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Abstract
Performance models are well-known instruments to under-
stand the scaling behavior of parallel applications. They ex-
press how performance changes as key execution parameters,
such as the number of processes or the size of the input prob-
lem, vary. Besides reasoning about program behavior, such
models can also be automatically derived from performance
data. This is called empirical performance modeling. While
this sounds simple at the first glance, this approach faces
several serious interrelated challenges, including expensive
performance measurements, inaccuracies inflicted by noisy
benchmark data, and overall complex experiment design,
starting with the selection of the right parameters. The more
parameters one considers, the more experiments are needed
and the stronger the impact of noise. In this paper, we show
how taint analysis, a technique borrowed from the domain of
computer security, can substantially improve the modeling
process, lowering its cost, improving model quality, and help
validate performance models and experimental setups.

CCS Concepts: • Computing methodologies → Model-
ingmethodologies;Model verification and validation; •The-
ory of computation → Program semantics; Concurrency.

Keywords: performance modeling, high-performance com-
puting, compiler techniques, taint analysis, LLVM
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1 Introduction
The increasing complexity of both hardware and scientific
problems creates new challenges for developers of high-
performance applications. The design process of a massively
parallel program that can scale on modern architectures re-
quires a deep understanding of computational kernels and
communication patterns. Performance modeling has become
a standard technique to solve problems such as locating scal-
ability bottlenecks [11, 19, 47], estimating the execution time
when the input size or the core count changes [51], or predict-
ing application performance on a new architecture [9, 36].

The main goal of performance modeling is to express the
performance of an application as a function of one or more
execution parameters [22, 31]. Purely analytical performance
modeling involves an expert who analyzes the source code
and understands the underlying algorithms [22]. While very
effective once the models have been created, the required
person-hours and experience restrict its usability in prac-
tice. Empirical performance modeling, by contrast, generates
similar performance models automatically by analyzing mea-
surements taken from running an instrumented version of
the application in different configurations. It follows three
major steps: identifying parameters, designing an experi-
ment to measure the influence of parameter changes on the
application behavior, and learning the model that best fits
the data. While generating models from existing data is au-
tomatic and resource efficient, running the experiments may
require careful planning and extensive computational effort.
In general, empirical performance modeling involves two
important decisions: (1) choosing parameters that will affect
application performance and (2) designing a set of experi-
ments capable of accurately measuring their influence, while
not exhausting the available computational budget.
Modern scientific applications use dozens of parameters

that describe numerical properties, data size, or the degree
of parallelism, making their selection extremely challenging.
Without detailed insight into the application behavior, the

https://doi.org/10.1145/3437801.3441613


PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea Copik et al.

 Quality
     

Validity
   

Perf-Taint

   Cost
 

Hardware contention
Experiment designLess intrusion

More noise resilience

Fewer experiments

White-box
performance

modeling 

Cheaper experiments

Figure 1. The basic concept of Perf-Taint. A tainted run of
the program provides information that improves the empir-
ical performance modeling process along the dimensions
cost, quality, and validity of the resulting models.

user has to consider all possible combinations of the chosen
parameters. The larger the number of parameters, the bigger
is the number of experiments and the impact of noise on
the quality of the resulting models [42]. Some performance
effects are not measurable for the entire range of parameter
values available in the experiment design, potentially invali-
dating some measurements. Another major difficulty arises
from the black-box nature of empirical modeling. Without
insight into function behavior beyond empirical data, the
modeler cannot distinguish between actual runtime change
because of parameter influence and the effects of noise on
the measurements. This leads to overfitting, estimating false
dependencies, and generating incorrect models for constant
functions with negligible execution time.

In this paper, we show how taint analysis [14], a technique
borrowed from the field of computer security, which reliably
relates marked input values with the program parts they
potentially affect, can provide this additional context, leading
to the concept of tainted performance modeling. Performance
tainting provides us with accurate performance parameter
information and enables the design of a novel loop-based
complexity analyzer. We integrate our complexity analyzer
with Extra-P [11], an empirical performance-modeling tool,
and derive a new hybrid performance modeling framework
called Perf-Taint, whose underlying concept is illustrated in
Figure 1. We make the following specific contributions:

• The application of taint analysis, which has originally
been devised to track the flow of protected data through
a program, to a new problem: the improvement of em-
pirical performance models of HPC applications.

• The elaborate concept of tainted performance model-
ing, that can (1) reduce the cost of empirical perfor-
mance models, (2) improve their quality, and (3) help
validate them and the experimental setups used for
their generation. An example of such a validation is the
detection of contention as the source of measurements
that contradict expected computational volumes.

• An open-source, LLVM-based tainted performance
modeling tool, ready to use on HPC programs to pro-
vide the insights of a virtual performance expert1.

After reviewing related work in Section 2, and the taint
analysis in Section 3, we describe the theoretical and practical
aspects of our method in Section 4 and Section 5, respectively.
We then demonstrate the benefits it provides in Section 6
and present our conclusion in Section 7.

2 Related Work
The broad spectrum of existing methods and tools to sup-
port the creation of performance models documents their
importance for understanding the performance influence
of algorithms [57], the hardware [36, 37], and the operat-
ing system [21, 39, 57]. They are often used to extrapo-
late performance outside the known range of a single pa-
rameter [27, 54, 59] or even multiple parameters [19, 47],
sometimes exploiting the properties of certain classes of al-
gorithms such as stencil computations [55]. Some require
the prior annotation of the code with performance expres-
sions [49, 51]. Machine learning methods have also been
successively used for performance modeling [26, 34].

There have been several attempts to enable performance
modeling through static analysis of source code [20, 32, 35,
38]. Thanks to the dynamic nature of taint analysis, our
method is not affected by fundamental limitations of static
methods. The dependence of performance modeling tools on
an entirely static dataflow analysis or a perfect loopmodeling
might prevent them from scaling to large scientific applica-
tions. A hybrid performance modeling tool was presented
for online modeling by Bhattacharyya et al. [7].

A different aspect of performance modeling, dataflow anal-
ysis, is also well studied in high-performance computing: Df-
Analyzer performs dynamic dataflow analysis of Spark high-
performance applications [48]. Parallel control-flow graphs
of MPI programs have been constructed with dataflow anal-
ysis [2]. Value influence analysis, a variant of taint analysis,
has been used in message-passing applications [43].

3 Dynamic Taint Analysis
When trying to construct the performance model of a full
application, one would hope that there is a way to automati-
cally determine its runtime complexity (or complexity w.r.t.
other metrics) by analyzing the program code with a suf-
ficiently smart compiler. While previous research showed
first results [24] towards this direction, these solutions are
inherently limited to special cases or approximations and are
hard to scale to non-trivial programs (Section 3.1), as even
the simple problem of identifying which input parameter
affects an arbitrary program variable is inherently difficult.

1The code is available on GitHub: spcl/perf-taint
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Dynamic taint analysis (Section 3.2) has been successfully
used in the context of computer security to reliably ana-
lyze data relations across complex programs. We introduce
the major concepts and techniques and discuss how taint
analysis provides precise knowledge as to how input pa-
rameters affect variables of the program. This gives us the
instruments to introduce white-box performance modeling
of non-recursive HPC programs (Section 4).

3.1 Static performance modeling is hard
Modeling performance statically is difficult from both a theo-
retical and a practical viewpoint. There are strict theoretical
limitations of how accurate a static analysis can be or if an
analysis can be computed at all. On the practical side, vari-
ous levels of abstractions or indirections make program code
easy to maintain, but make static analysis even less likely
to succeed. We now outline several theoretical and practical
considerations that make static performance modeling hard.

Theoretic limitations There are strong theoretic reasons
why static program analysis techniques are often unable to
provide precise answers even for seemingly simple analy-
ses. The most well known is the halting problem [13] or its
generalization, Rice’s theorem [40], which we here rephrase
in the terms of program analysis: any non-trivial semantic
property of a program cannot be computed. A property such
as “does a program contain a certain instruction sequence”
is syntactic and might be decidable, but “does a program
return 0” is a semantic property and is undecidable for ar-
bitrary programs. As a result, the question “can the value
stored in a given memory location affect an instruction that
is run when executing a given program” is a semantic prop-
erty. Hence, determining whether a configuration parameter
affects certain parts of a program is undecidable.

Practical considerations While Rice’s theorem shows
that the proof of semantic properties to be impossible for all
programs, there might still exist a sufficiently large set of
programs where this is realistic. We now argue that even an
approximate analysis for only a subset of programs is diffi-
cult in practice. The main culprits are abstraction overhead,
complex abstract data types, and runtime configurability.
Abstraction is important to ensure the maintainability of
large software projects. To that end, class hierarchies, virtual
dispatching, and many very fine-granular functions are com-
monly used. Pointer aliasing in general is a hard problem [44],
and while some static analysis tools [50] can achieve a sig-
nificant degree of precision in the inter-procedural context,
the results are affected by over-approximation. Performance
modeling needs precise program information, since proving
the lack of a parameter dependency on computation is neces-
sary to reduce the dimensionality of models. Another source
of over-approximation is the hard-to-predict control-flow

found in languages gaining popularity in scientific comput-
ing. The problem arises from virtual dispatch in statically
typed languages (C++, Julia) and from duck typing (Python).

Message-passing and multithreading adds to the code non-
determinism that can lead to a combinatorial explosion of
states. A common choice for the analysis of MPI programs is
symbolic execution [17], but it suffers from the exponential
number of paths it has to analyze, limiting its scalability [56].

3.2 Dynamic taint analysis
Dynamic taint analysis is a runtime analysis that marks and
tracks the movement of certain data elements and computed
results depending on them through the execution of a program.
Taint analysis can compute semantic analyses while a pro-
gram is executed, overcoming the limitations that prevent
static (compile-time) analysis from providing precise results,
at the price of narrowing the insights to a specific run and
its input configuration. For many analyses – especially if the
results anyhow depend on input data – this is often exactly
what is desired. We introduce a general taint-analysis frame-
work that can be used to instantiate problem-specific taint
analyses. We define three major components described by
Clause et al. [14] – (a) taint sources, (b) propagation policy,
(c) taint sinks, which we discuss below with code examples.

Taint sources Taint sources are all components of a pro-
gram that can represent some kind of program data. Typical
taint sources are memory locations, variable names, or func-
tion return values, but almost any part of a program can be a
taint source, including I/O interfaces, system calls, network
devices, etc. Marking taint sources requires the specification
of data to be tainted and taint labels used to mark it.

/ / Program inpu t : t a i n t with l a b e l " s i z e "
s c an f ( "%d " , &s i z e ) ;
/ / Manual t a i n t sou r c e : t a i n t with l a b e l " p "
w r i t e _ l a b e l (&p , s i z eo f ( p ) , " p " ) ;
/ / Third−pa r t y l i b r a r y ou tpu t : t a i n t with l a b e l " ranks "
MPI_Comm_size (MPI_COMM_WORLD, &ranks ) ;

Taint propagation policy The taint propagation policy
defines how taint labels are moved through a program. We
specify it by (1) defining a mapping function, and by (2)
defining the affected data. Themapping function defines how
two (or more) taint labels are joined. In the most trivial case,
two sets of labels are joined by taking the union of the sets.
The affected data defines all data to which taint labels

are propagated through data-flow and control-flow. Data-
flow based propagation passes taint labels from inputs of
operations to their outputs, including program instructions
and propagation from function arguments to its return value.
Control-flow based propagation captures the propagation of
taint labels through control dependencies [15, 28].
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in t foo ( in t a , in t b , in t c ) { / / I npu t l a b e l s : " a " , " b " , " c "
in t d = 2 ∗ a ; / / Data f low t a i n t i n g with l a b e l " a "
i f ( b ) d ++ ; e l se d−−; / / E x p l i c i t t a i n t i n g , l a b e l " b "
i f ( c ) d = pow ( d , 2 ) ; / / I m p l i c i t t a i n t i n g , l a b e l " c "
return d ; / / Ta in t l a b e l s o f r e t u r n : " a " , " b " , " c "

}

In the example above, the variable a taints the return value
of the function through a data-flow propagation. Variable
b taints d through a control-flow condition which controls
the execution of code that changes the return value (explicit
dependence). An implicit dependence occurs for c since the
value depends on it even if the second branch is not taken.

Taint sinks Taint sinks are program code locations with
an associated variable or memory location that may observe
tainted program data. Sinks are used to determine which
tainted values affect a given behavior. Each taint sink is
defined by (1) a program code location, (2) the variable or
memory location to check, and (3) a checking method that
is invoked whenever the taint sink is executed.

4 Tainted Performance Modeling
Building on the concepts presented in Section 3.2, we intro-
duce a taint analysis for performance modeling (Section 4.1),
where the influence of input parameters on program vari-
ables is used to model the number of loop iterations. We
show how this knowledge allows us to place a bound on
the volume of computation (Section 4.2), defined as the num-
ber of operations executed in a non-recursive program run.
An empirical black-box performance modeler uses the infor-
mation of compute volumes to limit the space of potential
complexity functions it considers (Section 4.5).

4.1 Loop count parameter identification
We solve the core data-flow problem behind performance
modeling by formulating a suitable taint analysis. We assume
that all target metrics, such as the program runtime or the
number of operations, only vary with the iteration number of
loop constructs in the code, since a control-flow decision not
associated with a loop pattern will not affect asymptotic com-
plexity of performance models. This assumption is intuitive
because the source code is typically not changed (i.e., in com-
plexity or size) when changing program input parameters.
Our analysis computes how potential input parameters affect
the iteration counts of all natural loops [3] in a program.2
While the analysis does not support recursive functions, it
warns of over-approximation when recursion is detected.
Nevertheless, the core focus of performance modeling are
HPC applications where the vast majority of computations
are iterative anyway.

Sources The sources of our loop taint analysis are all
potentially performance-relevant parameters of a program.
2Our analysis does not explicitly consider irreducible loops where control
is transferred through multiple paths into the loop (no single loop header),
as irreducible loops can easily be transformed into natural loops [53].

Performance relevant parameters are all memory locations
marked explicitly by the performance engineer with a param-
eter label. Parameters are typically read from the command
line, but might also be provided through other means (e.g., a
configuration file), as long as their value is eventually stored
in a variable that the user has marked as a parameter.

Propagation policy To reliably produce accurate results,
our analysis requires the propagation of taint across data
flow and control flow. Because we need to know only the
presence of a specific taint label in a performance-relevant
variable, we choose the set union as mapping function. Each
label will contain the set of input parameters that in some
way affected the value marked by the taint label.

Sinks The sinks of our taint analysis are all loop exit con-
ditions. For a given loop, the number of times it iterates
depends only on loop exit branch conditions. Any further
indirect dependencies will eventually taint these branch con-
ditions through our taint analysis.
We summarize the concepts in an example. With auto-

matic taint propagation, the dependency on input parameters
is propagated through function calls and memory operations
to the sink, where it is used by our loop-count analysis.
s t ruc t params = pa r s e _ a r g s ( ) ;
w r i t e _ l a b e l (&params . s i z e , " s i z e " , &params . s t ep , " s t e p " ) ;
i t e r a t e ( pow ( params . s i z e , 2 ) , o p t im i z e _ s t e p ( params ) ) ;
void i t e r a t e ( in t s i z e , in t s t e p ) {
for ( in t i = 0 ; i < s i z e ; i += s t e p ) {
compute ( ) ; s i nk ( {& i , &s i z e } , r e g i s t e r _ l o o p ) ;

}
}

Assuming a loop 𝐿 depends on taint labels 𝑝1, . . . , 𝑝𝑛 , the
number of loop iterations of 𝐿, 𝑐𝑜𝑢𝑛𝑡 (𝐿), must then be a
function 𝑔(𝑝1, . . . , 𝑝𝑛). While the parameters this function
potentially depends on are clearly defined, no further infor-
mation about function 𝑔 can be derived through the taint
analysis itself. Even if the taint label just contains a single
taint mark 𝑝 , it does not imply a number of loop iterations
linear in 𝑝 . 𝑐𝑜𝑢𝑛𝑡 (𝐿) could also be 𝑙𝑜𝑔(𝑝), 𝑝2, or any other
function 𝑔(𝑝). As a result, we can state the following claim:

Claim 1. Given an application with a set of input variables V
and a set of 𝑛 correctly marked potential performance variables
𝑃 = (𝑝1, . . . , 𝑝𝑛) ⊆ 𝑉 , we derive for a given loop 𝐿 a class
of symbolic functions 𝑔𝑖 (𝑝1, . . . , 𝑝𝑛) which only depend on
parameters in 𝑃 . If all program parameters that impact the
iteration count of 𝐿 have been marked, a performance taint
analysis with full data and control flow propagation computes
with 𝑐𝑜𝑢𝑛𝑡 (𝐿) = 𝑝𝑖 a class of functions which contain the
function that exactly describes the number of loop iterations.

4.2 Iteration volume of a loop nest
We now derive the iteration volume of a loop nest, that
is, the accumulated number of times the body of a loop
nest is executed. We define the iteration volume recursively.
The base case of our recursion is a loop nest with just a
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single loop 𝐿. In this case, the volume of computation 𝑣𝑜𝑙 (𝐿)
is 𝑐𝑜𝑢𝑛𝑡 (𝐿) = 𝑔( ®𝑝), the result of our loop iteration count
parameter identification.We now define the iteration volume
of larger loop nests by combining existing loop nests.

Sequencing two loops Executing two child loops nests
(𝐿𝑁𝑐1 and 𝐿𝑁𝑐2) in sequence forms a larger loop nest 𝐿𝑁 .
The iteration volume of 𝐿𝑁 is over-approximated as the sum
of the compute volumes of the child loop nests, 𝑣𝑜𝑙 (𝐿𝑁 ) =
𝑣𝑜𝑙 (𝐿𝑁𝑐1) + 𝑣𝑜𝑙 (𝐿𝑁𝑐2).
LN : {

for ( in t i = 0 ; i < count ( LN_c1 ) ; i += 1 ) { . . . }
for ( in t i = 0 ; i < count ( LN_c2 ) ; i += 1 ) { . . . }

}

Nesting of a loop and a loop nest Executing a child loop
nest (𝐿𝑁𝑐 ) inside a loop 𝐿 forms a larger loop nest 𝐿𝑁 . The
iteration volume of 𝐿𝑁 is over-approximated by multiplying
the iteration count of the outer loop with the iteration count
of the loop nest, 𝑣𝑜𝑙 (𝐿𝑁 ) = 𝑔( ®𝑝) · 𝑣𝑜𝑙 (𝐿𝑁𝑐 ).
LN : {
L_1 : for ( in t i = 0 ; i < count ( L_0 ) ; i += 1 )

for ( in t j = 0 ; j < count ( LN_ch i ld ) ; j += 1 )
. . .

}

The power of these simple composition rules can be sum-
marized in the following claim about asymptotic perfor-
mance with respect to performance-critical variables.

Claim 2. Given an application with a set of input variables
V, a set of 𝑛 correctly marked potential performance variables
𝑃 = (𝑝1, . . . , 𝑝𝑛) ⊆ 𝑉 , and a loop nest built from natural
loops 𝐿𝑖 without irreducible control flow or recursion, we derive
for the loop nest a class of symbolic functions 𝑔𝑖 (𝑝1, . . . , 𝑝𝑛)
which only depend on the parameters in 𝑃 . If all variables that
impact the loop iteration count have been marked, we derive
an asymptotic upper bound on the maximal number of times
any given basic block is executed in the loop.

These functions may still contain unresolved functions
𝑔( ®𝑝) representing loops for which the runtime is not known
statically. We will explain in Section 4.5 how we derive these
functions empirically from performance measurements.

4.3 Compute volume of a full program
We calculate the compute volume of a full program without
recursion. Any code not part of a loop can be ignored as it
has only constant cost. Similarly, bodies of inner loops can be
assumed to have only constant computational cost since the
analysis is inter-procedural and loop nests are aggregated
across function calls. Therefore, the asymptotic compute
volume can be derived by looking only at the recursively
accumulated cost of loop nests.

Theorem 1. Given an application 𝐴 with a set of input vari-
ables V, a set of 𝑛 correctly marked potential performance
variables 𝑃 = (𝑝1, . . . , 𝑝𝑛) ⊆ 𝑉 , no irreducible control flow or

recursion, the recursive accumulation of the iteration volume
in each function of the call tree (due to no recursion) computes
the asymptotic compute volume of 𝐴.

The taint analysis therefore yields properties of the func-
tion space of possible performance models but it does not
explicitly generate precise models. In this sense, it provides a
“scaffolding” that defines some relations among loops. How-
ever, the precise function for each loop is not yet defined.
To derive such functions, we first discuss how to include
additional control-flow information into the model (4.4). We
subsequently refine an empirical modeling approach to pa-
rametrize the missing loop models to derive accurate overall
performance models for each function (4.5).

4.4 Algorithm selection
In addition to building a set of performance models for each
function discussed earlier, we apply taint analysis to lo-
cate control-flow decisions unrelated to loop exit conditions
that are affected by input parameters. Instrumenting condi-
tional branches with taint sinks enables (1) the detection of
tainted control-flow decisions affecting performance models
for branches inside any loop nest and (2) the detection of
code paths that are never visited, including the parameter-
based selection of algorithms.

4.5 Empirical performance modeling is also hard
Our dynamic taint analysis provides us with information on
how parameters influence the compute volume of individual
functions, but does not provide specific functions that de-
scribe the asymptotic behavior very precisely. To close this
gap, we build a hybrid analysis by combining the compute
volume information from our compiler-based analysis with
a black-box empirical performance modeler. This modeler
runs a program multiple times with different parameter con-
figurations. Using both the results of taint analysis and the
observed execution times, it derives a performance-model
function that (1) respects parameter dependencies derived
during the taint analysis and (2) provides the best fit to em-
pirical data. As a black-box performance prediction approach
we use the performance modeling tool Extra-P [8, 12, 46].

Performance function A key concept of the Extra-P ap-
proach is the performance model normal form (PMNF), de-
fined in Equation 1. It models the effect of parameters 𝑥𝑖 on a
variable of interest 𝑓 (𝑥1, . . . , 𝑥𝑚), typically execution time or
a performance counter. The PMNF is based on the assump-
tion that performance, at least at the level of functions calls,
can usually be expressed as a combination of polynomial and
logarithmic terms. This flexibility in expressing behaviors is
sufficient to cover most cases encountered in practice while
keeping the modeling process fast enough to be viable.

𝑓 (𝑥1, . . . , 𝑥𝑚) =
𝑛∑

𝑘=1
𝑐𝑘 ·

𝑚∏
𝑙=1

𝑥
𝑖𝑘𝑙
𝑙

· 𝑙𝑜𝑔 𝑗𝑘𝑙2 (𝑥𝑙 ) (1)
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The PMNF defines a function search space, which is traversed
to find the function that comes closest to representing the
set of measurements. This assumes that the true function is
within the search space. A possible assignment of all 𝑖𝑘 and
𝑗𝑘 in a PMNF expression is called a model hypothesis. The
sets 𝐼 , 𝐽 ⊂ Q from which the exponents 𝑖𝑘 and 𝑗𝑘 are chosen
and the number of terms 𝑛 define the model search space.
The coefficients of all hypotheses are automatically derived
using regression and the hypothesis with the smallest error
is chosen to find the most likely model function. In this work,
we use the configuration suggested by Ritter et al. [42].

This approach always generates a human-readable ex-
pression out of any given measurement data. It attempts to
explain this data as well as possible by fitting the PMNF to
the data. The more complex the PMNF is, such as by adding
more terms or a wider range of exponents to the terms, the
more freedom the modeling has to fit the data. This allows
more behaviors to be expressed but risks overfitting the
data—especially in the presence of noise.

Limitations A significant limitation of Extra-P is the
black-box nature of the approach that uses only empirical
measurements to generate performance models. This means
that the models can be affected both by random noise, and by
systemic interference such as network congestion caused by
multiple applications sharing a physical system. While these
effects can be mitigated by repeating measurements and try-
ing to control the measurement infrastructure, they cannot
be eliminated and their impact is larger the more parameters
are considered [42]. In most applications, runtime is concen-
trated in a small number of routines, and while these routines
are correctly modeled, the previously discussed disturbances
disproportionately affect regions of code with short runtimes,
and in some cases translate to Extra-P effectively modeling
noise. Given the large number of such occurrences, in some
the noise can randomly resemble a strong correlation be-
tween a parameter and a metric. Such false positives can, at
the moment, only be eliminated by manual inspection of the
code and cost users valuable time.

Hybrid modeler Our goal is to allow the PMNF to be as
expressive as possible to accurately model different perfor-
mance behaviors but wish to prevent this expressivity from
generating false positives by overfitting. We therefore use
taint analysis to define a prior for the modeling process in
Extra-P. We use the results of the taint analysis to minimize
the negative effects of measurement noise. The model of
computational volume is applied to restrict the search space
by removing parameters that could not affect performance.
As a result, the black-box regression algorithm no longer
uses non-existing parameter dependencies in models.
The immediate effect is pruning out parametric models

for constant functions. These functions are notoriously hard
to model since the variability of measurement data forces
the modeler to favor functions that are not constant. The

Expert selects parameters.

Instrument all functions.

Use complex heuristics.

Taint-based coverage
selects parameters.

Skip irrelevant functions.

Expert provides parameter constraints.

Parameter Identification

Reduced Experiment Design

Use parameter 
dependencies.

Instrumented Experiments

A1

Model Generation

A2

A3 B2 

B1 C2C1

All functions. Only relevant functions.

Extra-P: Black-Box
Performance Modeling.

perf-taint: White-Box Modeling.
Annotate parameters

Taint analysis

Figure 2. The processing pipeline of Perf-Taint. All four
major steps of empirical modeling are improved with the
program information provided by taint analysis.

final model is overfitted and likely misleading. The second
important result is the removal of false dependencies in
performance models. We therefore automate the process
of verifying empirical models by removing parameters not
present in the code from the search space.

5 Implementation of Perf-Taint
We provide with Perf-Taint an implementation of our perfor-
mance tainting approach, as shown in Figure 2. Our process-
ing pipeline includes the new step of tainted modeling that
consists of three stages: (1) a static analysis, (2) a dynamic
taint analysis; and (3) a database of performance-critical
libraries, which we discuss in detail in the following subsec-
tions. Perf-Taint uses LLVM [33] andworks on the level of the
intermediate representation (IR), which makes Perf-Taint ap-
plicable to a range of languages, including C++, Fortran, Julia,
etc. However, our taint-based modeling approach (Section 4)
is independent of the taint implementation and can also be
built using other taint-analysis frameworks [15, 28, 30, 45].
Figure 2 shows how performance modeling with Extra-

P is improved with the program information provided via
taint analysis. Without taint analysis expert knowledge is
necessary to decide which parameters have the largest im-
pact on performance and scalability, a difficult manual task.
Perf-Taint leverages taint analysis to determine how many
loops and functions are affected by each specific parameter,
providing a simple yet intuitive coverage metric and remov-
ing from the analysis any parameters that have no effect on
performance. The only user action is the annotation of each
input parameter with one line of code in the program source,
as illustrated in the example below. In contrast to many per-
formance modeling tools [35, 38, 51], we do not require our
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users to annotate regions of interests, functions, loop bound-
aries, or even to provide manually annotated performance
models for each kernel.

s t ruc t cmdLineOpts op t s ;
ParseCommandLineOptions ( argc , argv , myRank , &op t s ) ;
r e g i s t e r _ v a r i a b l e (& op t s . nx , " s i z e " ) ;

The next step determines the set of measurements used
for empirical modeling. The user needs to provide the con-
straints on parameter values, which is a problem-specific
part. The naïve approach considers all combinations of pa-
rameter values and therefore the number of samples scales
exponentially with the number of parameters. While the
original approach required sophisticated heuristics and a
potential accuracy loss to reduce this number, taint analysis
decides which parameter have multiplicative dependencies
and which lead to additive effects. This means often not all
combinations are required, therefore reducing the burden of
themost computationally expensive part of the pipeline with-
out sacrificing accuracy. Finally, Perf-Taint uses taint-based
information on parameter dependencies to select only rele-
vant functions for instrumentation and prune models with
false dependencies, leading to better and cheaper models.

5.1 Static analysis
At compile time, we identify all functions that contain no
loops or only loops with constant and statically resolvable
trip counts since their performance models are known to be
independent from any program parameter. To that end, we
query an existing loop induction analysis (e.g., ScalarEvolu-
tion [18]). During this process, we include functions contain-
ing library calls that are known to be affected by performance
parameters, such as MPI communication routines.

5.2 Dynamic taint analysis
We build our solution on top of the DataFlowSanitizer plu-
gin [16] in LLVM, a data-flow taint system consisting of (1)
a runtime implementing taint system, and (2) a transforma-
tion pass instrumenting each instruction with propagation
of taint labels from its operands to the output. The sanitizer
implementation trades efficiency in favor of versatility, sup-
porting up to 216 unique labels. We extended the plugin with
support for explicit control-flow taint propagation.
Perf-Taint gathers information on the effects of tainted

parameters on each non-constant loop in the program, by
treating loop exit branch conditions as taint sinks. We store
call-path information to distinguish between function calls
that result in different dependencies, letting the empirical
modeler Extra-P create calling-context-aware performance
models. As part of post-processing after program execution,
we parse loop nests with parameter dependencies and use
this information to generate explicit multiplicative and ad-
ditive dependencies for a function. The only source of over-
approximation in our analysis is the presence of multiple

labels in a single exit condition, where we conservatively
report a multiplicative dependency. The latter requires more
experiments to be accurately parametrized.

5.3 Global state libraries
Loop-based kernels are not the only way how parameters can
affect the performance. The model has to include paramet-
ric effects of communication and synchronization routines.
The performance parameter could affect their behavior in
the following ways: (1) a value tainted by the parameter is
exchanged between processes operating in disjoint memory
spaces, (2) the parameter is passed to the routine explic-
itly, (3) the parameter is hidden from the user in the library
runtime. We solve issues (2) and (3) by introducing a library
database describing performance-relevant functions, implicit
parameters provided by libraries, and sources of taint values.
We demonstrate the solution on MPI, the most widely-

used library for distributed and high-performance applica-
tions. We declare the implicit parameter p, which denotes
the size of the global communicator, and we include the func-
tion MPI_Comm_size as a source of tainted values, writing a
label to the memory address passed as a second argument
to the function. We derive parametric dependencies for MPI
communication and synchronization routines from precise
analytical models [23, 52], and provide them in the library
database supplied with Perf-Taint. As an example, we con-
sider the case of MPI peer–to–peer communication routines.
When they appear in a function, our analysis introduces im-
plicit dependence on p. Since performance of these functions
depends on the network conditions and message size, we
query the taint labels associated with count argument pro-
vided to the function and add them as additional parametric
dependencies for this function call.

Taint labels could be transfered between processes withing
MPI messages. The problem of tainting network communica-
tion has already been tackled [58], and an analogous solution
for MPI would only have to cover standard MPI datatypes
and the few, well-defined routines that create user-defined
datatypes. We have found that the lack of support for data
exchange across the network is not an obstacle for the appli-
cations we analyzed.

6 Taint Analysis in Action
We present the three major categories of improvements that
our taint-supported framework brings to the empirical per-
formance modeling process: decreased cost (Section A ),
improved quality (Section B ), and the discovery of soft-
ware and hardware phenomena the knowledge of which can
help validate experiment design and modeling results (Sec-
tion C ). We support our claims by applying taint-supported
performance modeling to two representative HPC bench-
marks: LULESH [29] and MILC [6], summarized in Table 2
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Piz Daint Skylake Cluster

CPU Intel Xeon E5-2695 v4 2.10GHz Intel Xeon 6154 3GHz
Cores 2 sockets, 18 cores each 36 cores
Memory 128 GB 384 GB

Software GCC 8.3, Cray MPICH 7.7.2 GCC 8.3, OpenMPI 4.0.3
Score-P 6.0 [4], Extra-P 3.0 [1], LLVM 9.0 [33]

Table 1. Software and hardware configuration of Perf-Taint
evaluation on Piz Daint and a local Skylake cluster.

LULESH MILC

Functions 356 629
Pruned Statically/Dynamically 296/11 364/188
Kernels/Comm. Routines/MPI 40/2/7 56/13/8
Loops 275 874
Pruned Statically 52 96
Relevant 78 196
Modeling
p 3𝑛 (27, ..., 729) 2𝑛 (4, ..., 64)
size 25,30,35,40,45 32,64,128,256,512

Table 2. Overview of LULESH and MILC: the two-phase
identification of computational kernels, communication rou-
tines and MPI functions used, and the manually specified
parameter values for two-parameter modeling.

and discussed in the next two paragraphs. The hardware and
software systems used are summarized in Table 1.

LULESH is a scientific application written in C++, imple-
menting stencil computations for a hydrodynamic shock
problem on a three-dimensional mesh. The code is struc-
tured around the main class Domain and contains multiple
simple methods. Their expected constant computational ef-
fort is hard to capture empirically because the presence of
noise makes timing data unreliable for such short functions.
We run the taint analysis of this application with size 5
and 8 MPI ranks, leaving other parameters at the default
value, since it provides a representative execution of the ap-
plication that is close to parameter configurations used in
modeling (Section B ). If we choose the number of MPI ranks
p and the grid size size as performance-model parameters,
a typical use case, our analysis marks 86.2% of the functions
as not influenced by these two parameters, allowing the
immediate classification of their models as constant.

MILC We model the performance of the su3_rmd appli-
cation from the MIMD Lattice Computation, a collection of
scientific applications working on problems from the lattice
quantum chromodynamics (QCD) fields. We analyze here
the effects of two parameters frequently chosen for scaling
studies: (1) the size of the space-time domain, which is com-
puted from the four parameters nx, ny, nz, and nt, and

LULESH Total p size regions iters balance cost p, size

Functions 43 2 40 13 4 9 2 40
Loops 86 2 78 27 4 20 2 78

MILC Total p size trajecs
warms nrest. mass,beta p, size
steps niter nfl. / u0

Functions 56 54 53 12 9 6 1 / 4 56
Loops 196 187 161 39 31 15 1 / 7 196
Table 3. Computational kernels and loops in multi-
parameter modeling. p, size is not equal to the sum of corre-
sponding columns since multiple parameters can affect the
same region.

(2) p, the number of MPI ranks. We apply the taint analy-
sis of this application with a size of 128 on 32 MPI ranks.
Again, the taint analysis identifies 87.7% of the functions
as constant relative to these two parameters. This corrects
77% models previously indicating performance effects. Our
analysis is confirmed by the preceding manual analysis and
the validation with up to 512,000 processes [5].

A Cost
The cost of the modeling process is influenced by two major
factors: the number of the required performance experiments,
which significantly grows with the number of model param-
eters, and the cost of these experiments under instrumenta-
tion. Tainted performance modeling lowers these costs in
multiple ways while reducing the dependence on human ex-
pertise. First, it supports automatic pruning of the parameter
space (Section A1), avoiding many unnecessary experiments.
It can expose parameter dependencies at an early stage (Sec-
tion A2), allowing smarter experiment design with even less
experiments. Finally, we show that the ability to judge the
performance relevance of a function upfront can substan-
tially decrease the instrumentation overhead (Section A3).

A1 Parameter pruning

Parameter a affects loop.
Prune numerical parameter b.

int foo(int a, int b, int & result) {
for(int i = 0 ; i < a; ++i)

result += b * i;                        }

High-performance computing applications often involve a
large set of execution parameters. In practice, limited com-
pute budgets restrict the number of model parameters to
three, and even with boundless resources one should not
go much beyond, as the impact of noise would become
too strong [41]. Tainting allows us to decide which param-
eter influences which part of the program. Programmers
should mark program parameters found in routines parsing
command-line arguments and configuration files. Our analy-
sis determines all parameters without effect on the control
flow and counts the number of loops and functions directly
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affected by a specific parameter. Table 3 summarize parame-
ter pruning on both benchmarks, excluding communication
routines relevant only because of calls to MPI.

LULESH includes six major parameters: the problem size
size, the number of MPI ranks p, regions, balance, cost,
iters. To build a two-parameter model providing the broad-
est coverage of performance relevant functions our taint
analysis suggests we select size and p.

In MILC, we detect the performance-relevant parameters
nx, ny, nz, nt, steps, niter, warms, trajecs and the implicit
parameter p. Our findings are identical with the ground truth
established by experts in a laborious manual process [5].

A2 Parameter dependencies

int foo(int p, int s) {
for(int i = 0 ; i < p; ++i)   bar1(i);
for(int i = 0 ; i < s; ++i)    bar2(i);

}

𝑝 × 𝑠 𝑝 + 𝑠

+10 experiments 9 experiments s

p

Taint analysis can find parameter dependencies, such as mul-
tiplicative dependencies between parameters influencing the
iteration count in outer and inner loops, and additive depen-
dencies between parameters influencing the iteration count
of non-nested loops. For routines where parameter depen-
dencies are detected as additive only, accurate performance
models can be generated by creating single parameter mod-
els for each of the parameters involved. Should this be true
for all routines in an applications, the experiment design as
a whole can be simplified and its dimensionality reduced.

An interesting corner case of a multiplicative dependency
is LULESH, where the taint-based modeling detects a single
instance of the parameter iters in the main loop of the pro-
gram. Through that we recover a multiplicative dependency
with all other model parameters. The number of iterations
therefore linearly affects the entire computation. We can
reduce the dimensionality of sample space, since iters does
not grant useful insights into application performance.

A3 Instrumentation overhead

Instrument?

int square(int a) {
return a * a;

}

int foo(int a, int& res) {
for(int i = 0 ; i < a; ++i)
res += square(i); }

No, constant performance. Yes, depends on parameter a.

In the default instrumentation mode, Score-P [4], a widely
used measurement infrastructure and the default for Extra-P,
estimates whether a function should be inlined and therefore
excluded from instrumentation. This approach is inappro-
priate for empirical performance modeling because it might

encourage the compiler to remove performance-critical func-
tions through inlining, obscuring potential sources of bot-
tlenecks and impeding effective performance analysis. Thus,
without contextual information from the taint analysis, each
function must be conservatively assumed to be influenced
by changing parameter values, leading to instrumentation
of all functions and significant runtime overhead.
Using the results of our analysis, we decrease the instru-

mentation overhead by instrumenting selectively, including
only functions that are affected by a parameter change. In
particular, we prune most of the simple constant functions,
such as class getters and setters, which are irrelevant to
scaling studies, without reducing the model quality for the
remaining functions. We compare the overhead of Score-P
with default, full, and our selective instrumentation.

The results for LULESH in Figure 3 clearly demonstrate
how severe the overhead can become for C++ applications.
Depending on the number of ranks and the problem size,
removing constant and irrelevant functions decreases the
execution time by a factor of up to 45 times. Although the
overhead of the default Score-P instrumentation is manage-
able, the results may influence the models themselves. Our
selective instrumentation contains 40 important application
functions, while the default Score-P run instruments less
than half of the performance-relevant functions but includes
helper functions with constant runtime. For MILC, the geo-
metricmean overheads are 1.6% for selective instrumentation
and 23% for full and default instrumentation. We observe
that selective instrumentation provides the most significant
improvements in C++ applications, which are gaining popu-
larity in the HPC community. The usage of object-oriented
and metaprogramming abstractions has a negative effect on
performance of instrumented runs.
Since the default Score-P instrumentation misses impor-

tant functions, causing false-negative results, the modeling
process can only use the selective or full instrumentation
mode. Thus, we can compensate the cost of an additional
step of tainted execution byt lower costs of instrumented
executions. The core-hour costs of taint analysis are 1 and 16
hours for LULESH and MILC, respectively, while the costs
of the experiment decreased from 20483 to 547 hours for
LULESH (97.3%), and from 364 to 321 hours for MILC (13.4%),
when switching from a full to taint-based instrumentation.
The savings from reduced overhead significantly outweigh
the costs of an additional analysis.

B Quality
We use tainting to mitigate the effects of measurement noise
(Section B1 ), and the selective instrumentation discussed
in Section A3 to reduce the intrusion of instrumentation,
improving the quality of the resulting models (Section B2).
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Figure 3. The Score-P instrumentation overhead of LULESH on the Skylake cluster. Plot scales are tuned to enhance visibility.

B1 Noise resilience

int foo(int a, int b, int& result) {
for(int i = 0 ; i < a; ++i)

result += b * i;                       }

0.5𝑎 + 10−3𝑏

Seperate program from noise.

We apply the model obtained by the taint analysis to the
model estimation in Extra-P, to prune models with false
dependencies and evaluate the validity of experiments. We
combine the five values of each parameter defined in Table 2
to construct a set of training data with 25 points, repeating
each measurement five times to reduce the effects of random
noise, resulting in 125 measurements, which we obtain by
using up to 21 (LULESH) and 2 (MILC) Piz Daint nodes.
We compare the new models to black-box ones. We gen-

erally observe that models generated using taint analysis
are closer to (nearly always exactly matching) the ground
truth that we established with manual performance mod-
eling techniques using code inspection [22]. We select for
the comparison only those functions whose data sets do not
contain values with a coefficient of variance larger than 0.1,
as they are too affected by noise to be reliable.
We compare our findings for MILC with models created

manually [5] as a ground truth. For the kernels manually
studied, the taint analysis correctly identifies the dependen-
cies on both p and size in accordance with the theoretical
study. The empirical model also converges to the same model
for each function. There are four MPI_Comm_Rank functions
which we correctly detect as constant where measurement
noise previously caused incorrect models to be generated.

B2 Less intrusion

1.3𝑎 + 10−4 𝑎int bar(int a) {    int foo(int a, int& res) {
instrument();      instrument();
return a * a;       for(int i = 0 ; i < a; ++i)

}                                res += bar(i);              }
Separate program

and instrumentation.

Empirical performance modeling relies on measurements.
The instrumentation process introduces overhead, increas-
ing the cost of the experiments, as discussed in the previous
section. Yet, even more troubling is that the instrumentation
perturbs the measurements, causing the resulting models
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Figure 4. The one-parameter model of LULESH evaluating
the effect of the number of MPI ranks r per node. Compu-
tational kernels experience slowdown because of hardware
contention when many processes occupy the same socket.

to change qualitatively. We compare models from the fully
instrumented code with those from code where only the rou-
tines identified as performance relevant are instrumented.
Beyond the observation that nearly all runtimes are almost
two orders of magnitude bigger under full instrumentation,
critical routines such as CalcQForElems show different mod-
els depending on the degree of instrumentation. The model
derived from fully instrumented runs shows an additive de-
pendency between 𝑝 and 𝑠𝑖𝑧𝑒 , 3 · 10−3 · 𝑝0.5 + 10−5 · 𝑠𝑖𝑧𝑒3
while the filtered instrumentation shows a multiplicative
dependency 2.4 · 10−8 · 𝑝0.25 · 𝑠𝑖𝑧𝑒3. The second model is
validated by previously determined models [10], providing
a strong argument for using a targeted approach towards
instrumentation rather than simply instrumenting full appli-
cations. The default Score-P filter does not instrument this
function, leading to false-negative result in this case.

C Validity
The empirical approach we study always generates a perfor-
mance model from a given input. We previously discussed
in Section B how we can make sure that we generate the
best possible model. There are situations, however, where
the systemic influence of hardware or poor experiment de-
sign make the data unsuitable for understanding algorithmic
performance. We identify such cases and provide guidance
to identify the cause of the issue. We discuss two such ex-
amples: the effect of hardware contention in a multi-core
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system (Section C1), and a qualitative change in the modeled
function across the experiment (Section C2).

C1 Detecting hardware contention

Co-location of p processes
might lead to contention. 0.5𝑎 + 10−3𝑝

int foo(int a) {
for(int i = 0 ; i < a; ++i)

memory_bound(i);
} Memory

P0 P1 P2 P3

We evaluated the black-box and white-box modeling ap-
proaches with measurements of LULESH from Table 2. We
observed a significant number of computational kernels,
where the newmodel is worse at fitting the data even though
it no longer contains false dependencies on p. Since the taint
analysis proved that such functions cannot include such a
dependency, yet it is visible in measurements, we conclude
that that the resulting performance model must be affected
by factors outside the application code itself. The taint-based
modeling pipeline detects the presence of this perturbation
while it was unknown to the black-box modeling approach.

We formulate the hypothesis that the co-location of MPI
ranks on the same socket leads to hardware contention ef-
fects on functions with no dependence on MPI ranks in the
source code. We test this hypothesis with a new experiment
keeping the number of MPI ranks and problem size constant
(p = 64 and size = 30) and varying the numbers or MPI
ranks per node r, scaled from 2 to 18. By disabling multi-
threading, the larger number of cores available to each MPI
rank should not affect the performance of compute kernels,
and only communication routines might benefit from opti-
mized MPI operations when processes are co-located. The
expectation is that non-communication routines should have
constant models. The entire application shows a significant
increase in execution time, by 50%, from 130s to 195s, with
the corresponding model 2.86 · log22 rs+ 127s. Out of 73 func-
tions, 31 have an increasing model with statistically sound
measurements. Figure 4 shows a few major examples.

Given the significant number of memory operations in the
program, the saturation of memory bandwidth is the most
likely culprit. Thanks to the inclusion of program informa-
tion from taint analysis, we provide a type of insight that has
not been available with purely black-box performance mod-
eling. Modeling results that are independent of hardware
effects and parallel allocations are possible for LULESH but
only for certain levels of node saturation with MPI processes.

C2 Validating the experiment design

𝑓: ቊ
𝑎 𝑎 < 4

log2 𝑎 𝑎 ≥ 8

int foo(int a) {
if(a < 4) kernel_linear(a);
else        kernel_log(a);

}

We evaluated the black-box and white-box modeling ap-
proaches with MILC test runs and noticed the largest dif-
ference between models of communication routines such
as MPI_Isend and a MILC internal implementation of the
gather collective operation.

Although themeasurements are statistically valid, they fail
to present a consistent behavior across the modeling domain.
We notice a qualitative, not merely a quantitative difference
between execution on 4, 8, 16 and larger numbers of ranks.
As there is more than one behavior to be modeled in one
interval, the parametric models estimated by Extra-P cannot
represent the function accurately unless more measurement
data is provided [25].

We have expanded our taint analysis to provide informa-
tion regarding branches of code that are executed or not
executed and therefore where application and/or library be-
havior can qualitatively change. This empowers the user to
appropriately design his experiments to ensure there is only
one behavior present in the data.

7 Conclusion
This work is the first to show that taint analysis, a method
originally introduced to track the flow of sensitive infor-
mation in computer programs, can be used to significantly
advance the state of the art in empirical performance model-
ing for HPC applications. We showed various use-cases to
improve cost, quality, and validity of the resulting models.
Cost is reduced by lowering the number of necessary exper-
iments as well as making individual experiments cheaper.
Moreover, higher noise resilience and less instrumentation-
induced intrusion render the models more accurate. Finally,
with its ability to approximate the computational volume
of program executions, taint analysis can help expose con-
tention effects that prolong the runtime beyond what one
would expect from considering computational volumes alone.
Overall, our results show that for applications of realistic
complexity empirical modeling must be carefully combined
with static and compiler-assisted dynamic analyses to deliver
high-quality and actionable performance models.
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A Artifact Appendix
A.1 Abstract
The artifact provides source code of our tool perf-taint
and its major dependencies, tooling required to perform
experiments described in Section 6, and data obtained on our
systems to assist reproduction of results.
We provide detailed instructions in README and a set of

shell scripts for conducting the experiments in the paper.
Besides, we include a "getting started" guide that demon-

strates the application of our workflow to a dummy MPI
application and section assisting with reusing our tool on
another benchmarks and applications.

A.2 Artifact check-list (meta-information)
• Algorithm: taint-supported empirical performance model-
ing.

• Program: LULESH 2.0, MILC 7.8.1 (sources and LLVM IRs
included).

• Compilation: GCC >= 5.1.0 to build included LLVM and
Clang 10.0 from sources.

• Transformations: taint-based modeling implemented as
an LLVM pass.

• Binary: source code and scripts to regenerate binaries, Docker
containers for LLVM and Extra-P.

• Run-time environment: taint analysis runtime requires
Linux x86. Using containers might require additional per-
missions.

• Hardware: a 16-core machine to run our analysis, a cluster
of up to 729 cores is required to reproduce all results.

• Run-time state: modeling uses measurements from instru-
mented runs that can be affected by network contention and
multi-tenant environments.

• Output: each experiment returns results independently. Re-
sults include text files with statistics, JSON models and mat-
plotlib plots.

• Experiments: we provided shell scripts to prepare exper-
iments, execute them locally or submit SLURM jobs and
process results. Jupyter notebooks are provided for two ex-
periments.

• How much disk space required (approximately)?: ca.
10-15 GB.

• How much time is needed to complete experiments
(approximately)?: each experiment reports required com-
pute time seperately.

• Publicly available?: Yes.

A.3 Description

A.3.1 How delivered
Our source code, software dependencies, benchmarks and scripts
archived on Zenodo: 10.5281/zenodo.4381803. The uncompressed
artifact requires ca. 9 GB of disk space. The data provided with the
artifact has been obtained on the following systems:

• Piz Daint: 36-core nodes with two Intel Xeon E5-2695 v4
2.10GHz, 128 GB memory. Local cluster: 36-core Intel Xeon
6154 3GHz, 384 GB memory

• Piz Daint: SUSE Linux Enterprise Server 15, kernel 4.12.14.
Local cluster: CentOS Linux 7 kernel 3.10.0

• Compilers and versions: Taint analysis: Clang 10.0 devel-
opment version, Piz Daint: GCC 8.3.0; Local cluster: GCC
8.3.0

• Applications and versions: Extra-P 3.0, Score-P 6.0, LLVM
10.0, libc++ 9.0.

• Libraries and versions: Cray MPICH 7.7.2, OpenMPI 4.0.3

A.3.2 Hardware dependencies
Cluster environment with MPI and SLURM scheduler should be
sufficient. Each experiment has its own requirements regarding the
number of CPU cores needed.

A.3.3 Software dependencies
There are threemajor software packages required to perform perfor-
mance modeling, instrumented executions and tainted parameter
modeling: Extra-P with Cube, Score-P, and perf-taint with LLVM,
respectively. Each one requires Linux OS, and LLVM sanitizers
used by perf-taint are known to work only on x86 systems. We
provide three Docker images: perf-taintwith our tool and LLVM
framework, and extrap and extrap3 with an Extra-P installation.
In addition, we provide scripts performing automatic build of our
code with major dependencies when Docker containers cannot be
used.

A.4 Installation
UsingDocker After downloading the artifact, please load archived

Docker images from docker directory. Then, install Score-P using
provided scripts in sources directory and initialize environmental
variables:

source /path-to-artifact/scripts/initialize_env.sh

README describes which Docker images to use for different stages
of experiments. To use Docker for experiments requiring perf-taint
(image: cfsan) or Extra-P (image: extrap and extrap3), mount the
artifact directory in the container:

docker run -it -v /path-artifact/:/home/docker/
↩→ artifact perf-taint/perf-taint:IMAGE /bin/
↩→ bash

Local Installation Docker images are the recommended way
of reproducing results. When using Docker is not an option, our
toolchain and its dependenciesmust be installed locally. After down-
loading the artifact, please install software dependencies using
provided scripts in sources directory.

Before using the artifact, please initialize environmental vari-
ables that are necessary for scripts to work properly:

source /path-to-artifact/scripts/initialize_env.sh

For details, please check the corresponding sections in README.

A.5 Experiment workflow
The artifact consists of multiple experiments that correspond to
various results obtained in Section 6 of the paper. For each one,
we provide a suite of scripts and list of requirements to reproduce
the result, placed in modeling_results directory. In the README,
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we discuss in detail cluster hardware needed and compute time
required to reproduce each experiment.

With the artifact, we provide the necessary data from the paper
to repeat the analysis because the reproduction of Score-P runs
requires an excessive number of corehours and large resources
(up to 729 cores). Furthermore, we supply results to make each
experiment independent of the other. Thus, one does not have to
execute all steps sequentially. For example, if you execute A1, it
will generate filters required by Score-P for A3 part. But if you skip
A1, A3 is going to use filters provided with the artifact.

We evaluated our tool, perf-taint, on benchmarks LULESH
and MILC. For each one of them, we generate LLVM IR with anno-
tation for two parameters (B1, B2, A3) and with annotation of all
major parameters (A1). We provide the original sources, patches
implementing the manual parameter annotation and compiled IR
bitcodes with LLVM 9.0. To regenerate the IR, please run the pro-
vided script:

cd modeling_results/{lulesh,milc}/sources
./generate_bitcodes.sh

Each experiment consists of three phases. For each one, we
provide shell scripts to be executed consecutively.

Preparation This includes compilation of LLVM IRs and bina-
ries, and copying necessary input files from previous experiments
and data provided with the artifact.

Execution Results can be obtained locally or through a job sub-
mission to SLURM. Please adjust the provided SLURM jobscripts to
ensure that they run correctly on your cluster.

Processing The final step includes generation of performance
models and processing of time measurements.

A.6 Evaluation and expected result
Results of A1 experiment provide the statistics presented in Table 2
and Table 3. Figures 3 and 4 are reproduced with experiments A3
and C1, respectively, and the Jupyter notebooks supplied with them.

Results of experiments A2, B1 and B2 are reproduced as text files
containing performance models discussed in the corresponding sec-
tions. Results from experiments A2 and C2 are not contained in the
artifact, since they are based on a manual analysis of performance
models obtained in other sections.

When reproducing instrumented runs with Score-P, the time
measurements are going to change, affecting the performance mod-
els created by Extra-P. The models of MPI collectives will change
when different MPI implementations are used. On the other hand,
parametric dependencies of models should not change.

A.7 Experiment customization
Whenever possible, we discuss in the README how to modify the
workflow to reduce the amount of work to verify only a fraction of
data.

Our framework supports the analysis of MPI programs in C/C++.
We don’t provide a generic processing script, since the entire frame-
work includes manual steps that are application-specific and cannot
be automatized. If you would like to apply our toolchain to a new
project, please follow the Getting Started guide of the README and
perform the steps outlined below:

• Annotate program parameters that perf-taint should an-
alyze by adding a call to register_variable immediately
after variable definition and initialization.

• Compile the application to LLVM IR by using clang wrap-
pers provided with our tool, obtaining a set of IRs for the
project.

• perf-taint can be used exactly the same way as in the Get-
ting Started guide. This step already provides the most im-
portant results: performance relevant functions, the impact
of parameters on loops and functions, and files necessary
for efficient instrumentation and modeling.

• Experiment design is always a manual process. We recom-
mend the Extra-P publications as a good source of exper-
iment design practices. Taking five samples per each pa-
rameter and five repetitions per sample is considered to be
sufficient.

• Score-P instrumentation, instrumented runs and modeling
steps work the same as in our experiments.

For details, please refer to Reusability section of the README.

A.8 Notes
While we aim to help users by automatizing the installation, it’s
not feasible to prevent all compatibility issues in cluster environ-
ments. perf-taint should always be built with the supplied clang
compiler with support for taint analysis. To control which GCC in-
stallation is selected by clang, one should use the following CMake
configuration flag for perf-taint:

-DPASS_COMPILER_FLAGS="--gcc-toolchain=${
↩→ gcc_toolchain_location}"
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