
Notified Access: Extending Remote Memory Access Programming Models for
Producer-Consumer Synchronization

Roberto Belli, Torsten Hoefler
Dept. of Computer Science, ETH Zurich

{bellir,htor}@inf.ethz.ch

Abstract—Remote Memory Access (RMA) programming
enables direct access to low-level hardware features to achieve
high performance for distributed-memory programs. However,
the design of RMA programming schemes focuses on the
memory access and less on process synchronization. For exam-
ple, in contemporary RMA programming systems, the widely
used producer-consumer pattern can only be implemented
inefficiently, incurring the overhead of an additional round-
trip message. We propose Notified Access, a scheme where the
target process of an access can receive a completion notification.
This scheme enables direct and efficient synchronization with
a minimum number of messages. We implement our scheme
in an open source MPI-3 RMA library and demonstrate lower
overheads (two cache misses) than other point-to-point syn-
chronization mechanisms. We also evaluate our implementation
on three real-world benchmarks: a stencil computation, a tree
computation, and a Cholesky factorization implemented with
tasks. Our scheme always performs better than traditional
message passing and other existing RMA synchronization
schemes, providing up to 50% speedup on small messages.
Our analysis shows that Notified Access is a valuable primitive
for any RMA system. Furthermore, we provide guidance for
the design of low-level network interfaces to support Notified
Access efficiently.

Keywords-RMA; synchronization; notification; MPI

I. INTRODUCTION

Modern high-performance networks support Remote Di-
rect Memory Access (RDMA) which allows processes to
directly access userspace memory of any remote process
bypassing the remote CPU and operating system. Tradi-
tionally, this direct access has been used to implement
fast message passing systems [1]. However, the semantics
of message passing require expensive interactions at the
receiving side where an incoming message needs to be
matched to the correct receive statement in order to deter-
mine the buffer address for the message. Emerging RMA
and PGAS programming models enable the programmer
to specify the target buffer at the source process which
allows RDMA hardware to perform the whole transmission
without software interaction. This often leads to significant
improvements in application performance [2]–[4].

Most current RMA programming models, such as UPC,
Fortran 2008, SHMEM, or MPI-3 One Sided, mainly focus
on data movement (e.g., put and get) and memory synchro-
nization (e.g., flush or fence). Process synchronization is
often performed via non-scalable bulk synchronization func-

tions (e.g., barrier in UPC and SHMEM; fence in MPI-
3 One Sided; sync all in Fortran 2008), scalable group
synchronization functions (e.g., post, start, complete,
wait in MPI-3 One Sided; sync images in Fortran 2008), or
through busy waiting on memory locations (in combination
with memory synchronizations such as flush in MPI-3 or
sync memory in Fortran 2008).

However, as we will show, each of these synchroniza-
tion mechanisms requires at least one additional round-trip
message between the processes. This synchronization over-
head may drastically reduce the performance of applications
where a processor is forced to stall until the synchronization
is acknowledged. For instance, this overhead is critical in
the bounded buffer form of the general producer-consumer
pattern. This pattern is common in parallel applications using
any form of halo exchange, tree-based communication, or
any tasking system. Such producer-consumer patterns are
ideally supported by message passing where the completion
of the receive indicates the reception of the message.

In this work, we combine the advantages of RMA
programming—hardware-supported direct memory access—
with the process synchronization features of message pass-
ing. We propose to extend RMA programming models with
a new mechanism called Notified Access which allows the
target process to detect when a transfer is completed without
additional messages. Figure 1 shows the performance of
a strong scaling stencil computation with various numbers
of processes [5]. As expected, message passing performs
better than One Sided approaches due to additional round-
trip times. Notified Access consistently outperforms message
passing by more than 1.4x on 32 processes.

●
●

● ● ● ● ● ●

Notified Access

MPI message passing
MPI one sided (PSCW)

MPI one sided (fence)

1.24 x

1.41 x
1.42 x

1.5 x 1.5 x 1.47 x 1.44 x 1.43 x

0.0

0.5

1.0

1.5

4 8 12 16 20 24 28 32
Number of Processes

G
M

O
PS

Figure 1: Pipeline stencil performance in billion memory
operations per second (GMOPS) of various communication
schemes on a domain of size 1280x12800 [5].

POTRF

TRSM

DGEMM

SYRK

(a) Cholesky task graph

Producer Consumer
Mailbox

1. Transfer to
intermediate buffer

3. Message matching
and copy

Send

Recv

1. Transfer of
meta data

5. Acknowledgement

2. Message matching
Send

Recv

3. Request

2. Acknowledgement

4. Data Transfer

Eager

Rendezvous

(b) Message Passing

Producer ConsumerPut + Synch

Get + Synch

1. Data transfer

2. Producer waits for
remote completion

Put

3. Producer reports completion
to consumer

Explicit
SynchExplicit

Synch

1. Transfer data Get

Flush

Explicit
Synch

Explicit
Synch

2. Consumer reports completion
to producer

(c) RMA

Producer Consumer
Notified Put

Notified Get

1. Transfer data + notification

Put
Wait

Notification

Flush

: target aware of completion

: origin aware of completion

2. Acknowledgement

1. Transfer data + notification Get
Wait

Notification

(d) Notified Access

Figure 2: An example task graph illustrating a producer-consumer problem and examples of various point-to-point protocols
to implement producer-consumer communications. The point in time at which a process knows that the transfer is complete
is denoted for the target and the origin processes as a star and a diamond, respectively.

Notified Access creates a programming model with se-
mantics in between pure message passing and pure (passive)
RMA programming, combining the strengths of both.

The main contributions of our work are:
• We propose Notified Access as a synchronization model

that extends RMA programming with per-message pro-
cess synchronization and matching.

• We describe a small extension to the MPI specification
that enables notified access semantics. Similar exten-
sions can be added to other RMA programming models.

• We discuss how to implement notified access with min-
imal overhead on various existing low-level network
interfaces and we develop a fully-functional implemen-
tation for Cray systems.

• We present three case-studies: a stencil computation
with a 3-point stencil, a tree computation, and a stati-
cally scheduled tasking system to show the benefits of
notified access in practice.

II. BACKGROUND

RMA programming is becoming an important tool for
writing fast parallel programs. However, as hinted before,
many RMA models were designed to exploit existing hard-
ware capabilities and to support billboard-style [6, §11]
random-access applications. The direct hardware accelera-
tion in modern networks enables a much wider set of use-
cases for RMA programming that are not well supported
by existing RMA or PGAS models. In this paper, we focus
on investigating the ubiquitous producer-consumer pattern
in parallel computing.

Producer-consumer communications are found in virtually
all modern high-performance applications. They are em-
ployed whenever a dataflow needs to cross domain (process
boundaries). In the general form of the problem, a producer
generates data and enqueues it for the consumer. The con-
sumer then dequeues the data and uses it to advance the
computation. For example, Figure 2a shows the task graph

induced by a Cholesky factorization. Each edge in the graph
represents a producer-consumer relation. We will explain
the Cholesky example in more detail in Section VI-C.
Since queuing is expensive, most high-performance codes
implement a single-element queue in the form of a receive
buffer at the destination.

All producer-consumer communications require two basic
semantics: (1) data transmission and (2) process synchro-
nization. In message passing, both semantics are provided
by the receive. Figure 2b shows the network transactions
required to implement a transfer of a small (eager) and a
large (rendezvous) message [7]. RMA programming models
separate data transfer and synchronization into different
primitives. The progress of many data transfers can then
be synchronized with a single (bulk) operation.

However, many producer-consumer synchronizations only
require a single message and the needed synchronization
implies additional network transactions. Figure 2c shows
protocols based on remote put and get, respectively. All
protocols, with the exception of eager message passing, re-
quire at least three message transactions on the critical path.
Eager message passing only requires a single transaction but
the receiver needs to match and copy incoming messages,
which causes different overheads. In addition, the required
intermediate buffers make eager message passing generally
unscalable [7].

Notified access provides the option to unify these two se-
mantics, enabling pipelining and bulk synchronization with
single-transfer notification. Figure 2d shows notified access
for small as well as large message sizes. Notified access
only requires a single message for the actual network trans-
mission and the notification and enables full asynchronous
message progression in hardware. We will describe details
in Section III.

A. Notation
We now briefly introduce the terminology we use in the

remainder of the document. In RMA, we define the origin
process as the process that issues the RMA operation and
the target process as the process that the RMA operation
targets. We define a remote access as an RMA operation
that copies an ordered set of (not necessarily consecutive)
bytes either from the origin to the target (put) or vice-versa
(get). Some more complex atomic accesses involve get and
put in a single operation (e.g., compare and swap).

A synchronization epoch [6, §11] is a time interval relative
to an origin and a target process. Each epoch is enclosed by
two synchronization operations that are called at the origin
and directed towards the target process. Two remote accesses
(between the same origin-target pair) are not ordered if
they happen in the same epoch. However, if they appear in
different epochs, then they are ordered by the order of the
epochs. The term notification represents the transmission of
the information that an epoch has ended to the target process.
The end of the epoch indicates that the target process can
access the communicated data or re-use its local commu-
nication buffers. In most RMA models, the target process
is passive and is not informed of accesses to its memory.
Thus, in most of today’s RMA models, producer-consumer
computations require an additional round-trip message to
communicate the change of synchronization epochs.

III. NOTIFIED ACCESS

Notified Access adds a remote completion notification to
any remote access. The target process can use this notifica-
tion for synchronizing local or remote accesses to the buffer.
The interpretation of the notification depends on the action:
if the notified access is a read then the notification indicates
that the data was copied and the buffer can be overwritten;
if the notified access is a write then the notification indicates
that the data was committed to memory and can be read.

The origin can mark accesses with a notification or with-
out, i.e., not all accesses have to trigger a remote notification.
The simplest notification system would just notify the target
process of each incoming notified access. However, this
would not make it possible to distinguish different accesses
at the target. Thus, we propose a richer interface that allows
the target to set up notifications that match a specific origin
and an arbitrary integer tag value. The resulting matching
queue semantics have been highly successful in MPI-1.

The <source, tag> tuple can be used to identify specific
accesses in the program logic. The notification system also
supports wildcards for both source or tag which match
incoming messages in the order of arrival to the oldest
notification if multiple notifications match. The tag can be
selected to identify accessed memory regions at the target
and can thus be used to efficiently implement starvation-free
dataflow-based tasking systems. Since RMA programming
often involves many small accesses, we introduce counting

notifications that only notify after n matching accesses were
performed. This capability allows bulk-notification optimiza-
tions.

Another option for remote notification would be to de-
fine notified synchronization operations instead of notified
accesses, e.g., a notified version of the common flush
operation. However, this would still necessitate at least two
network transfers (which could be pipelined) to transmit
a single message in a producer-consumer setting. Notified
access only requires a single network transfer. To achieve
similar semantics and maintain the epoch definition, one
could consider that a notified access has the side-effect
of completing all previous accesses. This would enable an
elegant definition of epoch which is enclosed by notified
accesses or synchronizations. However, we do not consider
this because no network technology supports this today and
it seems hard to guarantee this without additional network
transfers on adaptively routed networks. If this becomes
available in the future then one may easily redefine the epoch
concept. In our definition of notified access, all notified
accesses form their own epoch and do not interact with
normal remote accesses.

A. Discussion: Shared Memory Synchronization
We now briefly draw some parallels between RMA pro-

gramming and shared memory programming. Both models
are very similar in that remote memory can be accessed
directly and data is moved by the hardware. The main
difference is that RMA programming presents a partitioned
view of the address space (thus also often called Partitioned
Global Address Space, PGAS, even though a PGAS can be
implemented without direct remote access primitives).

A shared memory synchronization is performed through
memory fence ISA instructions (e.g., mfence in x86). These
instructions typically block all further instructions until all
write buffers are empty and all accesses are visible to all
cores. Such fences are semantically similar to flush opera-
tions in RMA. However, flush operations synchronize across
datacenters where latencies can be in the microsecond range
(as opposed to nanoseconds for on-chip transfers). Thus,
frequent flushes have a detrimental effect on application
performance. Existing RMA and the new (counted) noti-
fied access bulk synchronization operations enables efficient
message pipelining for high-latency environments.

We believe that Notified Access may also be a viable inter-
face for future large-scale on-chip networks where transfer
pipelining becomes a must and synchronization has a higher
relative cost.

B. A Strawman Interface for Notified Access
While Notified Access is independent of a particular pro-

gramming model, we will now present a strawman interface
for the Message Passing Interface (MPI). Without loss of
generality, we will use this interface as a case study to

compare applications using a highly-tuned MPI-3.0 [6] im-
plementation. We chose MPI for several reasons: First, it has
the richest combination of synchronization mechanisms—
all synchronization mechanisms provided by other models
can be considered as a subset of those provided by MPI
[6]. Second, many different implementations of the MPI
specification are available, optimized and fully exploit the
performance of the target architecture.

To extend MPI with Notified Access, we first introduce a
notified variant for each communication operation in MPI
RMA. Each new function has an additional integer tag
argument. The following listing shows C interfaces for put
and get1:
int MPI_Put_notify(void *origin_addr, int origin_count,

MPI_Datatype origin_type, int target_rank,
MPI_Aint target_disp, int target_count,
MPI_Datatype target_type, MPI_Win win, int tag);

int MPI_Get_notify(void *origin_addr, int origin_count,
MPI_Datatype origin_type, int target_rank,
MPI_Aint target_disp, int target_count,
MPI_Datatype target_type, MPI_Win win, int tag);

Similar functions can be created for MPI’s accumulate
operations (accumulate, get accumulate, fetch and op, and
compare and swap) or request-based operations. As in other
MPI routines, the number of significant tag bits may be
limited due to hardware constraints. The calls support zero-
byte payloads in which case only the notification is set.

MPI request objects are used for notification at the re-
ceiver side. In order to keep the overhead minimal, we use
persistent requests [6, §3.9]. These requests are initialized
explicitly with the function MPI_Notify_init and are not
automatically freed. We show the C interface for notify
init and the existing start, test, and wait functions in the
following:
int MPI_Notify_init(MPI_Win win, int src_rank, int tag,

int expected_count, MPI_Request *request);
/*Functions already available in MPI*/
int MPI_Start(MPI_Request *request);
int MPI_Test(MPI_Request *request, int *flag, MPI_Status *status);
int MPI_Wait(MPI_Request *request, MPI_Status *status);

MPI_Notify_init initializes a request for notification and
binds it to a specific MPI RMA window with notification
count, tag, and source. The returned MPI request object
can be used with the usual MPI test and wait functions. A
request completes after expected_count matching notified
accesses have been performed. Matching is performed in
order and it is defined through source and tag and the wild-
cards MPI_ANY_SOURCE and MPI_ANY_TAG are supported. If a
request is completed, the returned MPI status object includes
the information of only the last matching notified access.
Probe semantics can be added trivially.

1) Persistent Requests: Standard MPI requests are allo-
cated during the initialization call (e.g., nonblocking send or
receive) and freed during the completing call (e.g., test or

1While we describe MPI interfaces here for readability, our implementa-
tion uses the foMPI prefix to not violate the standardized MPI namespace

wait). This implicit request management makes these objects
rather expensive. A special kind of requests, persistent
requests has been introduced to statically bind message pass-
ing arguments (buffers and counts) to a request that can then
be started and completed multiple times. Re-using requests
in this manner amortizes their creation time and enables
explicit request management (allocating and freeing). In No-
tified Access, requests are initialized with MPI_Notify_init
and freed with MPI_Request_free. Before each use, re-
quests have to be initialized with MPI_Start. After each
initialization, request completion can be tested with the
normal test and wait operations.

Listing 1 shows a complete example: a ping-pong bench-
mark to illustrate message transmission whose performance
we measure in the following section.
MPI_Win win;
MPI_Request notification_request;
MPI_Status notification_status;
int win_size = 2 * MAX_SIZE * sizeof(double);
double *buf; int my_rank;
MPI_Win_allocate(win_size, sizeof(double), MPI_INFO_NULL,

MPI_COMM_WORLD, &buf, &win);
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
/* initialize notification request */
int customTag = 99; int expected_count = 1;
MPI_Notify_init(win, partner_rank, customTag, expected_count,

¬ification_request);
for(size=8; size<MAX_SIZE; size++) {
if (my_rank==client_rank) {
/* send ping */
MPI_Put_notify(buf, size, MPI_DOUBLE, partner_rank, 0, size,
MPI_DOUBLE, win, customTag);

MPI_Win_flush(partner_rank,win);
/* wait for pong */
MPI_Start(¬ification_request);
MPI_Wait(¬ification_request, ¬ification_status);

} else { /* server */
/* wait for ping */
MPI_Start(¬ification_request);
MPI_Wait(¬ification_request, ¬ification_status);
/* send pong */
MPI_Put_notify(buf, size, MPI_DOUBLE, partner_rank, MAX_SIZE,
size, MPI_DOUBLE, win, customTag);

MPI_Win_flush(partner_rank,win);
}

} /* end of iterations */
MPI_Request_free(¬ification_request);
MPI_Win_free(&win);

Listing 1: A simple ping-pong example in Notified Access.

IV. IMPLEMENTATION

We now explain how to implement Notified Access with
various modern network technologies.

Today’s networks do not support hardware message
matching, therefore, we implement the matching in software
at the receiver. This matching mechanism does not reduce
the performance significantly since the data movement is
still fully performed in hardware. Only the processing of
the light-weight notification is done in software. All soft-
ware functionalities can be implemented in the test or wait
functions which form synchronization points at the target
and does thus not require any asynchronous activity. We
will describe how our protocol requires only two compulsory

cache misses in the worst case if less than four notifications
are active.

Existing MPI matching protocols must either copy the
whole message in the eager case or perform extra synchro-
nization using software protocols in the rendezvous case.
The expensive eager message copy pollutes the cache and
consumes energy for the data movement. The rendezvous
protocol either prevents asynchronous progression or re-
quires an asynchronous software agent at the receive side [8].
Thus, we expect significant performance benefits compared
to message passing implementations.

A. Network-specific considerations

Various RDMA networks can support Notified Access
immediately. We will now briefly discuss how it can be
implemented with lowest overheads using widely known
network technologies.

InfiniBand: The Open Fabrics Enterprise Distribution
(OFED) defines RDMA write with immediate which gener-
ates a completion queue entry at the receiver. The receiver
can check this queue for remote notifications. The immediate
value can be used to encode the tag. RDMA read with
immediate is unfortunately not available and a more com-
plex protocol has to be employed. For instance, one could
rely on the ordering guarantees of InfiniBand and inject a
notification message right after the read.

Portals 4: The Portals interface [9] provides Event
Queues that are used to log performed network operations.
These queues can be polled at the target in order to retrieve
which remotely initiated events have been locally commit-
ted. This characteristic, combined with Portals’ capability
to transfer out-of-band data in the header, can be leveraged
to distinguish between notified and normal operations and
transfer the tag value and the data at the same time. The
use of Event Queues can potentially limit the message rate
in comparison to Portals counters or other mechanisms. A
more detailed discussion of design tradeoffs can be found
in the discussion section.

Other network interfaces have similar primitives that can
be used to implement Notified Access semantics. We now
present a complete blue print implementation for Cray
networks as well as shared memory in detail.

B. Implementation on Cray Networks

Our implementation bases on the open source foMPI (Fast
One Sided MPI) [4] which supports the full MPI-3.0 One
Sided interface. The foMPI library uses DMAPP [10] and
XPMEM [11] APIs for inter- and intra-node communica-
tions, respectively. Our extended foMPI-NA2 utilized the
uGNI API [12] that provides direct access to Cray’s Fast
Memory Access (FMA) and Block Transfer Engine (BTE)
mechanisms. FMA provides a service to efficiently transfer

2Available at http://spcl.inf.ethz.ch/ (Research section)

small amounts of contiguous data and BTE targets larger
transfers and offloads them to the network card. With both
mechanisms is it possible to directly notify the completion
of a RDMA operation to the target process. After the
completion of a remote read or write, a notification can be
posted to a destination completion queue that can be shared
between different segments of exposed memory.

The uGNI interface allows to attach a 4-byte integer to
each access which is then returned in the completion queue
at the destination. This functionality is similar to RDMA
write with immediate but also available for read accesses.
We encode the source rank and tag into the first and last
two bytes, respectively. This mechanism interacts seamlessly
with the existing foMPI which uses the DMAPP interface
for remote accesses.

The target side utilizes a single queue called the Unex-
pected Queue (UQ) to maintain the order of notifications.
The call MPI_Notify_init only allocates the persistent
notification request object and attaches source, tag, and count
to it. The request is a simple 32-byte structure: two 8-byte
values for the window and rank, two 4-byte values for tag
and a request type, and two 4-byte values for count and
matched (initialized to zero).

Requests are advanced only in test and wait functions.
Wait is implemented as a loop until test succeeds and
test performs the following steps: first it searches the UQ
for matching notifications. If it finds a matching notifica-
tion, it increases the matched counter of the request. If
the request reaches the required matched count then the
functions returns completion. If the UQ does not contain
all the needed notifications the check continues polling
the uGNI destination completion queue associated with the
target window. While polling the completion queue, we
may encounter notifications that do not match the query
parameters. These notifications are appended to the UQ for
later matching.

Once a notification is returned to the user, the request
will remain marked as completed (matched=count). The
function MPI_Start simply resets the matched counter to
zero to reinitialize the request.

C. Implementation in Shared Memory
For shared memory, we create a bounded ring buffer for

notifications in a set of shared memory segments which
are shared between all processes using XPMEM. Each
process owns such a segment and notifications that target
that process are enqueued into the ring buffer. Each entry in
the notification buffer is exactly the size of one cache line
and a notification contains, in addition to source and tag, a
payload field including the destination offset and the data.

The data of small put accesses can thus be directly
added to the notification to reduce the number of cache
line transfers. We call this protocol inline transfer. Larger
accesses are performed using an optimized memcpy and a
memory fence which is followed by the notification.

1

3

10

30

8 64 512 4096 32768 262144
Number of Transferred Bytes

L
a

te
n

cy
 (

u
s)

Notified Access
MPI Message Passing
MPI One Sided
No Synchronization

0.8
1.0
1.2
1.4

8 16 32 64 128

Protocol Switch
FMA BTE

Eager Rendezvous

(a) Inter-node put

1

3

10

30

8 64 512 4096 32768 262144
Number of Transferred Bytes

L
a

te
n

cy
 (

u
s)

Notified Access
MPI Message Passing
MPI One Sided

1
2
3
4
5

8 16 32 64 128

Protocol Switch
FMA BTE

Eager Rendezvous

(b) Inter-node get

0.1

0.3

1

3

10

8 64 512 4096 32768 262144
Number of Transferred Bytes

L
a

te
n

cy
 (

u
s)

Notified Access
MPI Message Passing
MPI One Sided
No Synchronization

0.1
0.2
0.3
0.4

8 16 32 64 128

Threshold

Inline Transfer

(c) Intra-node put/get
Figure 3: Ping-pong benchmark performance comparing Message Passing, MPI-3.0 One Sided, and Notified Access.

The target performs similar operations as for the uGNI
implementation. In addition to the uGNI completion queue
it checks the XPMEM notification queue. Non-matching
notifications are appended to the same unexpected queue
and matching is identical.

V. MICROBENCHMARKS

We now briefly analyze the number of additional cache
misses at the target assuming that exactly one notification is
active and no structure is in cache. The first mandatory cache
miss is caused by loading the 32 Byte request itself (we
assume the user aligned the structure). The second miss is
caused by accessing the UQ which can be arranged in a way
that the first elements are always on the same cache line as
the head pointer. More misses may be caused by accessing
the hardware completion queues (uGNI or XPMEM). But
since any notification system would incur these, we do not
count them towards the overhead.

A. Microbenchmark Evaluation and Performance Model
We now compare the performance of Notified Access with

existing MPI RMA and Message Passing mechanisms im-
plemented in foMPI and Cray MPI. Gerstenberger at al. [4]
demonstrated that foMPI outperforms other programming
models such as UPC, CAF, or Cray’s native MPI One Sided,
thus, we use foMPI for all MPI One Sided experiments.

Firstly, we evaluate the latency and bandwidth using a
standard ping-pong benchmark. The complete benchmark
code for Notified Access is shown in Listing 1 and we
compare the performance to traditional Message Passing,
One Sided with general active target mode synchronization
and fence synchronization. We also compare with an un-
synchronized benchmark which indicates the lower-bound
for network transmission but is not a legal synchronization
implementation. Fence and general active target mode syn-
chronizations performed identical on two processes, thus, we
only report one result.

Our benchmark measures the time needed by the client
process to send data to the server process and being aware
that the data sent by the server is committed. Each test
is repeated 1,000 times for each configuration to gather

statistics. The latencies are calculated as half Round Trip
Time (RTT) and all the figures show the medians of all
gathered measurements.

For reproducibility and clarity, we present code fragments
for each of our benchmarks. However, due to space con-
straints, we only present the instructions of the client process
(the block in if (my_rank==master_rank) in Listing 1).
The server performs the same operations in the opposite
order and the enclosing loops are identical to Listing 1.

For MPI Message Passing we used the standard scheme
that involves send and receive:
MPI_Send(buf, size, MPI_DOUBLE, partner_rank, tag, comm);
MPI_Recv(buf, size, MPI_DOUBLE, partner_rank, tag, comm, &status);

General active target synchronization is implemented as:
MPI_Win_start(group, 0, win);
MPI_Put(buf, size, MPI_DOUBLE, partner, 0, size, MPI_DOUBLE, win);
MPI_Win_complete(win);
MPI_Win_post(group, 0, win);
MPI_Win_wait(win);

As theoretical limit we use busy wait on the receiver side
at the first and last bytes of the access (without full memory
synchronization). We remark that this technique cannot be
used to implement a correct (portable) program:
rcvBuf[0] = rcvBuf[size-1] = mark;
/*send and receive buffers are at different memory locations*/
MPI_Put(sndBuf, size, MPI_DOUBLE, partner, 0, size, MPI_DOUBLE, win);
MPI_Win_flush(partner,win);
while(rcvBuf[0] == mark || rcvBuf[size-1] == mark);

Experimental Environment: We execute all benchmarks
on a Cray XC30 system at the Swiss National Super-
computing Centre (CSCS). This system, named Piz Daint
has 5,272 compute nodes based on Intel Xeon E5 pro-
cessors. Each compute node is connected to other nodes
through a Dragonfly Aries network. We use the Cray Linux
Environment 5.1.UP01, GCC version 4.8.2 using the O3
optimization level, cray-MPICH version 6.2.2, uGNI version
5.0-1, DMAPP 7.0.1, and XPMEM 0.1.

Performance: Figure 3a shows the latency for varying
message sizes needed for putting data to a remote node
and notifying the destination process. Notified Access imple-
mented in foMPI-NA requires less than the 50% of the time

0

25

50

75

100

32 1024 32768 1048576

C
om

p/
C

om
m

 o
ve

rla
p

%

Notified Access
MPI Message Passing
MPI One Sided

Protocol Switch
FMA BTE

Protocol Switch
Eager Rendezvous

Number of Transferred Bytes

(a) Single-message overlap benchmark

●

●

●

●
●

●

1.1 x

1.32 x

1.43 x

1.52 x
1.58 x

2.17 x

0.0

0.5

1.0

1.5

2.0

2.5

4 8 16 32 64 128
Number of Processes

G
M

O
PS

● Notified Access
MPI Message Passing
MPI One Sided PSCW

(b) Pipelined Stencil from Intel’s Parallel
Research Kernels

● ●
●

●
●

●

0

5

10

15

4 8 16 32 64 128
Number of Processes

C
om

pl
et

io
n

Ti
m

e
(u

s)

● Notified Access
MPI Message Passing
MPI One Sided PSCW
MPI Reduce

(c) Tree-computation with 8 Bytes and 16
children at each level

Figure 4: Performance results for various application use-cases.

Table I: Varying LogGP Parameters for Notified Access

Shared Memory uGNI FMA uGNI BTE

L 0.25µs 1.02µs 1.32µs

G 0.08ns 0.105ns 0.101ns

needed by MPI One Sided to transfer data and synchronize
on small transfers. It also performs better than MPI Message
Passing, which for small messages uses an optimized eager
protocol incurring a buffer copy overhead. Figure 3b shows
the performance of a notified get in comparison to MPI One
Sided and Message Passing. We remark that the message
passing performance is a single transfer and has thus an
advantage over get which requires a request-reply protocol.
Figure 3c shows intra-node (shared memory) results. As
expected, notified access performance similar to message
passing because the latency for a round-trip is negligible
in shared memory where the overhead of the notification
dominates for small messages.

We now proceed to model the performance of each
involved call. The time to perform MPI_Notify_init is
tinit = 0.07µs and the time to perform MPI_Request_free
is tfree = 0.04µs in our implementation. Starting a request
incurs setting a single integer which costs tstart = 0.008µs.
Issuing a put or get notify costs tna = 0.29µs.

We now model the transmission and remote notification
time. We provide simple LogGP parameters [13] for the
notified put and get for intra-node as well as inter-node
communications. The send overhead is os = tna and we
determine the receive overhead or = 0.07µs if there is a
single request in the queue. L is the zero-byte latency, and
G is the transmission cost per Byte payload. The latter two
parameters depend on the transport type (shared memory or
uGNI) as well as the uGNI option FMA or BTE (which is
selected based on message size). Table I shows L and G for
all three options.

Computation/Communication Overlap: Our overlap
benchmark measures what share of the communica-
tion latency can be overlapped with computation. For

each data size, it calibrates the computation to con-
sume slightly more time than the communication latency.
Then, it places this computation between the communica-
tion initiation (MPI_Isend, MPI_Put, or MPI_Put_notify)
and the local completion (MPI_Wait, MPI_Win_fence, or
MPI_Win_flush). The ratio of communication overlap is
then computed from the measured latency and the overhead
of the communication (init + completion). Figure 4a shows
the ratio of overlappable communication. Small messages
are hard to overlap because either the notification time in
fence or the message passing overheads cannot be hidden.
Large messages are overlapped well in One Sided due
to hardware offload. Cray message passing implementation
offers asynchronous progression for the rendezvous protocol
at the cost of CPU resources [8]. Notified access achieves
the expected high overlap for all sizes because there are no
additional notification or copy overheads and the transfer
is fully hardware offloaded. The higher relative overlap of
MPI Message Passing at 8KB in comparison with Notified
Access is due to the higher message passing latency for that
message size.

VI. APPLICATIONS

We now discuss several use-cases of Notified Access: a
pipelined stencil, a tree computation, and a parallel Cholesky
factorization. Each of these use-cases demonstrates a differ-
ent version of a producer-consumer problem where Notified
Access can be used.

A. Pipelined Stencil
Our first motif application represents a pipelined stencil

computation. For this, we use the Sync_p2p kernel from
the Intel Parallel Research Kernels (PRK) [5]. We chose
this benchmark because it is designed to test the efficiency
of point-to-point synchronization. It represents several nu-
merical methods, such as wavefront-parallel algorithms or
Lower-Upper Symmetric Gauss-Seidel.

In the kernel, a two-dimensional m ⇥ n domain
is decomposed row-wise and x columns are assigned
to each process. A simple 3-point stencil update

A(i,j)=A(i-1,j)+A(i,j-1)-A(i-1,j-1) is performed at
each point. The execution is pipelined such that the first
process starts updating its x values in the first row. When
this is finished, it starts sending the first-row halo to the next
process and continues to compute the second row. Processes
wait for the update from the left neighbor and pipeline the
data to the right. All processes work in parallel as soon as
the pipeline is filled. A global synchronization is performed
to synchronize between iterations once all processes finish
their mth (last) row of the matrix.

For our test, we port Intel’s implementation to MPI One
Sided using both fence and general active target mode
(PSCW) as synchronization mechanisms. Figure 4b shows
the performance of the various implementations in a weak
scaling experiment. We show billion memory accesses per
second (GMOPS) to compare the communication modes. We
keep the partition size per PE constant with 1280 ⇥ 1280.
We plot the average of ten runs and the shade shows the
99% confidence interval.

These results show that Notified Access improves the
performance of the pipelined stencil more than 2.17x over
Message Passing. As expected, other One Sided approaches
are not suited well for this pattern and thus perform sub
optimal. General active target synchronization performs bet-
ter than fence because it only synchronizes two neighbors
instead of all processes.

B. Hierarchical Tree Computations
Hierarchical computations are ubiquitous in parallel pro-

grams. We represent such computations by a tree-based
communication which represents fan-in/fan-out as well as
scatter/gather patterns. Such patterns are often used in hier-
archical computations such as the Fast Multipole Method,
Barnes Hut, or computations with hierarchically-structured
matrices.

To represent these patterns, we implemented a 16-ary tree
performing a reduction at each stage. We again implement
it with Message Passing, One Sided general active target
synchronization as well as Notified Access. For notified
access, we use the counting feature to wait for all incoming
children with a single request. Figure 4c shows the average
times for small message reductions. We also compare to the
semantically equivalent vendor optimized Cray MPI_Reduce
operation. The difference is significant for latency-bound
small-message transfers, where notified access even outper-
forms the Cray’s optimized reduction.

Consumer-managed Buffering: All previous examples
required the producers to manage the buffering at the con-
sumer (i.e., the producer had to specify the target address).
This management may be expensive for computations where
multiple producers send data to a single consumer and the
set of producers changes nondeterministically (e.g., in many
dynamic applications such as particle codes or graph compu-
tations). A notified get can be used to retrieve the data from

the remote processes and simplifies buffer management.

C. Task-based Cholesky Factorization
We now present a full Cholesky factorization example

to demonstrate the utility of Notified Access in task data-
flow settings. The real Cholesky factorization of an n ⇥ n

symmetric positive-definite matrix A has the form A = LL

T

where L is an n⇥n real lower triangular matrix and L

T is the
conjugate transpose. It is often used for the numerical solu-
tion of linear equations Ax = b by the forward-substitution
Ly = b followed by the back-substitution L

T
x = y. Such

matrices occur frequently in numerical solutions of partial
differential equations and Monte Carlo simulations.

The factorization can be calculated using different al-
gorithmic variants: for instance the right-looking or left-
looking. We use the left-looking variant as proposed by
Kurzak et al. [14] as well as LAPACK [15]. The code
divides the matrix into tiles and each process allocates space
for the needed tiles. The computation of the tiles and their
dependencies is represented with a Directed Acyclic Graph
(DAG) of task dependencies.

The algorithm uses four basic operations defined on
blocks: DSYRK, DPOTRF, DGEMM and DTRSM. Each
function represents a task computing a tile; a more detailed
description is provided by Kurzak et al. [14]. Figure 2a
shows a simple example of a task graph generated by a
computation using 25 tiles.

The simple statically pipelined schedule [14], [16] pro-
vides good load balancing and locality if used with dense
matrix operations but it targets shared memory architectures.
To support distributed memory, we port the original algo-
rithm to MPI Message Passing, MPI One Sided, and to
our MPI Notified Access. Our goal is not to provide the
best implementation of the Cholesky factorization targeting
distributed memory but to compare how different synchro-
nization systems perform with complex and realistic data
dependency patterns.

Our implementation broadcasts tiles as needed after they
are produced by a process. Data is broadcasted along a
binary tree overlay process topology. As soon as a node
receives an update, it forwards the update to its children.
Due to the complex dependency graph, the asynchronous
progression, and the broadcast protocol, nodes generally
cannot know what update they receive next. In the MPI
message passing version, the indices of the transferred
tile are sent coded in the tag. We use a combination of
MPI_Probe and MPI_Recv to determine and post the right
address based on the tag of the incoming message.

Since the sender knows the address of the tile it updated,
the One Sided implementation seems simple. However, the
complexity lies in notifying the target process which tile
was updated. In traditional One Sided models, one has to
communicate the tile index explicitly to the target. We do
this with a ring buffer and atomic compare and swap after

the data has been committed remotely. The target processes
incoming tiles by polling the incoming tile buffer for new
tile addresses. We show an excerpt in the following:
MPI_Put(&(tiles_array[x][y]), tile_size, MPI_DOUBLE, target, index,

tile_size, MPI_DOUBLE, win);
MPI_Fetch_and_op(&one, &dest, MPI_INT, target, 0, MPI_SUM, notifWin);
MPI_Win_flush(target,win);
MPI_Put(&tile_coord, 1, MPI_INT, target, dest, 1, MPI_INT, notifWin);

With Notified Access, the notification reporting which
buffer completed can be encoded in the source/tag matching.
Thus, the source simply issues an MPI_Put_notify with a
specially crafted tag. The target instantiates a notification
request with any source, any tag, and expected_count=1.
After starting this request, the target uses MPI_Wait to
receive a notification and reads the correct tag from the
returned MPI_Status.

●
●

●

●

●

●

1.34 x 1.56 x
1.7 x

1.9 x

1.98 x

1.95 x

0.0

0.2

0.4

0.6

4 8 16 32 64 128
Number of Processes

G
M

O
PS

● Notified Access
MPI Message Passing
MPI One Sided

Figure 5: Cholesky factorization performance in a weak
scaling experiment with constant transfer size of 8 KBytes

Figure 5 shows the average performance of each version
for a weak scaling experiment with a tile matrix size of
32 ⇥ 32 doubles at each process. We repeated each run 10
times and plot the 99% confidence interval as shade. This
Cholesky configuration represents an extreme case of a very
small computation per process. We use it to demonstrate the
small-message efficiency of our implementation of Notified
Access for a practically-relevant communication pattern.

VII. RELATED WORK

Notified Access is a synchronization mechanism that
abstractly combines benefits of the message passing and
RMA programming models. We define it as an abstract
concept and demonstrate a specific realization in MPI.

Previous works used one of two schemes for notifications:
counting or overwriting notification identifiers at the target.
Our Notified Access design adds a third option to enqueue
the notifications at the target to an ordered (matching)
list. Counting identifiers accumulate the number of arrived
messages or bytes into an integer value while overwriting
identifiers can transport an integer value from the source
but act as atomic registers at the target. In general, counting

interfaces are more scalable than overwriting interfaces
because they allow the interface to accumulate message
statistics. Overwriting interfaces on the other hand allow to
communicate notification values (e.g., tags) from the source
but may require more storage at the destination (offer one
slot per expected notification). The main benefit of our
queuing mechanism is that it combines both as it offers a
value (tag) and preserves the arrival order of notifications
and the sources do not need to synchronize notification
identifiers at the target.

We now discuss and categorize related work chronolog-
ically. Split-C [17] provides a counting identifier with its
signaling store operation that counts the number of bytes
received. The target of signaling stores can wait for a specific
number of bytes using the store sync operation. However,
this mechanism does not allow to match notifications, char-
acteristic that enables efficient dataflow implementations.

LAPI [18] offers a counting mechanism at the target
which allows to count message completions at the target. In
ARMCI [19] an undocumented mechanism allows to notify
remote processes with synchronization operations. In this
communication scheme the origin of a remote write waits
for the completion of the write and then sends the notifying
message with which the target process can synchronize. This
scheme in other word delays the notification to the target
process for a round trip time of the network.

The need of providing efficient point-to-point synchro-
nization mechanism was addressed by Bonachea et al. [20]
as well. In this work data transfer and synchronization is
coupled through the use of signaling puts that are able to
synchronize origin and target of a remote access by using
counting semaphores. An analogous approach is applied on
an extension for SHMEM [21] which utilizes counting puts,
that increment remote counters. Schneidenbach et al. [22]
propose an overwriting notification mechanism similar to
full/empty bits to post remote buffers with a binary notifi-
cation per buffer.

GASPI [23], [24] provides a flexible overwriting inter-
face with explicit support for multithreaded receiving of
notifications. The specification provides ordering guarantees
with respect to notifications and related data, but not across
multiple notifications. Notified access maintains the arrival
order of notifications in the queue and allows to implement
serializable semantics on in-order networks. This seems
challenging to implement efficiently with GASPI.

All discussed interfaces rely on setting up remote syn-
chronization objects statically before the operation starts.
This limits the flexibility of the operation. Our request-based
implementation enables flexible matching at the target with
only two additional cache misses.

Hori et al. [25] propose a protocol where accesses to
specified memory regions trigger notifications automatically.
This data-centric approach seems very promising but cannot
be supported on most of today’s RDMA networks.

Several applications [26], [27] employ custom notification
solutions to improve parallel efficiency. Notified access pro-
vides a common ground and flexible interface for portable
parallel RMA applications.

VIII. DISCUSSION

Notified Access maintains the global memory view and
ownership management of RMA and combines it with
efficient matched notifications of message passing at lowest
overheads. This allows maximum utilization of RDMA
hardware and enables producer-consumer schemes. We will
now briefly discuss several questions that may arise.

Can network reliability be an issue for Notified Access?
While notified writes can be implemented easily in different
kinds of networks, notified reads require a more detailed
analysis. In Notified Access, the reception of a notification
bound to a remote read at the target process, means that a
specific buffer can be reused again. Thus, in order to avoid
data loss, the notification can only be triggered when can be
ensured that the data will arrive at the requesting process.
This can be guaranteed in two ways: (1) if the network is
fully end-to-end reliable then the notification happens right
after the data has been read or (2) if the network is unreliable
(may require retransmissions) then the notification can only
appear after the data arrived at the process that issued the
get. Motivated by the event notification semantics of low-
level interfaces such as uGNI or Portals 4, we assume the
former case. If the network is not reliable then notified read
semantics can be provided using a slightly more complex
protocol incurring another network round-trip. This can be
implemented with modern technologies such as the Portals
4 [9] by delegating the completion-check and the transmis-
sion of an additional synchronization message directly to the
NIC, using minimal overhead without involving the CPU.

Can hardware completion counters be utilized? Some
networks, e.g., Blue Gene/Q support completion counters
where the network interface increments a counter after
an access is performed. The current active access design
could utilize this functionality with a small extension. If
nondeterministic matches are used then the target could
contact the source during notification init and set up a static
counter for the request. Test and wait would then simply
check this counter at lowest overheads.

Does matching at the target inhibit full hardware offload?
While message transmission is 100% hardware offloaded,
our implementation performs matching using the target
CPU. While this is an improvement over message passing
where the transfer is never 100% offloaded, the CPU over-
head may be high. Yet, today’s CPUs are very efficient in
the necessary list traversals for matching. In addition, the
CPU often waits for notifications and matching messages
which causes no additional overhead (cf. helper locks [28]).
Thus, we believe that the current solution is most efficient

and it can also utilize hardware matching if available (e.g.,
Portals 4).

Will this be in MPI-4? The MPI Forum recognizes the
need for notifications and a proposal for Notified Access
looks promising.

What does a network interface require to enable notified
access? To ideally support our design, a network interface
would enable to add immediate values which should be able
to encode a pointer on a machine to a reliable remote queue
for each remote access (put and get). Cray’s uGNI is close
to this specification (yet, it only offers 32 bit values, for
example).

IX. CONCLUSIONS

In this paper we present a new matched synchronization
paradigm for RMA programming called Notified Access.
It is motivated by the inability of most RMA synchroniza-
tions to exploit the full network performance for producer-
consumer communications. Notified Access leverages mod-
ern interconnect features to create a hardware-offloaded
lightweight synchronization mechanism that is particularly
efficient for asynchronous small latency-limited messaging.

Notified Access extends previous notification mechanisms
with matching queue semantics. These new semantics ad-
dresses scalability problems by moving the notification
placement decision from the origin to the target process
while providing intuitive properties such as maintaining the
arrival order in the queue. This allows to offer strong con-
sistency of accesses and notifications on in-order networks.

We extend the MPI interface to include matched noti-
fied access, an interface providing convenient semantics to
differentiate accesses by source and a user-defined tag at
the target. We show how our interface can be implemented
with minimal overheads and we demonstrate its efficiency
for various use-cases. Our experiments also identify three
parallel patterns that naturally fit many applications. Just to
name one example, our fine-grained dataflow implementa-
tion demonstrates speedups up to 2x over Message Passing
for a small Cholesky factorization. We expect that Notified
Access will be an important primitive for exploiting future
large-scale networks towards exascale.

ACKNOWLEDGMENTS

We thank Hatem Ltaief (Kaust) for providing the
Cholesky example. We thank the GASPI team for inspir-
ing discussions about RMA interfaces and Christian Sim-
mendinger for numerous clarifications about the GASPI
specification. We thank James Dinan (Intel), Jeff Ham-
mond (Intel), Kathy Yelick (LBNL), Edgar Solomonik, Timo
Schneider, and Salvatore Di Girolamo for helpful discus-
sions, Larry Kaplan (Cray) for help with uGNI, and the
Swiss National Supercomputing Centre (CSCS) for access
to Piz Daint.

REFERENCES

[1] W. Huang, G. Santhanaraman, H. Jin, Q. Gao, and D. Panda,
“Design of high performance MVAPICH2: MPI2 over infini-
band.” in Cluster Computing and the Grid, 2006. CCGRID
06. Sixth IEEE International Symposium on, vol. 1, May
2006, pp. 43–48.

[2] C. Bell, D. Bonachea, R. Nishtala, and K. Yelick, “Optimizing
bandwidth limited problems using one-sided communication
and overlap.” in Proceedings of the International Conference
on Parallel and Distributed Processing (IPDPS’06). IEEE
Computer Society, 2006, pp. 1–10.

[3] H. Shan, B. Austin, N. Wright, E. Strohmaier, J. Shalf, and
K. Yelick, “Accelerating applications at scale using one-
sided communication.” in Proceedings of the Conference
on Partitioned Global Address Space Programming Models
(PGAS’12), 2012.

[4] R. Gerstenberger, M. Besta, and T. Hoefler, “Enabling highly-
scalable remote memory access programming with MPI-3
one sided.” in IEEE/ACM International Conference on High
Performance Computing, Networking, Storage and Analysis
(SC13). ACM, Nov. 2013, pp. 53:1–53:12.

[5] T. Mattson, R. van der Wijngaart, “Parallel research kernels.”
available at: https://github.com/ParRes/Kernels (Aug. 2014).

[6] MPI Forum, MPI: A Message-Passing Interface Standard.
Version 3.0, September 21th 2012, available at: http://www.
mpi-forum.org (Sep. 2012).

[7] T. S. Woodall, G. M. Shipman, G. Bosilca, R. L. Graham,
and A. B. Maccabe, “High performance RDMA protocols in
HPC.” in Proceedings of the 13th European PVM/MPI User’s
Group Conference, ser. EuroPVM/MPI’06, 2006, pp. 76–85.

[8] T. Hoefler and A. Lumsdaine, “Message progression in par-
allel computing - to thread or not to thread?” in Proceedings
of the 2008 IEEE International Conference on Cluster Com-
puting. IEEE Computer Society, Oct. 2008.

[9] B. Barrett, R. Brightwell, S. Hemmert, K. Pedretti, W. K.,
K. Underwood, R. Reisen, A. Maccabe, and T. Hudson, The
Portals 4.0 network programming interface, Sandia National
Laboratories, November 2012, Technical Report SAND2012-
10087.

[10] M. ten Bruggencate and D. Roweth, DMAPP - An API for
One-sided Program Models on Baker Systems., Cray User
Group (CUG), 2010.

[11] M. Woodacre, D. Robb, D. Roe, and K. Feind, “The SGI
Altix TM 3000 global shared-memory architecture.” 2003.

[12] Cray Inc., Using the GNI and DMAPP APIs. Ver. S-2446-52.,
March 2014, available at: http://docs.cray.com/.

[13] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and
C. Scheiman, “LogGP: Incorporating long messages into the
LogP model: One step closer towards a realistic model for
parallel computation.” in Proceedings of the Seventh Annual
ACM Symposium on Parallel Algorithms and Architectures,
ser. SPAA ’95. New York, USA: ACM, 1995, pp. 95–105.

[14] J. Kurzak, H. Ltaief, J. Dongarra, and R. M. Badia, “Schedul-
ing dense linear algebra operations on multicore processors,”
Concurrency and Computation: Practice and Experience,
vol. 22, no. 1, pp. 15–44, Jan. 2010.

[15] E. Anderson, Z. Bai, J. Dongarra, A. Greenbaum, A. McKen-
ney, J. Du Croz, S. Hammerling, J. Demmel, C. Bischof, and
D. Sorensen, “LAPACK: A portable linear algebra library

for high-performance computers.” in Proceedings of the 1990
ACM/IEEE Conference on Supercomputing, ser. Supercom-
puting ’90. IEEE Computer Society Press, 1990, pp. 2–11.

[16] J. Kurzak, A. Buttari, and J. Dongarra, “Solving systems
of linear equations on the CELL processor using Cholesky
factorization.” IEEE Transactions on Parallel and Distributed
Systems, vol. 19, no. 9, pp. 1175–1186, 2008.

[17] D. E. Culler, A. Dusseau, S. C. Goldstein, A. Krishnamurthy,
S. Lumetta, T. Von Eicken, and K. Yelick, “Parallel program-
ming in Split-C.” in Supercomputing’93. IEEE, 1993, pp.
262–273.

[18] G. Shah, J. Nieplocha, J. Mirza, C. Kim, R. Harrison,
R. K. Govindaraju, K. Gildea, P. DiNicola, and C. Bender,
“Performance and experience with LAPI — a new high-
performance communication library for the IBM RS/6000
SP.” in Parallel Processing Symposium, 1998. IPPS/SPDP
1998. IEEE, 1998, pp. 260–266.

[19] J. Nieplocha and B. Carpenter, “ARMCI: A portable re-
mote memory copy library for distributed array libraries
and compiler run-time systems.” in Parallel and Distributed
Processing. Springer, 1999, pp. 533–546.

[20] D. Bonachea, R. Nishtala, P. Hargrove, and K. Yelick, “Effi-
cient point-to-point synchronization in UPC.” in Proceedings
of 2nd Conf. on Partitioned Global Address Space Program-
ming Models, Oct. 2006.

[21] J. Dinan, C. Cole, G. Jost, S. Smith, K. D. Underwood,
and R. W. Wisniewski, “Reducing synchronization overhead
through bundled communication.” in First Workshop, Open-
SHMEM 2014, Annapolis, MD, 2014, pp. 163–177.

[22] L. Schneidenbach, D. Böhme, and B. Schnor, “Performance
issues of synchronisation in the MPI-2 one-sided communi-
cation API.” in Proceedings of the 15th European PVM/MPI
Users’ Group Meeting on Recent Advances in Parallel Virtual
Machine and Message Passing Interface. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 177–184.

[23] D. Grünewald and C. Simmendinger, “The GASPI API speci-
fication and its implementation GPI 2.0.” in 7th International
Conference on PGAS Programming Models, vol. 243, 2013.

[24] C. Simmendinger, M. Rahn, and D. Gruenewald, “The GASPI
API: A failure tolerant PGAS API for asynchronous dataflow
on heterogeneous architectures.” in Sustained Simulation Per-
formance 2014. Springer, 2015, pp. 17–32.

[25] A. Hori, J. Lee, and M. Sato, “Audit: A new synchronization
api for the GET/PUT protocol.” J. Parallel Distrib. Comput.,
vol. 72, no. 11, pp. 1464–1470, Nov. 2012.

[26] M. Krishnan, R. Lewis, and A. Vishnu, “Scaling linear algebra
kernels using remote memory access.” in Parallel Processing
Workshops (ICPPW), 2010 39th International Conference on,
Sept 2010, pp. 369–376.

[27] T. P. Straatsma and D. G. Chavarra-Miranda, “On eliminat-
ing synchronous communication in molecular simulations to
improve scalability.” Computer Physics Communications, vol.
184, no. 12, pp. 2634–2640, 2013.

[28] K. Agrawal, C. E. Leiserson, and J. Sukha, “Helper locks
for fork-join parallel programming.” in Proceedings of the
15th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, ser. PPoPP ’10. New York, NY,
USA: ACM, 2010, pp. 245–256.

