
ProGraML:
Graph-based Deep
Learning for
Program Optimization
and Analysis. Chris Cummins

Facebook AI Research

Compilers Machine
Learning

"machine learning for compilers for machine learning"

The cost
● Bad heuristics
● Wasted energy, $$$
● Widening performance gap

Tuning optimizing compilers...

The problem
● 1000s of variables
● Limited by domain expertise
● Compiler / HW keeps changing

Collect examples
(benchmark + empirical measurement)

Learn from
examples

Update heuristic

Repeat on
change

"Build an optimizing compiler, your code will be fast for a day.
 Teach a compiler to optimize ... "

Summarize the program

Program IR Features

void LinearAlgebraOp<InputScalar,
OutputScalar>::AnalyzeInputs(
 OpKernelContext* context, TensorInputs* inputs,
 TensorShapes* input_matrix_shapes, TensorShape*
batch_shape) {
 int input_rank = -1;
 for (int i = 0; i < NumMatrixInputs(context); ++i) {
 const Tensor& in = context->input(i);
 if (i == 0) {
 input_rank = in.dims();
 OP_REQUIRES(
 context, input_rank >= 2,
 errors::InvalidArgument(

"Input tensor ", i,
" must have rank >= 2"));

(CFG, DFG, AST,...)

#. instructions

loop nest level

arithmetic density

trip counts

Collect examples

Features

Best Param

...

...

Supervised
Machine
Learner

Model

Learn from examples

Features

Param

Features

Best Param

...

...

Model

The model is the heuristic

Model

Model

Features

Param

Features

Param

Features

Param

Model

The model is the heuristic

Model

Model

Features

Param Model

Model

Features

Param

Model

Features

Param Model

Model

Features

Param

Model

Features

Param

Features

Param

New Program
Features

Predicted
param

Model

The model is the heuristic

Model

Model

Features

Param Model

Model

Features

Param

Model

Features

Param Model

Model

Features

Param

Model

Features

Param

Features

Param

New Program
Features

Predicted
param

Very successful!
Huge performance gains to be had. Typically outperforms human

expert. [Wang et. al. 2018]

https://zwang4.github.io/publications/pieee18.pdf

Why aren't our
compilers full of

ML?

Model

The model is the heuristic

Model

Model

Features

Param Model

Model

Features

Param

Model

Features

Param Model

Model

Features

Param

Model

Features

Param

Features

Param

New Program
Features

Predicted
param

Hard to select!

Learning without features
kernel void A(global float* a, const float b) {
 a[get_global_id(0)] *= 3.14 + b;
}

2. Vocab

3. Encoded

Token Index
kernel 0
[space] 1
void 2
A 3
(4

global 5
float 6
* 7
a 8

Token Index
, 9

const 10
b 11
) 12
{ 13
\n 14
[15

get_global_id 16
0 17

0 1 2 1 3 4 5 1

1. Input

181 tokens

Optimization
Decision

✓
LSTM

(Cummins et al., PACT 17)
"End-to-end Deep Learning of

Optimization Heuristics"

The problem with code representations
Source code is highly structured

Feature vectors are easy to fool
(e.g. insert dead code).

A

B C

D

E

F

F

G

Sequential representations fail on
non-linear relations, long-range deps.

void A(int a) {
 int b = init();
 //
 // ... 1000 lines
 //
 //
 return b - a;
}

It isn't a vector of numbers It isn't a sequence of tokens

Can we make ML
think like a
compiler?

Program Graphs for Machine Learning

General-purpose representation of programs for optimization tasks.

Task independent - capture structured relations fundamental to
program reasoning (i.e. data flow analysis)

Language independent - derived from compiler IRs

Derive IR from input program (here, LLVM)

Why IR?

Language agnostic
(e.g. C, C++, OpenCL, Swift,
 Haskell, Java for LLVM)

We want to improve
compiler decisions, so
use a compiler's eye view.

Building ProGraML: IR

int Fib(int x) {
 switch (x) {
 case 0:
 return 0;
 case 1:
 return 1;
 default:
 return Fib(x - 1)
 + Fib(x - 2);
 }
}

define i32 @Fib(i32) #0 {
 switch i32 %0, label %3 [
 i32 0, label %9
 i32 1, label %2
]

; <label>:2:
 br label %9

; <label>:3:
 %4 = add nsw i32 %0, -1
 %5 = tail call i32 @Fib(i32 %4)
 %6 = add nsw i32 %0, -2
 %7 = tail call i32 @Fib(i32 %6)
 %8 = add nsw i32 %7, %5
 ret i32 %8

; <label>:9:
 %10 = phi i32 [1, %2], [%0, %1]
 ret i32 %10
}

Building ProGraML: Control-flow

Full-flow-graph: represent
each instruction as a vertex.

Vertex label is the instruction name.

Edges are control-flow.

Edge position attribute for
branching control-flow.

Building ProGraML: Data-flow

Add graph vertices for
constants (diamonds) and
variables (oblongs).

Edges are data-flow.

Edge position attribute for
operand order.

Building ProGraML: Call-flow

Edges are call-flow.

Inbound edge to
function entry instruction.

Outbound edge from
(all) function exit instruction(s).

Building ProGraML: Types

Nodes represent types,
Edges are instances.

Types are composable.
Edge position per field.

struct S {
 char a;
 char b;
 struct S* c;
};

Learning with ProGraML: Node Embeddings

Use vertex labels as embedding keys

Derive vocab from set of unique vertex labels on training graphs.

Separate type/instruction nodes leads to compact vocab,
excellent coverage on unseen programs compared to prior approaches:

inst2vec: combined instruction+operands
CDFG: uses only instructions for vocab, ignores data

br add i320 1 2

i32 <id> = a<id> <int8>

*without types

https://papers.nips.cc/paper/7617-neural-code-comprehension-a-learnable-representation-of-code-semantics.pdf
https://dl.acm.org/doi/pdf/10.1145/3377555.3377894

Learning with ProGraML: GGNNs

Position gating to differentiate
control branches and operand order

6 typed weight matrices for
{forwards,backwards} {control,data,call}

edge types

Message Passing

Readout Head

per-vertex prediction after T
message-passing steps

inst2vec CDFG ProGraML

Reachability
Trivial forwards control-flow
E.g. dead code elimination

0.012 0.998 0.998

Dominance
Forwards control-flow

E.g. global code motion
0.004 0.999 1.000

Data Dependencies
Forwards data-flow

E.g. instruction selection
- - 0.997

Live-out Variables
Backwards control- and data-flow

E.g. register allocation
- - 0.937

Global Common
Subexpressions

Instruction/operand sensitive
E.g. GCS Elimination

0.000 0.009 0.996
++ - ++ -

Deep Data Flow
Dataset: 450k LLVM-IRs covering 5 programming languages

F1 scores

inst2vec CDFG ProGraML

Reachability
Trivial forwards control-flow
E.g. dead code elimination

0.012 0.998 0.998

Dominance
Forwards control-flow

E.g. global code motion
0.004 0.999 1.000

Data Dependencies
Forwards data-flow

E.g. instruction selection
- - 0.997

Live-out Variables
Backwards control- and data-flow

E.g. register allocation
- - 0.937

Global Common
Subexpressions

Instruction/operand sensitive
E.g. GCS Elimination

0.000 0.009 0.996
++ - ++ -

Deep Data Flow
Dataset: 450k LLVM-IRs covering 5 programming languages

F1 scores

inst2vec/CDFG are
instruction-level representations,
can't reason about variables

Caveat: limited problem size

<= 30 steps
71.3% of all

<= 60 steps
80.4% of all

<= 28,727 steps
100.0%

Data flow analyses iterate until a fixed point is reached.

GGNNs iterate for a fixed number of timesteps T.

For each example in the train/test sets, we count the
number of steps required for an iterative analysis to solve.

We then filter the train/test set to include only examples
which the iterative analysis required <= T steps to solve.

Previous slide was T=30, excluding 28.7% of examples.

Next slide shows performance models, trained on T=30,
with different inference steps (T=60, T=200).

30
timesteps 60 timesteps

200
timesteps

Reachability
Trivial forwards control-flow
E.g. dead code elimination

0.998 0.997 0.943

Dominance
Forwards control-flow

E.g. global code motion
1.000 0.991 0.123

Data Dependencies
Forwards data-flow

E.g. instruction selection
0.997 0.993 0.965

Live-out Variables
Backwards control- and data-flow

E.g. register allocation
0.937 0.939 0.625

Global Common
Subexpressions

Instruction/operand sensitive
E.g. GCS Elimination

0.996 0.967 0.959
++ - ++ -

Scaling to larger problems
Dataset: 450k LLVM-IRs covering 5 programming languages

F1 scores

30
timesteps 60 timesteps

200
timesteps

Reachability
Trivial forwards control-flow
E.g. dead code elimination

0.998 0.997 0.943

Dominance
Forwards control-flow

E.g. global code motion
1.000 0.991 0.123

Data Dependencies
Forwards data-flow

E.g. instruction selection
0.997 0.993 0.965

Live-out Variables
Backwards control- and data-flow

E.g. register allocation
0.937 0.939 0.625

Global Common
Subexpressions

Instruction/operand sensitive
E.g. GCS Elimination

0.996 0.967 0.959
++ - ++ -

Scaling to larger problems
Dataset: 450k LLVM-IRs covering 5 programming languages

F1 scores

Consistent results when doubling
problem size. Models can
generalize to problems larger than
they were trained on. :-)

At 6.6x training step count, inference
deteriorates significantly. :-(No longer
behaving like fixed point - model
over-approximates on some problems and
under-approximates on others.

Downstream tasks

sort bfs topk CPU GPU...

C Program OpenCL
Program

? ?

1. Algorithm Classification 2. Heterogeneous Device Mapping

1.35× improvement over
state-of-art

1.20× improvement over
state-of-art

Further Reading

Preprint
https://arxiv.org/abs/2003.10536

In-browser demo
https://chriscummins.cc/s/program_explorer

Source code + datasets
https://github.com/ChrisCummins/ProGraML

Apache 2.0

https://arxiv.org/abs/2003.10536
https://chriscummins.cc/s/program_explorer
https://github.com/ChrisCummins/ProGraML

Conclusions
Reasoning about programs requires the right combination of representation + model.

ProGraML: combines control-, data-, call-, and type-graphs to model programs at IR level.

When processed with GGNNs, significantly outperforms prior approaches.

Interesting challenges
1. Processing arbitrary sized graphs.

Idea: Structure the MPNN like an iterative DF solver, self-terminating.

2. Handling unbounded vocabularies, e.g. compound types or MLIR dialects.
Idea: decompose types into tree structure in graph.

3. Representing literal values.
Requires new vocabulary encoding.

