orkut with three shuffle workers. Naos was deployed
with 256 KiB pipelining and without cycle detection. We
report total runtime including data loading and 5 and 95 per-
centiles for processing a single Pagerank iteration. We also
provide two implementations of PageRank: the first one fol-
lows conventional design where each score update is a class
of 32 bytes; the second implementation was designed to com-
municate dense contiguous score updates, thereby reducing
sparsity of communicated shuffle blocks.

Table 5 shows the lowest runtime was achieved by Naos
and Skyway for the first implementation. A side effect of Naos
and Skyway is that, after receiving, objects are always contigu-
ous in memory, thereby improving data locality. As a result,
an application can process such contiguous objects faster
as fewer memory pages need to be fetched. Overall, Naos
TCP performs approximately as Skyway, but NaosIt RDMA
provides 2.1% and 4.8% improvement over Skyway for Live-
Journal and Orkut, respectively. The experiment shows that
zero-transformation approaches for OSD can reduce process-
ing time for data-processing workloads.

The sparsity-aware implementation provides an additional
4% reduction in runtimes, showing that applications need to
take Naos’ limitations into consideration to achieve the high-
est performance. Thus, Naos could be used in combination
with works on data sparsity reduction for JVMs [5, 33, 34].

5 Discussion and Future work

The role of RDMA. RDMA helps Naos to remove potential
copies induced by the TCP stack. Application-wise, Naos is
zero-copy for both TCP and RDMA networks, unlike Sky-
way. On the other hand, for trivial graphs, Skyway and Naos
TCP use almost identical algorithms for the receiver, as they
both receive objects with zero-copy and only fix the class
reference. However, since Naos TCP does not pre-allocate
memory for receiving, its performance could be bound by
memory allocation. It is possible to modify Naos TCP to pre-
allocated buffers as Skyway and RDMA Naos do, removing
the bottleneck. In this work, however, we focus on the RDMA
implementation of Naos.

SmartNICs. In Naos, a sender cannot modify its on-heap
memory before sending. Therefore, a receiver has to employ
a complex pointer recovery algorithm, whereas Skyway can
pre-process buffers before sending them to help the receiver
to recover objects faster. We believe that such a feature is
better implemented at the SmartNIC level that would fix the
pointers on the fly before writing the data to DRAM. For
example, since a Naos’ RDMA sender already knows the
destination addresses of the objects, either the SmartNIC at
the sender or at the receiver could fix the object pointers. The
class pointers could be fixed by storing class translation tables
in the SmartNIC.

6 Conclusions

We have presented Naos, a JVM communication library that
enables transferring objects directly from one heap to an-
other over the network with minimal CPU involvement and
zero-copy . We demonstrated that existing OSD techniques
are bound to CPU and that, as networks get faster, they will
become the bottleneck of distributed systems. Naos com-
pletely avoids the need to serialize and deserialize objects
for data transfers, with the corresponding performance advan-
tages. Naos provides a simple API that simplifies the use of
RDMA from JVM-based applications. Our evaluation shows
that Naos outperforms all existing OSD approaches for mod-
erately sparse object graphs.

7 Acknowledgement.

We would like to thank our shepherd, Khanh Nguyen, and the
anonymous reviewers for their suggestions and help to im-
prove the paper. This research was supported by ETH Zurich,
and by Microsoft Research through its Swiss Joint Research
Centre. The project also received funding from the European
Research Council under the European Union Horizon 2020
programme (grant agreement DAPP, No. 678880). Rodrigo
Bruno’s research was supported in part by grants from Oracle
Labs and SBB.

References

[1] Oracle Corporation and/or its affiliates. JDK 11, 2019.
https://openjdk.java.net/projects/jdk/11/.

[2] Dubbo Apache. Apache Dubbo Project, 2018. https:
//dubbo.apache.org.

[3] MINA Apache. Apache MINA Project, 2009. https:
//mina.apache.org.

[4] Lars Backstrom, Dan Huttenlocher, Jon Kleinberg, and
Xiangyang Lan. Group Formation in Large Social Net-
works: Membership, Growth, and Evolution. In Proceed-
ings of the 12th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD’06,
pages 44–54. Association for Computing Machinery,
2006.

[5] Rodrigo Bruno, Vojin Jovanovic, Christian Wimmer,
and Gustavo Alonso. Compiler-Assisted Object Inlining
with Value Fields. In Proceedings of the 42nd ACM
SIGPLAN International Conference on Programming
Language Design and Implementation, PLDI’21. Asso-
ciation for Computing Machinery, 2021.

[6] Paris Carbone, Asterios Katsifodimos, Stephan Ewen,
Volker Markl, Seif Haridi, and Kostas Tzoumas. Apache
Flink: Stream and batch processing in a single engine.
Bulletin of the IEEE Computer Society Technical Com-
mittee on Data Engineering, 36(4), 2015.

[7] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking Cloud
Serving Systems with YCSB. In Proceedings of the 1st
ACM Symposium on Cloud Computing, SoCC’10, pages
143–154. Association for Computing Machinery, 2010.

[8] Aleksandar Dragojević, Dushyanth Narayanan, Miguel
Castro, and Orion Hodson. FaRM: Fast Remote Mem-
ory. In 11th USENIX Symposium on Networked Systems
Design and Implementation, NSDI’14, pages 401–414.
USENIX Association, 2014.

[9] Christine H. Flood, Roman Kennke, Andrew Dinn, An-
drew Haley, and Roland Westrelin. Shenandoah: An
Open-Source Concurrent Compacting Garbage Collec-
tor for OpenJDK. In Proceedings of the 13th Interna-
tional Conference on Principles and Practices of Pro-
gramming on the Java Platform: Virtual Machines, Lan-
guages, and Tools, PPPJ’16. Association for Computing
Machinery, 2016.

[10] Urs Hölzle, Craig Chambers, and David Ungar. Optimiz-
ing dynamically-typed object-oriented languages with
polymorphic inline caches. In Pierre America, editor,
ECOOP’91 European Conference on Object-Oriented
Programming, pages 21–38. Springer, 1991.

[11] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and
Benjamin Reed. ZooKeeper: Wait-free Coordination
for Internet-scale Systems. In 2010 USENIX Annual
Technical Conference, USENIX ATC’10. USENIX As-
sociation, 2010.

[12] Google Inc. Protocol buffers: Google’s data in-
terchange format, 2008. https://github.com/
protocolbuffers/protobuf.

[13] Jaeyoung Jang, Sung Jun Jung, Sunmin Jeong, Jun Heo,
Hoon Shin, Tae Jun Ham, and Jae W. Lee. A specialized
architecture for object serialization with applications to
big data analytics. In Proceedings of the ACM/IEEE
47th Annual International Symposium on Computer Ar-
chitecture, ISCA’20, page 322–334. IEEE Press, 2020.

[14] Anuj Kalia, Michael Kaminsky, and David G. Andersen.
Design Guidelines for High Performance RDMA Sys-
tems. In 2016 USENIX Annual Technical Conference,
USENIX ATC’16, pages 437–450. USENIX Associa-
tion, 2016.

[15] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood,
Parthasarathy Ranganathan, Tipp Moseley, Gu-Yeon
Wei, and David Brooks. Profiling a Warehouse-Scale
Computer. In Proceedings of the 42nd Annual Interna-
tional Symposium on Computer Architecture, ISCA’15,
pages 158–169. Association for Computing Machinery,
2015.

[16] Sean Leary. JSON-java, 2015. https://github.com/
stleary/JSON-java.

[17] Ilya Lesokhin, Haggai Eran, Shachar Raindel, Guy
Shapiro, Sagi Grimberg, Liran Liss, Muli Ben-Yehuda,
Nadav Amit, and Dan Tsafrir. Page Fault Support for
Network Controllers. In Proceedings of the Twenty-
Second International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, ASPLOS’17, pages 449–466. Association for
Computing Machinery, 2017.

[18] Mellanox Technologies Ltd. Optimized memory ac-
cess, 2020. https://docs.mellanox.com/display/
MLNXOFEDv492240/Optimized+Memory+Access.

[19] X. Lu, D. Shankar, S. Gugnani, and D. K. Panda. High-
performance design of Apache Spark with RDMA and
its benefits on various workloads. In 2016 IEEE Inter-
national Conference on Big Data, BigData’16, pages
253–262, 2016.

[20] Frank Mietke, R. Baumgartl, R. Rex, Torsten Mehlan,
Torsten Hoefler, and Wolfgang Rehm. Analysis of the
Memory Registration Process in the Mellanox Infini-
Band Software Stack. In Proceedings of Euro-Par 2006

https://openjdk.java.net/projects/jdk/11/
https://dubbo.apache.org
https://dubbo.apache.org
https://mina.apache.org
https://mina.apache.org
https://github.com/protocolbuffers/protobuf
https://github.com/protocolbuffers/protobuf
https://github.com/stleary/JSON-java
https://github.com/stleary/JSON-java
https://docs.mellanox.com/display/MLNXOFEDv492240/Optimized+Memory+Access
https://docs.mellanox.com/display/MLNXOFEDv492240/Optimized+Memory+Access

Parallel Processing, pages 124–133. Springer-Verlag
Berlin, 2006.

[21] Khanh Nguyen, Lu Fang, Christian Navasca, Guoqing
Xu, Brian Demsky, and Shan Lu. Skyway: Connecting
Managed Heaps in Distributed Big Data Systems. In
Proceedings of the Twenty-Third International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS’18, pages 56–
69. Association for Computing Machinery, 2018.

[22] Kay Ousterhout, Ryan Rasti, Sylvia Ratnasamy, Scott
Shenker, and Byung-Gon Chun. Making Sense of Perfor-
mance in Data Analytics Frameworks. In 12th USENIX
Symposium on Networked Systems Design and Imple-
mentation, NSDI’15, pages 293–307. USENIX Associ-
ation, 2015.

[23] Marius Poke and Torsten Hoefler. DARE: High-
Performance State Machine Replication on RDMA Net-
works. In Proceedings of the 24th International Sym-
posium on High-Performance Parallel and Distributed
Computing, HPDC’15, pages 107–118. Association for
Computing Machinery, 2015.

[24] Arash Pourhabibi, Siddharth Gupta, Hussein Kassir,
Mark Sutherland, Zilu Tian, Mario Paulo Drumond,
Babak Falsafi, and Christoph Koch. Optimus Prime:
Accelerating Data Transformation in Servers. In Pro-
ceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages
and Operating Systems, ASPLOS’20, pages 1203–1216.
Association for Computing Machinery, 2020.

[25] Benjamin Rothenberger, Konstantin Taranov, Adrian
Perrig, and Torsten Hoefler. ReDMArk: Bypassing
RDMA Security Mechanisms. In 30th USENIX Security
Symposium, USENIX Security’21. USENIX Associa-
tion, 2021.

[26] Esoteric Software. Kryo - object graph serialization
framework for Java, 2008. https://github.com/
EsotericSoftware/kryo.

[27] Patrick Stuedi, Bernard Metzler, and Animesh Trivedi.
JVerbs: Ultra-Low Latency for Data Center Applica-
tions. In Proceedings of the 4th Annual Symposium on
Cloud Computing, SoCC’13. Association for Comput-
ing Machinery, 2013.

[28] Patrick Stuedi, Animesh Trivedi, Bernard Metzler, and
Jonas Pfefferle. DaRPC: Data Center RPC. In Pro-
ceedings of the ACM Symposium on Cloud Computing,
SoCC’14, pages 1–13. Association for Computing Ma-
chinery, 2014.

[29] Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle, Ana
Klimovic, Adrian Schuepbach, and Bernard Metzler.
Unification of Temporary Storage in the NodeKernel
Architecture. In 2019 USENIX Annual Technical Con-
ference, USENIX ATC’19, pages 767–782. USENIX
Association, 2019.

[30] Konstantin Taranov, Salvatore Di Girolamo, and Torsten
Hoefler. CoRM: Compactable Remote Memory over
RDMA. In Proceedings of the 2021 ACM SIGMOD
International Conference on Management of Data, SIG-
MOD’21. Association for Computing Machinery, 2021.

[31] Konstantin Taranov, Benjamin Rothenberger, Adrian
Perrig, and Torsten Hoefler. sRDMA – Efficient NIC-
based Authentication and Encryption for Remote Di-
rect Memory Access. In 2020 USENIX Annual Tech-
nical Conference, USENIX ATC’20, pages 691–704.
USENIX Association, 2020.

[32] Hung-Wei Tseng, Qianchen Zhao, Yuxiao Zhou, Mark
Gahagan, and Steven Swanson. Morpheus: Creating
application objects efficiently for heterogeneous com-
puting. In Proceedings of the 43rd International Sympo-
sium on Computer Architecture, ISCA’16, pages 53–65.
IEEE Press, 2016.

[33] Christian Wimmer and Hanspeter Mössenböck. Auto-
matic Feedback-Directed Object Inlining in the Java
Hotspot™ Virtual Machine. In Proceedings of the 3rd
International Conference on Virtual Execution Environ-
ments, VEE’07, pages 12–21. Association for Comput-
ing Machinery, 2007.

[34] Christian Wimmer and Hanspeter Mössenböck. Au-
tomatic Array Inlining in Java Virtual Machines. In
Proceedings of the 6th Annual IEEE/ACM Interna-
tional Symposium on Code Generation and Optimiza-
tion, CGO’08, pages 14–23, New York, NY, USA, 2008.
Association for Computing Machinery.

[35] Jaewon Yang and Jure Leskovec. Defining and Eval-
uating Network Communities Based on Ground-Truth.
Knowl. Inf. Syst., 42(1):181–213, 2015.

[36] Matei Zaharia, Mosharaf Chowdhury, Michael J.
Franklin, Scott Shenker, and Ion Stoica. Spark: Cluster
Computing with Working Sets. In Proceedings of the
2nd USENIX Conference on Hot Topics in Cloud Com-
puting, HotCloud’10, page 10. USENIX Association,
2010.

https://github.com/EsotericSoftware/kryo
https://github.com/EsotericSoftware/kryo

	Introduction
	Object Serialization
	System Overview
	Object Graph Traversal
	Network exchange of on-Heap Objects
	Object Graph Recovery
	Overlapping network and graph traversal

	Evaluation
	Serializing Java Data Structures
	Accelerating applications with Naos

	Discussion and Future work
	Conclusions
	Acknowledgement.

