Strong consistency is not hard to get: Two-Phase Locking
and Two-Phase Commit on Thousands of Cores

Claude Barthels'+, Ingo Miiller'*, Konstantin Taranov?+, Gustavo Alonso'+, Torsten Hoefler?:

ISystems Group

2 Scalable Parallel Computing Lab

Department of Computer Science, ETH Zurich

{firstname.lastname}@inf.ethz.ch

ABSTRACT

Concurrency control is a cornerstone of distributed database engines
and storage systems. In pursuit of scalability, a common assumption
is that Two-Phase Locking (2PL) and Two-Phase Commit (2PC) are
not viable solutions due to their communication overhead. Recent
results, however, have hinted that 2PL and 2PC might not have such
a bad performance. Nevertheless, there has been no attempt to actu-
ally measure how a state-of-the-art implementation of 2PL and 2PC
would perform on modern hardware.

The goal of this paper is to establish a baseline for concurrency
control mechanisms on thousands of cores connected through a low-
latency network. We develop a distributed lock table supporting all
the standard locking modes used in database engines. We focus on
strong consistency in the form of strict serializability implemented
through strict 2PL, but also explore read-committed and repeatable-
read, two common isolation levels used in many systems. We do not
leverage any known optimizations in the locking or commit parts
of the protocols. The surprising result is that, for TPC-C, 2PL and
2PC can be made to scale to thousands of cores and hundreds of
machines, reaching a throughput of over 21 million transactions per
second with 9.5 million New Order operations per second. Since
most existing relational database engines use some form of locking
for implementing concurrency control, our findings provide a path
for such systems to scale without having to significantly redesign
transaction management. To achieve these results, our implemen-
tation relies on Remote Direct Memory Access (RDMA). Today,
this technology is commonly available on both Infiniband as well as
Ethernet networks, making the results valid across a wide range of
systems and platforms, including database appliances, data centers,
and cloud environments.

PVLDB Reference Format:

Claude Barthels, Ingo Miiller, Konstantin Taranov, Gustavo Alonso, and
Torsten Hoefler. Strong consistency is not hard to get: Two-Phase Locking
and Two-Phase Commit on Thousands of Cores. PVLDB, 12(13): 2325-
2338, 2019.

DOT: https://doi.org/10.14778/3358701.3358702

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 12, No. 13

ISSN 2150-8097.

DOL: https://doi.org/10.14778/3358701.3358702

*ingo.mueller@inf.ethz.ch

1. INTRODUCTION

Concurrency control is an important component in many database
systems. Recent publications [13, 17, 24, 36, 41, 42] have shown a
renewed interest in distributed concurrency control. Many of these
proposals exhibit significant differences in throughput when run-
ning on a large number of cores or machines. These systems ap-
ply a wide range of optimizations that impose restrictions on the
workloads the engine can support. For example, they give up seri-
alizability in favor of snapshot isolation [42], impose restrictions
on long-running transactions [13, 24, 36], assume partitioned work-
loads [23], or require to know the read and write set of transactions
ahead of time [23, 35]. One common underlying assumption among
all these approaches is that Two-Phase Locking (2PL) and Two-
Phase Commit (2PC) — the primary components of a textbook im-
plementation of a database lock manager — do not scale to hundreds
of machines with thousands of processor cores.

Modern data processing systems and data centers are starting to
be equipped with high-bandwidth, low-latency interconnects. This
new generation of networks originates from advances in high-per-
formance computing (HPC) systems. Similar to distributed database
systems, the performance of scientific applications depends heavily
on the ability of the system to efficiently access data on remote com-
pute nodes. The features offered by these modern networks include
(i) user-level networking, (ii) an asynchronous network interface
that enables interleaving computation and communication, (iii) the
ability of the network card to directly access the main memory with-
out going through the processor, i.e., Remote Direct Memory Ac-
cess (RDMA), and (iv) one-sided remote memory access (RMA)
operations. The combination of these features enables new designs
for distributed database systems [3, 28, 31, 42] and scalable algo-
rithms such as joins [4, 5, 30].

A recent evaluation of several distributed concurrency control
mechanisms suggests that a tight integration of concurrency con-
trol and modern networks is needed to scale out distributed trans-
actions [17]. While the costs of synchronization and coordination
might be significant on conventional networks, modern networks
and communication mechanisms, such as RDMA, have significantly
lowered these costs. In this paper, we establish a baseline for running
a conventional lock manager over a state-of-the-art network and
show that the low latency offered by modern networks makes a con-
currency control mechanism based on 2PL and 2PC a viable solu-
tion for large-scale database systems. In light of these new network
technologies, the design, implementation, and performance of dis-
tributed concurrency control mechanisms needs to be re-evaluated.
This paper is the first to provide a baseline for a conventional lock
manager using 2PL and 2PC and an evaluation of its behavior at
large scale on several thousand processor cores.

2325

https://doi.org/10.14778/3358701.3358702
https://doi.org/10.14778/3358701.3358702

The lock table used in this experimental evaluation supports all
the conventional locking modes used in multi-level granularity lock-
ing. The system operates following a traditional design, as explained
for instance in the book by Gray and Reuter [16] on transaction
management. We introduce no optimizations and no restrictions
on transaction structure and operations, nor presume any advance
knowledge of the transactions or sequence of submission. We also
do not use any pre-ordering mechanism such as an agreement pro-
tocol. By using a textbook implementation of a concurrency control
mechanism, a database system does not need to compromise on
the type of transactions it can execute nor on the isolation levels
it can provide. Through the use of Strict 2PL, the system provides
strict serializability. To ensure that distributed transactions leave the
database in a consistent state, the system uses conventional 2PC [7].

The question we seek to answer is whether modern implementa-
tions of 2PL and 2PC can scale and take advantage of large parallel
systems. The novelty lies not in the design of the lock table, but
in how the system is implemented and evaluated: our prototype
uses MPI, a de-facto standard communication layer used by many
HPC applications. This enables us to perform our evaluation on a
high-end supercomputer, which provides us with a large number of
processor cores and a state-of-the-art network.

In the experimental evaluation, we show that, for TPC-C, our
implementation can support a throughput of more than 21 million
transactions per second in serializability mode with 9.5 million New
Order transactions per second.

The key insight from the paper is that modern networking reduces
the latency for remote memory accesses to values comparable to
those of multi-core machines. As a consequence, acquiring a lock
residing on a remote machine does not have a significant overhead
compared to acquiring a local lock. This is what allows us to build a
large-scale distributed lock table that provides the locking through-
put necessary to maintain a high transaction throughput.

2. BACKGROUND

This section provides the necessary background on (i) low-latency,
RDMA-capable networks, (ii) the Message Passing Interface, and
(iii) concurrency control mechanisms used in database systems.

2.1 Low-Latency Networks

Remote Direct Memory Access (RDMA) is an emerging technol-
ogy that has been shown to provide substantial benefits with respect
to lowering the costs of large data transfers and thus gained the
attention of several research projects [4, 5, 30, 42]. RDMA is a hard-
ware mechanism through which the network card can directly access
parts or all of main memory. Transferring data directly from and to
main memory bypasses the CPU and the OS network stack, avoids
intermediate copies, and, in turn, enables the network to reach a
high throughput while at the same time providing low latency.

In many network implementations, the network card cannot ac-
cess arbitrary sections of memory. Buffers need to be registered with
the network card before they are accessible for RDMA operations.
During this registration process, the memory is pinned such that it
cannot be swapped out and the necessary address translation infor-
mation is installed on the network card. This registration process
often incurs a significant overhead [14].

Most modern networks provide two types of RDMA operations:
one- and two-sided memory accesses [18]. Two-sided operations
represent message-passing semantics in which two parties are in-
volved in the communication, i.e., the sender and receiver of a mes-
sage. One-sided operations represent remote memory access (RMA)
semantics in which only the initiator of a request is involved in the
communication. The CPU on the target node, on which the memory

is accessed, is usually not interrupted and is not aware of the access
happening through the network card. There is a small performance
difference between both types of communication, with one-sided
operations having a lower latency, but requiring more messages for
complex interactions.

There are several programming abstractions for using one-sided
network operations. The two most popular concepts are Remote
Memory Access (RMA) and Partitioned Global Address Space
(PGAS) programming. RMA provides access to remote memory re-
gions through read and write operations, while in PGAS programs,
these instructions are automatically inserted by the compiler. Read
operations fetch data from a remote machine and transfer it to a
local buffer, while write operations move data in the opposite di-
rection. In addition, many RMA implementations and networks
provide support for additional functionality, most notably remote
atomic operations. Examples of such atomic operations are remote
fetch-and-add and compare-and-swap instructions.

2.2 Message Passing Interface (MPI)

The Message Passing Interface (MPI) is a widely used commu-
nication interface in high-performance computing systems. MPI
offers a rich hardware-independent networking interface supporting
a variety of networks and supercomputers. At the same time, MPI
is capable of achieving good performance by binding to optimized
implementations for each target machine and network.

MPI automatically chooses the most appropriate communication
method based on the relative distance between two processes. For
example, if two processes are located on the same machine, modern
MPI implementations use shared memory data structures to commu-
nicate. For processes on different nodes, the library automatically
uses network-based communication mechanisms.

Most supercomputers and distributed compute platforms ship
with a specialized MPI implementation. Today, many of these su-
percomputers are composed of compute nodes consisting of off-
the-shelf components. The compute nodes are connected through a
high-throughput, low-latency network, for example, forming a Drag-
onfly [25] or Slimfly [8] network topology. Traditionally, these net-
works have been an important aspect distinguishing supercomputers
and commodity clusters. With the increasing adoption of modern
interconnects such as InfiniBand, we observe many of these ad-
vanced network features being introduced in smaller clusters, high-
end database appliances, and cloud infrastructure [20, 33].

In our system, we use foMPI-NA [6, 15], a scalable MPI RMA li-
brary that, for intra-node communication, uses XPMEM, a portable
Linux kernel module that allows to map memory of one process into
the virtual address space of another, and, for inter-node communica-
tion, DMAPP [34], a low-level networking interface of the Aries net-
work that provides an RDMA interface. foMPI-NA extends MPI’s
interface with notified accesses such as MPI_Put_notify. This call
triggers a remote write operation similar to a MPI_Put with the ad-
dition of an notification on the remote machine. Some network im-
plementations refer to this operation as a write with immediate. We
found that using one-sided operations with notifications that place
messages into manually defined mailbox buffers is faster than using
Send/Receive interface of MPI, which has similar semantics.

2.3 Concurrency Control

There are several concurrency control mechanisms that are be-
ing used in database systems, e.g., Two-Phase Locking (2PL), opti-
mistic concurrency control (OCC), multi-version concurrency con-
trol (MVCC), and timestamp ordering (TO) [7, 16]. These mech-
anisms have been evaluated and compared against each other in
recent publications [17, 41].

2326

Table 1: Lock request mode compatibility matrix

NL IS IX S SIX X
NL v v v v v v
IS v v v v v
IX v v v
S v v v
SIX v v
X v

Furthermore, there has been a significant focus on building reli-
able, fair, starvation-free locking mechanisms for HPC systems [32]
as well as cloud environments [9]. The design of these systems
focuses on achieving a high throughput for a small number of
highly contended locks and often expects coarse-grained locks to be
taken [9]. Many recent RMA locking mechanisms offer support for
reader/writer locks [32, 40], but are difficult to extend to more so-
phisticated locking schemes given the current network technology.

The above locking mechanisms are different from the system we
propose: A traditional lock table of a database system offers a large
number of locks, most of which are not contended. Furthermore,
a database system does not make assumptions about the granular-
ity of the locks. Therefore, it offers several lock modes, including
intention locks. The dominant locking method used in database man-
agement systems is multi-level granularity locking [16]. It solves
the problem that different transactions need to lock and modify re-
sources with a different granularity. Multi-level granularity locking
makes use of the hierarchical structure of the data in a database,
e.g., a schema contains tables, which in turn contain ranges of tuples.
Locks can be acquired at any level in the hierarchy. Before a lock
can be acquired on a certain object, all its parent elements (i.e., the
elements that contain the object) need to be locked as well. To that
end, the locking scheme does not only provide shared (S) and ex-
clusive (X) locks, but also intention locks. The intention shared (IS)
and intention exclusive (IX) locks are used to signal that the transac-
tion intents to lock elements further down in the hierarchy in either
shared respectively exclusive mode. The shared and intent exclusive
mode (SIX) is a combination of the S and IX modes, locking an ele-
ment in shared mode while stating that one or more child elements
will be locked in exclusive mode. Finally, the no lock (NL) mode is
used to indicate that the lock is not taken. The compatibility matrix
for each lock mode is shown in Table 1.

3. SYSTEM OVERVIEW

Our implementation of a distributed concurrency mechanisms
has several components (see Figure 1): (i) the transaction process-
ing layer, (ii) the concurrency control and data layer implementing
either a 2-Phase-Locking (2PL) variant or timestamp ordering (TO),
and (iii) the communication layer.

3.1 Transaction Processing Layer

The transaction processing agents are responsible for executing
the transactions. Each agent runs in its own process, executes one
transaction at a time, and is independent of other transaction pro-
cessing agents. There is no direct communication between the trans-
action processing agents. Coordination is done exclusively through
the concurrency control and data layer.

Upon start-up, the transaction processing agent discovers all avail-
able server agents as well as the range of data items for which they

Transaction
processing TX TX TX TX TX TX
layer
Low-latency communication
Lock table Data Data Data Data
;ni:jata Lock Lock Lock Lock
4 table table table table
Machine 0 Machine N

Figure 1: System overview

are responsible. Each server agent is responsible for a fixed num-
ber of items. With this information, the transaction agent can send
requests to the appropriate server agent.

When a new transaction starts executing, it has to be assigned a
local identifier. System-wide, a transaction gets a global 64-bit iden-
tifier consisting of the combination of the local transaction number,
which form the upper 40 bits, and the transaction agent identifier,
which form the lower 24 bits. If timestamp ordering is used in the
concurrency layer, then local transaction numbers are taken from
the local system clock, which is synchronized at system startup and
at certain intervals. This approach has been used by other authors
as well [17]. Apart from assigning an identifier to a transaction, no
additional setup is required.

Next, the transaction processing agent carries out the actual logic
of the transaction. To read or write from or to the data layer, the
transaction generates a request message that is transmitted to the
target server agent using a single one-sided RMA write operation.
Each request contains a predefined request message tag, the iden-
tifier of the data item, the identifier of the transaction processing
agent, and the requested access mode. If 2PL is used in the concur-
rency layer, then the access mode corresponds to the lock mode of
the lock. In case TO is used, the system just distinguishes between
read and write requests. The transaction agent stores the identifier
of each server agent it contacts in order to be able to inform it when
the transaction is ready to commit or has been aborted.

Corresponding response messages are identified by a specific Re-
sponse message tag. A response messages contains the same infor-
mation as the request message, with the addition of a flag indicating
whether the request was successful or not, as well as the memory
address of the requested data item. This allows the transaction pro-
cessing agent to directly access the data layer through one-sided
read and write operations.

If 2PL is used in the concurrency control layer, the transaction
decides at commit time if the Two-Phase Commit (2PC) protocol
needs to be executed. This is the case if data has been modified on
at least one remote process. If a vote is required, the transaction pro-
cessing agent starts the 2PC protocol among all involved processes.
Processes that did not contribute to a transaction do not participate
in the vote. The transaction processing agent takes the role of coor-
dinator, registering how many positive and how many negative votes
have been collected. Once every participant has voted, the transac-
tion processing agent informs them about the outcome through the
use of a End of transaction message. We do not use any optimiza-
tions such as Presumed-Abort or Presumed-Commit [7].

3.2 Concurrency Control and Data Layer

The server agents are responsible for receiving and executing ac-
cess requests from the transaction processing layer. They partition
the database into non-overlapping ranges of consecutive data items
based on a partitioning scheme all components have agreed on at
system startup time. All information needed by the concurrency

2327

Lock table

Lock table entry

Granted group counters

.
BERER

Lock mode

Waiting group queue

@
g
=
3
4

(a) Lock table entry

Lock table Transaction table

[TX 42 g T
REXE > (0205 ~ [Honis)

Granted group

o] [o]

Waiting group

Granted group Waiting group

[] o] < Joo] «

Deadlock detection list

Granted group

Lo [o] Jfe]

Waiting group

(b) Auxiliary data structures

Figure 2: Data structures used for Two-Phase Locking

control mechanism is colocated with the data items. Therefore, ac-
cesses to the server agents do not need to be synchronized. The
ranges are chosen such that each server process is responsible for
an equal number of data items.

3.2.1 Two-Phase Locking

In the case of Two-Phase Locking, the concurrency control mech-
anism manipulates the following three data structures used to man-
age the locks: (i) the lock table containing the individual locks,
(ii) the transaction table, which contains lists of locks held by each
transaction, and (iii) the deadlock detection list that contains all the
locks that can be part of a potential deadlock situation. These data
structures are shown in Figure 2.

All data structures can be made persistent in order to assist in
the recovery protocol. Upon failure of a transaction, the system
has a list of all requests, locks, and lock modes for the transaction
in question. In case of a failure of one or more server agents, the
system can recompute the status of the locks that have either granted
or potentially pending requests.

The lock table contains all available locks together with their
pending and granted requests. As seen in Figure 2a, the lock data
structure is composed of a queue of pending requests (waiting group)
and a set of counters (granted group). For each mode, there is exactly
one counter indicating how many requests of that mode have been
granted. From this information, the lock mode can be computed.
This enables the server agent to quickly determine if the head of the
queue is compatible with the other requests in the granted group.

The transaction table holds information of each running trans-
action, which is identified by the global transaction identifier. It
implements a multimap, i.e., for each transaction, the table contains
a collection of all acquired locks together with their request modes
(see Figure 2b). Although individual locks can be released at any
point in time, the primary purpose of the transaction table is to im-
plement an efficient Strict 2PL system and to accelerate the recovery
in case of system failures. In strict 2PL, there is no shrink phase in
which locks are progressively unlocked. Rather, all acquired locks
are released by a transaction upon commit or abort. Using this data
structure, the lock table server agent can release all the locks held
by a transaction without having to receive multiple or variable-sized
Unlock messages.

For comparison, our prototype implements several deadlock avoid-
ance and detection mechanisms: two textbook mechanisms, namely
No Wait (NW) and Wait Die (WD), as well as a novel time-based
mechanism, called Bounded Wait (BW).

In No Wait, requests that cannot be immediately served are not
queued and are immediately rejected, causing the transaction to
abort and restart. In this variant, pending requests as mentioned
above do not exist. In Wait Die, only those requests are queued that
come from transactions that are older (i.e., have a smaller transac-

tion identifier) than any of the transactions holding the lock cur-
rently. Both of these mechanisms are described in more detail in
related work [7].

In the time-based deadlock avoidance mechanism, Bounded Wait,
the server agent adds the current wall time to all incoming requests
before adding them to the waiting group of the requested lock. Fur-
thermore, each server agent keeps a list of local locks that have
pending requests (see Figure 2b). The agent iterates over this list
to determine how long the head of the queue has been waiting to
acquire the lock. A lock must be acquired within a predefined time
frame (e.g., 100ms). If a timeout occurs, the transaction is informed
about the unsuccessful lock attempt with a negative acknowledge-
ment message and the request is removed from the waiting group.
This mechanism enables the system to resolve deadlocks while also
avoiding an excessive abortion rate in case of light workload con-
tention. When the last request has been removed from the waiting
group, either because it has been granted or because it timed out, the
server agent removes the lock entry from the list of locks with pend-
ing requests to no longer include it in the computation of deadlock
detection mechanism.

3.2.2 Timestamp Ordering

To compare the lock-based concurrency control mechanisms with
other alternatives, we also implemented textbook timestamp order-
ing (TO) as explained in related work [7]. In short, timestamp or-
dering consists in executing conflicting reads and writes to each
data item in a predefined order, in our case, in the order of global
transaction identifiers. Operations that cannot be carried out in this
order lead to the abortion of the corresponding transaction.

In order to enforce this order, TO keeps the timestamps of the
last read and the last write of each data item. Any write request of a
transaction with a lower timestamp than the read or write timestamp,
and any read request with a lower timestamp than the last write re-
quest are aborted immediately (as they should have happened before
the last read or write operation). Write requests with a higher time-
stamp are kept in a list of pending writes until the corresponding
transactions commits, in which case the write is installed, or aborts,
in which case it is discarded. Read or write requests with times-
tamps lower than existing pending writes are also queued, as they
need to serve or overwrite the value of those writes, if they are in-
stalled. When writes are installed or discarded because a transaction
commits or aborts, this may make it possible to serve outstanding
read requests, which in turn, may make it possible to install pending
writes, and so on. For a detailed explanation, we refer to Bernstein,
Hadzilacos, and Goodman [7].

3.2.3 Data Layer

The data guarded by the concurrency layer is accessed by the
transaction layer through one-sided memory operations. If a trans-

2328

action needs to read data, it issues a one-sided read (MPI_Get) op-
eration that reads out a specific position in the data layer. In order
to modify data, the transaction issues a one-sided write (MPI_Put)
call that instructs the remote network card to overwrite the selected
position with the new content that is part of the request. Apart from
loading the data and registering the buffers with the network card
at start-up, the server agent is not directly involved in data retrieval
and manipulation operations. However, it can also persist parts or
all of the content of the data layer on disk upon receiving a Flush
data message from the transaction processing layer in order to be
able to recover from failures.

3.3 Low-Latency Communication Layer

In order to support a variety of high-performance networks, the
communication between the transaction processing layer and the
lock server agents uses the Message Passing Interface (MPI). This
architecture has the advantage that the interface is identical for com-
munication between local and remote processes, which hides the
complexities arising from large-scale distribution, while still deliv-
ering good performance by using the most appropriate communica-
tion method based on the relative distance of the processes involved
in the communication.

Communication between the transaction processing agents and
the server agents is performed exclusively using one-sided RMA
operations. In case of conflicts, locks cannot be acquired with a
single MPI write operation. Therefore, we do not try to obtain a
lock with such an operation, but only request it. Once the lock is
granted, the lock server agent confirms this event with another one-
sided write operation. We found that this approach is faster than
using two-sided communication.

Upon start-up, each process allocates a set of two buffers and
registers them with the network card using MPI_Win_alloc. This
operation is a collective operation, which means that every process
involved in the communication needs to execute this operation. Dur-
ing window allocation, the access information to these buffers is
exchanged between all processes, such that every component of the
system is able to read and write to these regions of memory using
RDMA operations. The first of these buffers is used as a mailbox for
incoming messages and the second one is used in the voting phase
of the 2PC protocol.

Since the server agents can potentially receive requests from any
transaction, their mailbox is wide enough that it can accommodate
one message from each transaction processing agent. Each process
in the transaction processing layer can have at most one pending
lock request that needs to be granted before it can continue process-
ing. Therefore, its mailbox size is such that it can hold a single mes-
sage. Lock request, Response, and End of transaction messages are
transmitted by issuing a MPI_Put_notify call. In order to avoid
synchronization when writing to the mailbox, the i-th transaction
processing agent writes its content at the i-th slot in the mailbox.

On the target side, the lock server agent can start listening for
incoming notifications by initializing the notified access support
of foMPI-NA (MPI_Notify_init) and activating a request handle
(MPI_Start). Using this request handle, a process can either wait
for messages (MPI_Wait) or perform a non-blocking test to verify if
a new notification has been created or not (MPI_Test). Once a noti-
fication is ready, the target can read out the origin of the request and
consume the content at the respective message slot. Using notified
access operations, avoids that the target process has to iterate over
all message slots, which would limit the scalability of the commu-
nication mechanism. Furthermore, using a mailbox is beneficial for
small messages as the content of a request can directly be placed in a
specific pre-allocated region memory, which avoids any dynamic al-

location of RDMA send and receive buffers during execution. When
arequest is granted, the corresponding notification is placed in the
mailbox of the transaction using the same mechanism. The server
agents use the non-blocking test to check for incoming messages.
If there is no new request to process, it checks for deadlocks. The
transaction on the other hand uses the blocking wait operation as it
cannot continue processing before the lock has been granted.

The size of the mailbox buffer grows linearly with the number of
transaction processing agents. Given that the exchanged messages
only contain a few bytes, the system only needs a small amount of
main memory to operate the proposed communication layer. The
fact that the messages are of fixed size simplifies the design and
memory layout of the mailbox buffer in comparison to the generic
mailbox-based communication pattern that is used by most MPI
implementations. However, as an alternative, for systems that do not
support notified access operations, two-sided MPI communication
primitives can be used.

The second window is used during 2PC. It is wide enough to
accommodate a single 64-bit integer. Before broadcasting a vote
request message to the server agents involved in a transaction, the
transaction processing agent zeroes out this memory. Upon receiv-
ing the vote request, the server agents perform a remote atomic
operation on this memory, either incrementing the lower 32 bits to
signal a positive vote, or the upper 32 bits to trigger an abort. This is
done by issuing an MPI_Fetch_and_op operation combined with
the MPI_SUM argument. Using an atomic operation makes use of the
hardware-acceleration available in these network cards and avoids
expensive processing in software.

4. EXPERIMENTAL EVALUATION

We study the performance of our concurrency control mecha-
nisms on a large-scale compute infrastructure on several thousand
processor cores. The source code of our system as well as the scripts
needed to run the experiments are available on the web site of our
institute. !

4.1 Experiment Setup

In this section, we describe the experimental platform as well as
the workloads used.

Computing Platform: The experiments are conducted on a hy-
brid Cray XC40/50 computer. The machine is structured in a hi-
erarchical way: it is composed of several compute cabinets, each
of which can be fitted with up to three chassis. A chassis can hold
sixteen compute blades, which in turn have four compute nodes.
The compute nodes of the XC40 partition used in the experiments
contain two Intel Xeon E5-2695 v4 processors with up to 128 GB
of main memory. The compute nodes do not give the user the ability
to write to the local disk and all computations have to be performed
in main memory. This setup forces us to disable the flushing of the
logs to persistent storage. The compute nodes are connected through
a Cray Aries routing and communications ASIC. The Aries ASIC is
a system-on-a-chip network device comprising four network cards,
one for each of the four nodes of the same blade, and an Aries
router. The routers are connected through a Dragonfly [25] topol-
ogy. The Cray Aries network provides higher throughput and lower
latency than most commodity networks. However, in recent years
high-speed interconnects have been adopted by many distributed
compute infrastructures, in particular database appliances. For ex-
ample, InfiniBand 4xEDR provides 1-2us latency [37] and both
Amazon and Microsoft offer HPC instances for their cloud services

Ihttps://www.systems.ethz.ch/projects/rdma

2329

https://www.systems.ethz.ch/projects/rdma

IN
o

—6— 2PL-BW (RC)
—¥— 2PL-NW (RC)
2PL-WD (RC)
—4— TO (RC)

2PL-BW (RR)
~%~ 2PL-NW (RR)
¥~ 2PL-WD (RR)
-4~ TO(RR)

¢+ 2PL-BW (Ser)
<% 2PL-NW (Ser)
& 2PL-WD (Ser)
-4 TO(Ser)

w
@
2

[

o
1

0
T

N
o

@

S

o

Throughput [million successful transactions/sec]
N
o

o ke’
16 128 256 512 1024 2048
Transaction Processing Agents

(a) Transaction throughput

—é— 2PL-BW (RC)
1600 | —%— 2PL-NW (RC)
&~ 2PL-WD (RC)
TO (RC)
-¢- 2PL-BW (RR) oz
1200 | ¥ 2PL-NW (RR) -z
—+¥- 2PL-WD (RR)
A~ TO(RR)
—$- 2PL-BW (Ser)
—%~ 2PL-NW (Ser)

N
o
s}

1000

Throughput [million requests/sec]
o]
o
o
+

2PL-WD (Ser)
—4~ TO (Ser)
600
400 -
“o
>
200 ”
0
16 128 256 512 1024 2048

Transaction Processing Agents

(b) Request throughput

Figure 3: Throughput of TPC-C with 2048 warehouses

that achieve 16us and 3us latency, respectively [20, 33]. These ma-
chines come at little extra costs compared to other instance types
and make the findings in our setup transferable to readily available,
off-the-shelf high-speed network infrastructure.

TPC-C Workload: Our concurrency control mechanism imple-
ments a conventional lock table conceptually similar to the one used
in many existing databases systems. In order to gain insights into
scaling out conventional database architectures, we augmented the
lock management mechanism of the MySQL database server in or-
der to get a detailed trace of all the locks that get acquired. This
information includes the transaction number, the identifier of the
acquired lock, and the requested lock mode. Using this modified
database system, we profiled the TPC-C benchmark using different
isolation levels: serializable, repeatable read, and read committed.
We run the full benchmark with all transactions including insertions
and deletions. In a distributed database system, we envision that dif-
ferent server agents are responsible for managing locks belonging
to different TPC-C warehouses. To be able to scale to thousands of
cores, we configured the benchmark to simulate 2,048 warehouses.
The augmented lock manager provided us with a set of locks and
their corresponding lock mode that each transaction requested was
either granted or denied. Using the official TPC-C description, we
implemented the corresponding queries and access the target data
on that warehouse using one-sided read and write operations once
all the locks have been acquired.

4.2 Scalability and Isolation Levels

In these experiments, we deploy multiple configurations of the
system. Each node in the system uses 16 processor cores that are
assigned to the concurrency control and data layer and 16 processor
cores assigned to the transaction processing layer. We found that
deploying 16 server agents together with 16 transaction processing
agents per compute node yields the highest throughput; using either
more server agents and fewer transaction processing agents or vice
versa is less efficient. Each process is bound to a dedicated core and
the processes are distributed equally over both sockets. A server
agent is responsible for managing one or more warehouses, while
the transaction processing agents execute queries and transactions
on behalf of the clients. In TPC-C, each client has a home ware-
house, which is accessed most frequently. Therefore, it is reasonable
to assume that clients connect to a transaction processing agent that

is located on the same physical machine as the data belonging to
its home warehouse. Requests targeting a specific warehouse origi-
nate from a single source in the transaction processing layer. This
setup also reduces the number of conflicts and aborts as transac-
tions targeting the same home warehouse are serialized within the
transaction processing layer.

We scale our implementation from a single machine up to 128
physical compute nodes, which corresponds to a total of 4,096 pro-
cessor cores. In the execution of the TPC-C benchmark used to col-
lect the traces that contains the history of acquired locks by the trans-
action, we used a total of 2,048 warehouses. Although our concur-
rency control system is agnostic to the workload and can support an
arbitrary number of warehouses, using the traces we collected, the
transaction processing agents are limited to replaying transactions
that target up to the maximum number of available warehouses.

In Figure 3a, we see executions of the TPC-C trace, using con-
currency control mechanisms at different isolation levels. We can
observe that all configurations are able to take advantage of the in-
creased core count and are able to scale to thousands of cores. We
observe a linear performance increase as we scale out both layers
of the system simultaneously. At full scale, all variants of 2PL can
support around 21 million transactions per second in serializable
mode (Ser) while timestamp ordering (TO) can support around 24.5
million (taking all transactions of the workload mix into account).
Relaxing the isolation level to read committed (RC) or repeatable
read (RR) increases the throughput to around 32 million transactions
per second for the 2PL variants and to around 38 million transac-
tions per second for TO. The corresponding throughput in terms
of successful New Order transactions (SNOT), which is the official
metric for TPC-C, is about 9.5 and 11 million SNOT/s for 2PL and
TO in serializable mode, respectively, and about 14.5 and 17 million
SNOT/s in RC and RR.

As shown in Figure 3, the deadlock avoidance mechanism cho-
sen for 2PL does not have a significant impact on performance in
this experiment. The reason is simple: (i) the time of an individual
requests is roughly constant and (ii) the number of requests does not
depend on the mechanism. Statement (i) is confirmed by Figure 3b.
The throughput in terms of requests (lock requests for 2PL variants,
timestamped read and write requests for TO) is largely independent
of concurrency control mechanism and isolation level and all config-
urations can sustain a throughput of over 1,350 million lock requests
per second. This is because, in this experiments, all configurations

2330

[CZ Requests
100

[XT Data Access [2PC voting Esd TXend [Other

@
o

A1
NZIBE

N

2]
(=]

%

N
o

Transaction Latency [microseconds]
N
o

32 64 128 256 512

Transaction Processing Agents

1024 2048

Figure 4: Latency breakdown for TPC-C with 2,048 ware-
houses and 2PL-BW in serializable mode

can immediately serve virtually all of the requests. The number of
warehouses in this experiments is always larger than or equal to the
number of transaction processing agents and server agents. Thus,
most requests to a particular lock server agent originate from the
one transaction processing agent whose home warehouse is placed
on the same machine and who has serialized its requests. The few
other requests coming from accesses to remote warehouses by other
transaction processing agents are spread over many different rows,
so there is no contention. The transaction throughput is thus mainly
a function of the number of requests, which is given by the workload
trace as mentioned in Statement (ii). In serializable mode, MySQL
takes on average 52.6 locks per transaction, while running a trans-
action in the read committed or repeatable read mode requires only
27.6 locks on average. Without intention locks, the number of locks
decreases to about 46.8 and 22.5, respectively, explaining the small
advantage of timestamp ordering over the 2PL variants.

When adding compute nodes, both layers can be scaled out in
the right proportions, thus ensuring that no component is becoming
the bottleneck. As resources are added, the lock table can either
be distributed with a finer granularity such that each server agent
is responsible for fewer locks. Alternatively the higher core count
can be used to serve more requests overall. Furthermore, we can
observe that a stricter isolation level requires taking significantly
more locks, which results in a lower transaction throughput.

4.3 Execution Time Break-Down

Figure 4 shows a breakdown of the latency of each transaction
of 2PL-BW on the TPC-C workload with 2,048 warehouses in se-
rializable mode. The majority of the execution time of the TPC-C
workload is dedicated to acquiring locks. Around 25% of the time
is needed for accessing the data, executing the 2PC protocol, and
informing the server agents that a transaction has ended There are
multiple reasons for this behavior. First, transactions request multi-
ple locks, while there is at most one vote operation per transaction.
Second, locks are acquired one after the other as they are needed.
For systems that require a deterministic behavior of the workload,
this time could be lowered by either requesting multiple locks in
quick succession or by issuing requests that target multiple locks,
thus amortizing the round-trip latency. Vote requests can always be
issued and collected in parallel. The time required to execute a vote
is dependent on the slowest participant, not the number of partici-
pants. Third, the majority of transactions target the home warehouse

2331

of the client. Since transactions are executed by a processing agent
colocated with the locks and the data, most transactions modify
items in local memory and acquire only local locks. Transactions
that do not modify data on more than one server agent do not exe-
cute a 2PC protocol. Transactions that need to execute the commit
protocol often have a small number of participants in the voting
phase. For the TPC-C workload, a transaction needs to contact on
average 1.1 server agents.

The vote of the 2PC protocol requires 8.5 microseconds on aver-
age, which is higher than the time required to acquire a lock. The
reason for this behavior is that multiple servers need to be contacted,
which does not happen completely in parallel. The more servers are
involved, the higher the chance that a single straggler delays the out-
come. Finally, in our system, atomic operations are cached in fast
memory on the network card and updates to these values only be-
come visible after an expensive synchronization call by the initiator
of the vote. In general, we observed that remote updates to atomic
values become visible to the local processor faster in networks that
do not rely heavily on caching intermediate values.

Given that the TPC-C workload with its concept of a warehouse
can be partitioned across many physical nodes, we observe that the
latency of both operations does not change significantly as we add
more cores. This shows that our system exhibits predictable and
scalable performance for partitionable workloads.

In additional experiments that we conducted, we observed that
the discussion in this section is largely representative for all con-
currency control mechanisms. This is expected for the reasons dis-
cussed above: in this experiment without contention, each request
has roughly constant cost and the number of requests is given by the
workload. However, since the number of requests is slightly lower
for TO than for 2PL, the time spent on accessing the lock table layer
is reduced.

4.4 Contention

In order to study how the different concurrency control mecha-
nisms handle contention, we reduce the number of warehouses in
TPC-C. We produce a workload trace as described in Section 4.1.
However, this time, we run the benchmark on MySQL with the
desired number of warehouses. As mentioned in previous experi-
ments, we assign the locks of at most one warehouse to each server
agent. If there are more server agents than warehouses, we split each
warehouse across several agents. As long as possible (i.e., until we
have 16 times more warehouses than agents), we split the locks of
one warehouse among agents of the same node and only afterwards
across nodes. The transaction processing agents remain colocated
with the lock server agents. When we start splitting the locks across
server agents, we also run the same number of transaction process-
ing agents per warehouse, taking transactions from the workload
trace in a round-robin fashion.

Figures 5 shows how the different concurrency control mecha-
nisms behave. As long as the number of warehouses is equal or
larger than the number of server agents (i.e., less than 64 and less
than 1,024 in Figures 5a and 5b, respectively), the throughput scales
linearly with the number of cores as before. As soon as warehouses
are split across several agents, contention limits scaling: The vari-
ants of 2PL maintain their performance for a limited amount of
contention, but start decreasing as contention gets higher. Under
heavy contention, Bounded Wait and Wait Die have a significant
advantage over No Wait — the cost of queuing requests is thus lower
than that of repeatably restarting transactions, an effect we study in
more detail below. TO seems to be able to exploit more of the paral-
lelism in the workload as it is capable of increasing its performance
with more cores even though this setup introduces light contention.

30| —¢— 2PL-BW(RC) -é- 2PL-BW(RR) --¢:- 2PL-BW (Ser) 25| —¢— 2PL-BW (RC)
—%— 2PL-NW (RC) —%=- 2PL-NW (RR) --%-- 2PL-NW (Ser) —¥— 2PL-NW (RC)
4 2PL-WD (RC) #- 2PL-WD (RR) & 2PL-WD (Ser) +- 2PL-WD(RC) ==
25| —&— TO(RC) -4- TO(RR) k- TO (Ser) 2 —4— TO(RC) _
-6~ 2PL-BW (RR) ==

~%= 2PL-NW (RR)
#- 2PL-WD (RR)
TO (RR)

¢ 2PL-BW (Ser)
%'+ 2PL-NW (Ser)
+ - 2PL-WD (Ser)
4+ TO(Ser)

N
o

@

]
e

T

o

)
5]

o
o
<l

Throughput [million successful transactions/sec]
Throughput [million successful transactions/sec]

0.0 [¢}
16 128 256 512 1024 2048 16 128 256 512 1024 2048
Transaction Processing Agents Transaction Processing Agents
(a) 64 warehouses (b) 1,024 warehouses

Figure 5: Throughput of TPC-C under contention for different system configurations

32 32 32
E —é— 64 warehouses . § —é— 64 warehouses - 'g' —6— 64 warehouses r
g 16 | —%- 1024 warehouses % 16 | —%- 1024 warehouses ‘\‘: 16 | —%- 1024 warehouses e
5 #2048 warehouses A S #2048 warehouses e 5 #2048 warehouses *
F= 58 ’ 58 y
3 3 g N
5 2 il 5 2 al 5 2
ag 4 as 4 ag 4 Vg
55 el 55 X 55 ,
gg 2 g g 2 / g 2 «
c 0 w” f7Y * [’
£ 0 £ 0 / < 0 R
= A Fg g Fg 1 .
o ¢ 3] ¢ 5} y
2 2 3,
0.5 - 0.5 .5 -
s 5 s A
:E. 0.25 g 0.25 ",»' E. 0.25] &
16 32 64 128 256 512 1024 2048 16 32 64 128 256 512 1024 2048 16 32 64 128 256 512 1024 2048
Transaction Processing Agents Transaction Processing Agents Transaction Processing Agents
(a) 2PL-BW (Ser) (b) 2PL-NW (Ser) (c) TO (Ser)

Figure 6: Throughput of TPC-C under contention for several deadlock detection and avoidance mechanisms

Without contention, the isolation level only changes the throughput To understand better the difference in performance between the
by a constant factor, which roughly corresponds to the number of various deadlock avoidance mechanisms, we have a look at how
locks per transactions in the workload trace. many transactions are aborted. Figure 7b shows their abort rate
Figure 6 shows the same data for TO in serializable mode from for TPC-C with 64 warehouses, i.e., with high contention. We can
a different angle: Throughput scales linearly with more cores until observe that No Wait (2PL-NW) has a much higher abort rate than
contention starts, after which point throughput flattens off and even- the other mechanisms. This is expected given that this mechanism
tually decreases. The corresponding plots of the 2PL variants and aborts any transaction as soon as there is a conflict. This strategy
other isolation levels looks similar, so we omit them here. does not seem to pay off as 2PL-NW has the lowest throughput
Figure 7a shows the transaction latency breakdown for serializ- among the mechanisms we study. On the other hand, Wait Die (2PL-
able 2PL-BW running TPC-C with 64 warehouses. From the figure, WD) has a considerably higher abort rate than our variant Bounded
we can observe that the time is mainly spent in the lock request Wait (2PL-BW), but in the end, both strategies lead to roughly the
phase, which increases with contention. This is because requests for same performance. In practice, a higher abort rate also results in
contended locks cannot be served immediately anymore and induce wasted work for the application — hence the preference for 2PL-BW.
waiting time. To be precise, as the number of transaction processing
agents that share a warehouse doubles, the time an invidual transac- 4.5 Network Latency
tion spends waiting for locks also doubles — a trend that continues In order to show the importance of a low-latency network, we
for the bars that are cut off the plot (for 512, 1,024, and 2,048 agents). introduce an artificial delay for any request between different nodes.
This means that transactions on the same warehouse are essentially Figure 8 shows the throughput for 128 transaction processing agents
executed serially, which explains the plateau observed in Figure 6. and 128 warehouses for a varying delay. This configuration corre-
Also, the time spent in 2PC now takes slightly longer, but not to sponds to the one shown in Figure 3b for 128 transaction processing
the point to make this phase costly compared to the other phases. agents and achieves, as expected, the same throughput if the added
The remaining phases, in particular releasing locks, are largely un- delay is non-existent.
affected by contention. The breakdown of the other concurrency However, as we increase the de]ay on networked requests, perfor-
control mechanisms and isolation levels are qualitatively the same, mance drops significantly: -8% for a delay of lus, and around a 44
so we omit them here. times lower throughput for a delay of 1ms. This experiment clearly

2332

[Z1 Requests
X7 Data Access

[2PC voting
[TXend

[Other

845 2106 6516

N
o
o

[w
o @
o o

N
a
o

N
o
o

@
o

Transaction Latency [microseconds]
<]
o

o
o

64 128 256 512
Transaction Processing Agents

(a) Latency breakdown for TPC-C and 2PL-BW in serializable mode

1024 2048

100
2PL-BW (RC)
2PL-NW (RC)
2PL-WD (RC)
TO (RC)
2PL-BW (RR)
2PL-NW (RR)
2PL-WD (RR)
TO (RR)

= 2PL-BW (Ser)
2PL-NW (Ser)
2PL-WD (Ser)
+ TO (Ser)

80

[}
o

Abort Rate [%]

N
o

20

256
Transaction Processing Agents

(b) Abort rate for TPC-C

32 64 128 512

Figure 7: System configuration with 64 warehouses

IB EDR AWS EFA
16 —é6— 2PL-BW (Ser)
I — —%— 2PL-NW (Ser)
14 4~ 2PL-WD (Ser)
—4— TO (Ser)

o

o

s\

o
©

o
o

o

Throughput [million transactions/sec]
»

o
)

o
S}

0.25

4 16 64
Network delay [microsec]

256 1024

Figure 8: Impact of network latency for 128 transaction pro-
cessing agents and 128 warehouses

shows how crucial the network latency is for our system. Further-
more, we can conclude that conventional networks, exposed by the
operating system through standard sockets, cannot fulfill the latency
requirements to make transactions scale to thousands of cores and
hundreds of machines.

On the other hand, our numbers also show that a latency in the
order of a few microseconds is enough to achieve competitive per-
formance. This means that the single-microsecond latency of Infini-
Band EDR (IB EDR) networks as well as the 16us latency offered
in modern cloud infrastructure such as the Elastic Fabric Adapter
of Amazon Web Services (AWS EFA) should achieve only slightly
(up to 2x) lower throughput than the ones in our study. This makes
our findings transferable to readily available, off-the-shelf network
infrastructure used in most datacenters and cloud environments. For
instance, our approach with 2PL in full serializabe mode would
reach around 360k successful New Order transactions per second on
low-latency EFA networking using 128 cores. This result is roughly
on par with the throughput obtained by various approaches in re-
lated work [17] on conventional networking using 4x more cores.
Details are shown in Table 2.

2333

S. DISCUSSION

In this section, we discuss (i) the key insights gained from the
experimental evaluation, (ii) the implications on large-scale, dis-
tributed lock management, and (iii) directions for future systems
and the designs of concurrency control mechanisms.

5.1 Key Insights

As our experiments show, the use of RDMA to implement remote
locking allows sharding of the lock table across a large number of
distributed nodes. The fast network enables remote locking with
an overhead that is only slightly larger than that of obtaining local
locks. The sharding of the lock table is the feature that allows the
proposed approach to reach such high throughput levels as each
node is only dealing with a fraction of the locking traffic. As our
results show, the same mechanism of fast RDMA enables a very
low-overhead implementation of Two-Phase commit.

The network latency plays an important role in that one can obtain
a lock the faster the lower the latency is. This also has an effect on
overall throughput (see Figure 8). For the typical range of latencies
that can be observed in the cloud, the performance advantage from
sharding the lock table remains. In data centers, data appliances, or
racks where a distributed database system is often deployed, the per-
formance numbers we obtain should also be reachable — especially
when considering how networks are evolving and that InfiniBand
HDR (High Data Rate) is already available for some systems and
InfiniBand NDR (Next Data Rate) is under development. These new
generations of networks will be providing much higher bandwidth
and potentially lower latency.

The experiments also show that exploiting the underlying net-
work benefits not only 2PL but also other approaches such as TO.
In fact, TO often performs better than 2PC with strict serializability.
However, 2PC easily supports a wide range of consistency levels
(serializable, repeatable read, read committed) without restrictions
on transaction structure and, when combined with multi-version
concurrency control or snapshot isolation (i.e., removing the need
for locks for read operations), can offer not only more versatility
but also better performance than the alternatives. Adopting our ap-
proach in existing engines should be much easier than changing
the entire transaction management stack to operate under TO or
optimistic mechanisms.

5.2 Locking at Large Scale

In the experimental evaluation, we used TPC-C to evaluate our
lock table implementation. We observe that the workloads used in
this evaluation provide very little contention (including TPC-C).
This can be seen by the short amount of time that lock requests
spend in the waiting group.

Note that the baseline we provide in this paper intends to test the
scalability of concurrency control mechanisms, not the scalability of
the workload, a problem already pointed out in related work [42]. It
is important to distinguish between the scalability of the underlying
mechanism that is offered by the database system and the charac-
teristics of the workload: In the presence of high-speed networks,
using a lock-based concurrency control mechanism is a scalable ap-
proach for enforcing high transaction isolation levels. To translate
this performance to a high throughput in terms of transactions, one
requires a scalable workload. This is not the same as having a par-
titioned workload, but rather depends on the amount of contention
present in the workload.

Most database workloads do not have a single highly-contented
item and thus not a single lock that every transaction seeks to lock in
exclusive mode. However, if a workload exhibited such contention,
for most concurrency control mechanisms, a lower overall through-
put would be observed than what the mechanism could support. In
such a scenario, we would not observe a degradation of the remote
access latency, but rather an increase in the waiting time of requests
in the queue or a high abort rate if the deadlock detection timeout
is too short.

Using a weaker isolation level translates to fewer locks being
taken. This means that the load on the lock table decreases and the
freed resources could be added to the transaction processing layer
to process more transactions in parallel. The overall throughput can
be further increased as the isolation level requirements are lowered.
Locking mechanisms are not only useful to implement pessimistic
concurrency control. Snapshot isolation and optimistic concurrency
control mechanisms can be implemented on top of a locking system,
not to prevent concurrent access, but to detect conflicts. In such
systems, even fewer locks are needed. For example, in snapshot
isolation, transactions do not take locks for reading data, but only
need to detect write-write conflicts on the same data element.

The TPC-C workload is partitionable to a large extent. Most ac-
cesses require only local locks. If that is not the case, the latency
offered by modern networks is small enough that the concurrency
control mechanism can still accommodate several million lock op-
erations per second and locks can still be acquired within a couple
of microseconds.

The deadlock detection mechanism proposed in this paper is
based on timeouts (DL-BW). A request can only wait for a specific
predefined period of time in the waiting group before it is canceled.
The idea is to detect deadlocks while also not aborting too many
transactions in case of light contention on one of the locks. In an
alternative design, the server agent could also construct a wait-for
graph in order to detect deadlock situations. Since two transactions
can be conflicting on two locks managed by two different server
agents such a mechanism would require an additional communica-
tion protocol between the processes managing the lock table.

In order to make our results relevant for scaling out existing
database systems, we avoided any design decision that would re-
strict the isolation level, consistency guarantees, or the types of trans-
actions that the system would support. Even without any special ar-
chitectures and optimizations, our distributed lock table can support
well over 1,350 million lock operations per second on 4,096 cores.
Thus, unlike it is commonly assumed, 2PL and 2PC are viable op-
tions to implement distributed, transactional concurrency control.

5.3 Future Designs

In the future, we expect that high-performance networks will of-
fer more functionality to offload compute to the network card [11,
19], which will enable alternative designs for implementing a lock
table. Having a richer programming abstraction can potentially save
communication round-trips. To that end, new network interfaces are
being proposed [2].

Remote append: Following a conventional lock table design, new
requests first need to be added to a queue in the waiting group. With
the current network technologies, this logic needs to be executed
by a process on the CPU. Using one-sided operations for adding an
element to a remote queue would require multiple round-trip times:
First the end of the queue needs to be identified. Next, a slot for
writing the data needs to be reserved (e.g., using a remote atomic
operation). Afterwards, the actual content can be added to the queue.
Similar steps are needed for removing an element from the queue.
While such a system would potentially remove the need for any
server agent processes, most network implementations would re-
quire all operations to be routed through the network card, even
local accesses. Although modern networks are fast, the latency in-
troduced by multiple round trips would still significantly impact
performance, in particular the message rate is bound to become a
significant bottleneck. Future networks need to provide support for
more sophisticated atomic operations in order to avoid that multiple
round trips are needed to accomplish simple tasks. For example,
atomic append and remove operations would be useful not only for
server agents, but for any system which manipulating remote queue-
like data structures.

Conditional operations: Conditional operations enable the devel-
oper to create simple if-then-else operations. For an operation with
condition check, the remote network card will first evaluate if the
remote data is in a specific state before applying the operation, thus
eliminating several round trips and reducing the need for running
expensive synchronization or agreement protocols. Conditional op-
erations can be used to significantly accelerate the locking system
proposed in this paper: A conditional operation is an efficient way
to first check the status of the lock and the queue. If the request can
be granted (if-branch) the lock counter is being incremented (using
a fetch-and-add operation), otherwise (else-branch), the request is
added to the queue using the previously proposed append opera-
tion. All these operations would require a single round-trip without
involving the remote processor.

Given the arguments above, we expect that future hardware makes
it possible to further improve performance of distributed concur-
rency control by providing a richer set of instructions that can be
executed over the network. A more sophisticated network instruc-
tion set architecture would (i) eliminate the need to notify the remote
processor and thus further reduce latency of individual requests, and
(ii) free up a significant amount of processor resources that currently
dedicated to running the server logic and offload these operations
partially or entirely to the network card [19].

6. RELATED WORK

In this section, we present a detailed analysis of related work
in the context of (i) data processing over modern networks and
(ii) distributed concurrency control, as well as (iii) a quantitative
comparison of several distributed concurrency control mechanisms.

6.1 Data Processing over Fast Networks

High-performance networks have been used in related work to
accelerate database systems. Using RDMA requires careful design
of systems and algorithms [14].

2334

Analytical queries often involve complex join operations that
need to move large amounts of data between the compute nodes. Liu
et al. [27] evaluate different aspects of data shuffling over RDMA
networks in order to improve the performance of distributed analyt-
ical database engines. Furthermore, the authors compare their data
exchange operator to MPI-based communication over InfiniBand.
Barthels et al. [4] use modern network technologies to accelerate
such queries. Their implementation of a distributed join makes use
of asynchronous networks to interleave compute and communica-
tion and uses RMA operations to directly place data at specific
locations in main memory to avoid intermediate copies of the data.
The authors scale their implementation to thousands of cores us-
ing a supercomputer and use MPI as their communication layer [5].
Rodiger et al. [30] propose a join algorithm that can take advan-
tage of modern networks while also mitigating the negative perfor-
mance impacts caused by data skew. Several database systems use
high-performance networks to accelerate specific parts of the sys-
tem. BatchDB [28] uses RDMA as a low-latency, high-throughput
communication mechanism to replicate data from the primary copy
to workload specific replicas. HyPer can distinguish between local
and distributed parallelism and uses a tailored communication mul-
tiplexer for RDMA networks [31]. Key-value stores profit from the
low-latency access to accelerate key lookups [12, 22].

NAM-DB [42] is a database that has been designed from the
ground up with one-sided network operations in mind. In NAM-
DB, a node can be a memory node, that exposes its main memory
to the network, or a compute node. In addition to exposing the
main memory to other machines, memory servers perform mem-
ory management tasks such as memory allocation and registration,
and garbage collection. This system differs from our approach as it
avoids synchronization, requires a scalable timestamp mechanism,
and forces data to reside in specialized data structures that can be
accessed by one-sided RMA operations while also supporting mul-
tiple versions. This approach does not enable NAM-DB to offer
serializability and is restricted to snapshot isolation.

Other early work include Swissbox [1] and TellStore [29]. Fur-
ther, more recent work explores the design of replication schemes [43]
and index data structures [44] with low-latency RDMA network
technology similar to ours.

6.2 Distributed Concurrency Control

Recent years have seen a renewed interest in large-scale concur-
rency control due to the increasing amount of parallelism and the
benefits that it entails. Many of the proposed approaches achieve
impressive performance but they often do so by making compro-
mises on the isolation level, types of locks supported, or support for
long-running transactions.

Schmid et al. [32] propose a distributed topology-aware imple-
mentation of MCS locks optimized for high contention using one-
sided network instructions. Yoon et al. [40] design a locking pro-
tocol based on fetch-and-add operations that is fault-tolerant and
starvation-free. Both approaches have in common that they only
support two locking modes (shared and exclusive) and cannot easily
be extended to the six modes we support as this would require wider
machine words than those supported by atomic RDMA operations
available on current hardware.

Spanner [10] is a large-scale distributed database system that
focuses on geographic distribution. The system not only uses a
lock table to implement concurrency control, but also relies on GPS
and atomic clocks to serialize transactions at a global scale. This
setup is different from the one used in our evaluation, where the fo-
cus is on using high-performance networks to achieve low-latency
communication between all system components in a single geo-

graphic location. Chubby [9] is lock service designed to provide
coarse-grained reliable locking. The design emphasis is on ensuring
high-availability for a small amount of locks. This scenario is dif-
ferent from the locking mechanisms used in database systems that
focus on achieving a high throughput for a large number of uncon-
tended locks. Furthermore, using coarse-grained locks is not suited
for some database workloads, for example coarse-grained locking is
suboptimal for transactions that need to access a few specific items.

FaSST [21] is an RDMA-based system that provides distributed
in-memory transactions. Similar to our system, FaSST uses remote
procedure calls over two-sided communication primitives. The au-
thors pay special attention to optimizing their system to use unreli-
able datagram messages in an InfiniBand network. Unlike our im-
plementation, this system uses a combination of optimistic concur-
rency control (OCC) and 2PC to provide serializability. Although
the evaluation does not include the TPC-C benchmark, the system
is able to outperform FaRM on other workloads (more on FaRM
below).

DrTM [39] is an in-memory transaction processing system that
uses a combination RDMA and hardware transactional memory
(HTM) support to run distributed transactions on modern hardware.

6.3 Quantitative Comparison

Table 2 shows an overview of selected related work. The per-
formance numbers are taken from the original publications. As a
best effort, for systems that only implement a subset of the TPC-C
workload (marked in the table by a star-symbol), we converted to
number of successful new order transactions per second (SNOT/s)
by assuming that the missing transactions execute at the same speed
as the mix of the implemented ones. Since the performance of some
schemes decreases with increasing core count, we take the highest
achieved throughput as peak performance. For the paper by Hard-
ing et al. [17], we use the numbers with 1,024 warehouses, which
are better than the numbers with four warehouses presented in the
same paper. The paper provides an evaluation for the most popu-
lar distributed concurrency control mechanism: Two-Phase Locking
No-wait (2PL-NW), Two-Phase Locking Wait-die (2PL-WD), opti-
mistic concurrency control (OCC), multi-version concurrency con-
trol (MVCC), timestamp ordering (TO), and the mechanism used
by Calvin [35].

In the following, we describe the compromises done by the sys-
tems in Table 2. Databases, including FaRM [13] (4.5 million SNOT
per second), implementing optimistic concurrency control (OCC)
without keeping multiple versions verify at the end of each transac-
tion that no read nor write set of concurrent transactions intersect
with its write set. This means that the read and write sets of all trans-
actions need to be kept during the lifetime of the longest-running
concurrent query, which limits on how long that period can be [26].

If several versions of each record are stored (MVOCC), such as
in Silo [36] (315 thousand SNOT per second), the read sets of read-
only transactions do not need to be tracked. Read-only transactions
can be arbitrarily long. However, this is not the case for read-write
transactions.

Multiversion concurrency control (MVCC) combined with times-
tamps (TO) handles long-running read-only transactions. Long-
running read-write transactions may be problematic or impossible.
For example, HyPer [24] (171 thousand SNOT per second) forks
long-running transactions into a new process that sees the snapshot
of the virtual memory at the time of its fork and cannot do any
updates. Furthermore, transactions must be written as stored proce-
dures in order to classify them as long or short-running in advance.

NAM-DB [42] (6.5 million SNOT per second) allows updates in
long-running transactions, but checks only for write-write conflicts,

2335

Table 2: Recent work on large-scale concurrency control

System/Paper Mechanism Cores (Machines) TPC-C Performance (SNOT/s)
Our work 2PL-BW (Ser) 4.1k (128) 9.5M
2PL-BW (RC) 4.1k (128) 14M
TO (Ser) 4.1k (128) 11M
HyPer [24] TO+MVCC 8 (1) 171k
Silo [36] MVOCC 32(1) 315k
FaRM [13] ocCC 1.4k (90) 4.5M
NAM-DB [42] TO+MVCC 896 (56) 6.5M
DrTm [39] HTM 480 (24) 2.4M
Evaluation of Dist. CC.* [17] TO+MVCC 512 (64) 410k
2PL-NW 512 (64) 300k
ocCC 512 (64) 100k
TO 512 (64) 430k
2PL-WD 512 (64) 340k
Calvin [35] 512 (64) 380k
Staring into the Abyss* [41] 2PL-DD 1k (1) 760k
2PL-NW 1k (1) 670k
2PL-WD 1k (1) -
TO 1k (1) 1.8M
TO+MVCC 1k (1) 1.0M
ocCC 1k (1) 230k
H-Store [23] 1k (1) 4.3M

thus giving up serializability in favor of snapshot isolation. While
snapshot isolation is widely used, it is not without problems [38].

The other MVCC mechanisms from Table 2 achieve serializabil-
ity by locking new versions until commit time and aborting on up-
dates of records with newer reads. This can lead to starvation in
presence of medium or heavy contention because the longer trans-
actions run, the more likely it is that other transactions access their
(future) write set. If a single version of the data is kept (TO without
MVCC), the problem is even more pronounced as it significantly
extends the read and write set.

Recent work on concurrency control proposes to deterministi-
cally order data accesses in order to avoid any form of synchro-
nization. While in H-Store [23] (4.3 million SNOT per second), an
early system following this idea, this approach did not work with
unpartitioned workloads due to the coarse-grained partition locking,
newer systems such as Calvin [35] (380 thousand SNOT per sec-
ond) overcome this problem. Both systems need to know the read
and write set of each transaction beforehand (or detect them in a
dry-run). This assumption can only be made for stored procedures
and is impractical for long-running queries.

In contrast, locking avoids the above-mentioned compromises.
As the performance comparison in Table 2 shows, this mechanism
does not introduce a significant overhead. Our throughput of 21 mil-
lion — 9.5 million new order — transactions per second is among the
highest reported and shows that 2PL and 2PC, in combination with
modern hardware, are a viable solution for implementing a scalable
concurrency control mechanism.

7. CONCLUSIONS

In this paper, we provide a new baseline for distributed concur-
rency control at large scale. To that end, we have implemented a
lock table and commit protocol taking advantage of the features
offered by modern networks, mainly RDMA.

This work shows that conventional Two-Phase Locking and Two-
Phase Commit are a viable solution to implement the highest levels

of transaction isolation, namely serializability, while being scalable.
Furthermore, this approach does not impose any restrictions on the
workload in terms of lock modes supported, structure of the trans-
actions, deterministic behavior, or support for long-running transac-
tions. Using MPI to implement low-latency message passing mecha-
nisms, we show that our implementation is able to take advantage of
the scale-out architecture used in our evaluation. Provided that there
is little contention, local as well as remote locks can be acquired
within a few microseconds. The performance of this concurrency
control mechanism is expected to improve significantly in the near
future as interconnects receive richer interfaces that enable the de-
veloper to save communication round-trips [2, 19].

Since many database systems use a conventional lock table, our
findings can also be used to scale out existing systems requiring a
low-overhead distributed concurrency control mechanism that can
sustain a high throughput and take advantage of the parallelism
offered by large systems.

Acknowledgments

The work presented in this paper was originally carried out as part
of the doctoral studies of Claude Barthels. Ingo Miiller and Kon-
stantin Taranov made significant changes and additions in the re-
vised version of the paper that was completed after Claude Barthels
graduated and had taken a position in industry. This project has been
funded in part by a grant from Oracle Labs.

References

[1] G. Alonso, D. Kossmann, and T. Roscoe. SwissBox: An ar-
chitecture for data processing appliances. In CIDR, pages 32—
37,2011.

[2] G. Alonso, C. Binnig, I. Pandis, K. Salem, J. Skrzypczak,
R. Stutsman, L. Thostrup, T. Wang, Z. Wang, and T. Ziegler.
DPI: The Data Processing Interface for Modern Networks.
In CIDR, 2019.

2336

(3]

(4]

(]

(6]

(7]

(8]

(9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

C. Barthels, G. Alonso, and T. Hoefler. Designing Databases
for Future High-Performance Networks. IEEE Data Eng.
Bull., 40(1):15-26, 2017.

C. Barthels, S. Loesing, G. Alonso, and D. Kossmann. Rack-
Scale In-Memory Join Processing Using RDMA. In SIG-
MOD, pages 1463-1475, 2015. DOI1: 10.1145/2723372.
2750547.

C. Barthels, I. Miiller, T. Schneider, G. Alonso, and T. Hoefler.
Distributed Join Algorithms on Thousands of Cores. PVLDB,
10(5):517-528, 2017. DOI: 10.14778/3055540.3055545.

R. Belli and T. Hoefler. Notified Access: Extending Remote
Memory Access Programming Models for Producer-Con-

sumer Synchronization. In IPDPS, pages 871-881,2015. DO1:

10.1109/IPDPS.2015. 30.

P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concur-
rency Control and Recovery in Database Systems. Addison-
Wesley Longman, 1987.

M. Besta and T. Hoefler. Slim Fly: A Cost Effective Low-
diameter Network Topology. In SC, pages 348-359, 2014.
DOI: 10.1109/SC.2014. 34.

M. Burrows. The Chubby Lock Service for Loosely-coupled
Distributed Systems. In OSDI, pages 335-350, 2006.

J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J.
Furman, S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild,
W. C. Hsieh, S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Mel-
nik, D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y.
Saito, M. Szymaniak, C. Taylor, R. Wang, and D. Woodford.
Spanner: Google’s Globally-Distributed Database. In OSDI,
pages 261-264, 2012.

S. Di Girolamo, P. Jolivet, K. D. Underwood, and T. Hoe-
fler. Exploiting Offload-Enabled Network Interfaces. Micro,
36(4):6-17,2016. DOI: 10.1109/MM.2016.56.

A. Dragojevi¢, D. Narayanan, O. Hodson, and M. Castro.
FaRM: Fast Remote Memory. In NSDI, pages 401-414, 2014.
URL:http://dl.acm.org/citation.cfm?id=2616448.
2616486.

A. Dragojevi¢, D. Narayanan, E. B. Nightingale, M. Renzel-
mann, A. Shamis, A. Badam, and M. Castro. No compro-
mises: distributed transactions with consistency, availability,
and performance. In SOSP, pages 54-70, 2015. po1: 10.
1145/2815400.2815425.

P. W. Frey and G. Alonso. Minimizing the Hidden Cost of

RDMA. In ICDCS, pages 553-560, 2009. bo1: 10.1109/
ICDCS.2009.32.

R. Gerstenberger, M. Besta, and T. Hoefler. Enabling Highly-
scalable Remote Memory Access Programming with MPI-
3 One Sided. In SC, 53:1-53:12, 2013. DOI: 10 . 1145/
2503210.2503286.

J. Gray and A. Reuter. Transaction Processing: Concepts and

Techniques. Morgan Kaufmann, 1992. 1S B N: 9780080519555.

R. Harding, D. Van Aken, A. Pavlo, and M. Stonebraker.
An Evaluation of Distributed Concurrency Control. PVLDB,
10(5):553-564, 2017. po1: 10.14778/3055540.3055548.
J. Hilland, P. Culley, J. Pinkerton, and R. Recio. RDMA Pro-
tocol Verbs Specification, 2003.

T. Hoefler, S. Di Girolamo, K. Taranov, R. E. Grant, and R.
Brightwell. sPIN: High-performance streaming Processing
In the Network. In SC, pages 1-16. ACM Press, 2017. DOT:
10.1145/3126908.3126970.

2337

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

Jeff Barr. Now Available — Elastic Fabric Adapter (EFA) for
Tightly-Coupled HPC Workloads, Apr. 2019. URL: https:

/ / aws . amazon . com/ blogs / aws / now - available -
elastic-fabric-adapter-efa-for-tightly-coupled-
hpc-workloads/.

A. Kalia, M. Kaminsky, and D. G. Andersen. FaSST: Fast,
Scalable and Simple Distributed Transactions with Two-Sided
(RDMA) Datagram RPCs. In OSDI, pages 185-201, 2016.

A. Kalia, M. Kaminsky, and D. G. Andersen. Using RDMA
Efficiently for Key-value Services. SIGCOMM, 44(4):295—
306, 2014. DOI: 10.1145/2740070.2626299.

R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. B.
Zdonik, E. P. C. Jones, S. R. Madden, M. Stonebraker, Y.
Zhang, J. Hugg, and D. J. Abadi. H-Store: A High-Perfor-
mance, Distributed Main Memory Transaction Processing
System. In PVLDB, volume 1 of number 2, pages 1496-1499,
2008. DOI: 10.14778/1454159.1454211.

A. Kemper and T. Neumann. HyPer: A hybrid OLTP&OLAP
Main Memory Database System Based on Virtual Memory
Snapshots. In ICDE, pages 195-206, 2011. bDo1: 10.1109/
ICDE.2011.5767867.

J. Kim, W. J. Dally, S. Scott, and D. Abts. Technology-Driven,
Highly-Scalable Dragonfly Topology. SIGARCH, 36(3):77—
88,2008. DOI: 10.1145/1394608.1382129.

H. T. Kung and J. T. Robinson. On Optimistic Methods for
Concurrency Control. TODS, 6(2):213-226, 1981. DOTI: 10.
1145/319566.319567.

F. Liu, L. Yin, and S. Blanas. Design and Evaluation of an
RDMA-aware Data Shuffling Operator for Parallel Database
Systems. In EuroSys, pages 48—63, 2017. DOI: 10. 1145/
3064176.3064202.

D. Makreshanski, J. Giceva, C. Barthels, and G. Alonso. Batch-
DB: Efficient Isolated Execution of Hybrid OLTP+OLAP
Workloads for Interactive Applications. In SIGMOD, pages 37—
50,2017. po1: 10.1145/3035918.3035959.

M. Pilman, K. Bocksrocker, L. Braun, R. Marroquin, and D.
Kossmann. Fast Scans on Key-Value Stores. PVLDB, 10(11):
1526-1537,2017. DO1: 10.14778/3137628.3137659.

W. Rédiger, S. Idicula, A. Kemper, and T. Neumann. Flow-
Join: Adaptive skew handling for distributed joins over high-
speed networks. In ICDE, pages 1194-1205, 2016. DoO1: 10.
1109/ICDE.2016.7498324.

W. Rodiger, T. Miihlbauer, A. Kemper, and T. Neumann. High-
speed Query Processing over High-speed Networks. PVLDB,
9(4):228-239, 2015. DOI: 10.14778/2856318.2856319.

P. Schmid, M. Besta, and T. Hoefler. High-Performance Dis-
tributed RMA Locks. In HPDC, pages 19-30, 2016. DO1:
10.1145/2907294.2907323.

Tejas Karmarkar. Availability of Linux RDMA on Microsoft
Azure, 2015. URL: https://azure.microsoft.com/es-
es/blog/azure-linux-rdma-hpc-available/.

M. ten Bruggencate and D. Roweth. Dmapp - An API for
One-sided Program Models on Baker Systems. In Cray User
Group, 2010.

A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao, and
D. J. Abadi. Calvin: Fast Distributed Transactions for Par-
titioned Database Systems. In SIGMOD, 2012. DO1: 10 .
1145/2213836.2213838.

https://doi.org/10.1145/2723372.2750547
https://doi.org/10.1145/2723372.2750547
https://doi.org/10.14778/3055540.3055545
https://doi.org/10.1109/IPDPS.2015.30
https://doi.org/10.1109/SC.2014.34
https://doi.org/10.1109/MM.2016.56
http://dl.acm.org/citation.cfm?id=2616448.2616486
http://dl.acm.org/citation.cfm?id=2616448.2616486
https://doi.org/10.1145/2815400.2815425
https://doi.org/10.1145/2815400.2815425
https://doi.org/10.1109/ICDCS.2009.32
https://doi.org/10.1109/ICDCS.2009.32
https://doi.org/10.1145/2503210.2503286
https://doi.org/10.1145/2503210.2503286
https://doi.org/10.14778/3055540.3055548
https://doi.org/10.1145/3126908.3126970
https://aws.amazon.com/blogs/aws/now-available-elastic-fabric-adapter-efa-for-tightly-coupled-hpc-workloads/
https://aws.amazon.com/blogs/aws/now-available-elastic-fabric-adapter-efa-for-tightly-coupled-hpc-workloads/
https://aws.amazon.com/blogs/aws/now-available-elastic-fabric-adapter-efa-for-tightly-coupled-hpc-workloads/
https://aws.amazon.com/blogs/aws/now-available-elastic-fabric-adapter-efa-for-tightly-coupled-hpc-workloads/
https://doi.org/10.1145/2740070.2626299
https://doi.org/10.14778/1454159.1454211
https://doi.org/10.1109/ICDE.2011.5767867
https://doi.org/10.1109/ICDE.2011.5767867
https://doi.org/10.1145/1394608.1382129
https://doi.org/10.1145/319566.319567
https://doi.org/10.1145/319566.319567
https://doi.org/10.1145/3064176.3064202
https://doi.org/10.1145/3064176.3064202
https://doi.org/10.1145/3035918.3035959
https://doi.org/10.14778/3137628.3137659
https://doi.org/10.1109/ICDE.2016.7498324
https://doi.org/10.1109/ICDE.2016.7498324
https://doi.org/10.14778/2856318.2856319
https://doi.org/10.1145/2907294.2907323
https://azure.microsoft.com/es-es/blog/azure-linux-rdma-hpc-available/
https://azure.microsoft.com/es-es/blog/azure-linux-rdma-hpc-available/
https://doi.org/10.1145/2213836.2213838
https://doi.org/10.1145/2213836.2213838

[36]

[37]

[38]

[39]

[40]

S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden. Speedy
transactions in multicore in-memory databases. In SOSP,
pages 18-32,2013. DO1: 10.1145/2517349.2522713.

F. V. Van Wig, L. A. Kachelmeier, and K. N. Erickson. Com-
parison of High Performance Network Options: EDR Infini-
Band vs.100Gb RDMA Capable Ethernet. In SC (Poster),
2016.

T. Wang, R. Johnson, A. Fekete, and 1. Pandis. Efficiently
making (almost) any concurrency control mechanism serial-
izable. VLDB,26(4):537-562,2017. DO1: 10.1007/s00778-
017-0463-8.

X. Wei, J. Shi, Y. Chen, R. Chen, and H. Chen. Fast in-memory
transaction processing using RDMA and HTM. In SOSP,
pages 87-104, 2015.

D. Y. Yoon, M. Chowdhury, and B. Mozafari. Distributed
Lock Management with RDMA: Decentralization without

[41]

[42]

[43]

[44]

2338

Starvation. In SIGMOD, 2018. DOI: 10.1145/3183713.
3196890.

X. Yu, G. Bezerra, A. Pavlo, S. Devadas, and M. Stonebraker.
Staring into the Abyss: An Evaluation of Concurrency Con-
trol with One Thousand Cores. PVLDB, 8(3):209-220, 2014.
DOI: 10.14778/2735508.2735511.

E. Zamanian, C. Binnig, T. Harris, and T. Kraska. The End of
a Myth: Distributed Transactions Can Scale. PVLDB, 10(6):
685-696, 2017. DOI: 10.14778/3055330.3055335.

E. Zamanian, X. Yu, M. Stonebraker, and T. Kraska. Rethink-
ing database high availability with RDMA networks. PVLDB,
12(11):1637-1650,2019. DO1: 10.14778/3342263.3342639.

T. Ziegler, S. Tumkur Vani, C. Binnig, R. Fonseca, and T.
Kraska. Designing Distributed Tree-based Index Structures
for Fast RDMA-capable Networks. In SIGMOD, pages 741—
758. ACM Press, 2019. DOI: 10.1145/3299869.3300081.

https://doi.org/10.1145/2517349.2522713
https://doi.org/10.1007/s00778-017-0463-8
https://doi.org/10.1007/s00778-017-0463-8
https://doi.org/10.1145/3183713.3196890
https://doi.org/10.1145/3183713.3196890
https://doi.org/10.14778/2735508.2735511
https://doi.org/10.14778/3055330.3055335
https://doi.org/10.14778/3342263.3342639
https://doi.org/10.1145/3299869.3300081

