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Abstract—Generating quantum circuits that prepare specific states is
an essential part of quantum compilation. Algorithms that solve this
problem for general states generate circuits that grow exponentially in the
number of qubits. However, in contrast to general states, many practically
relevant states are sparse in the standard basis. In this paper we show
how sparsity can be used for efficient state preparation. We present
a polynomial-time algorithm that generates polynomial-size quantum
circuits (linear in the number of nonzero coefficients times number of
qubits) that prepare given states, making computer-aided design of sparse
state preparation scalable.

Index Terms—Quantum Computing, Quantum Compilation, State
Preparation, Circuit Synthesis

I. INTRODUCTION

The discovery of quantum algorithms that solve certain problems
asymptotically faster than any known classical algorithms [1] [2]
indicate that quantum computers may be much more powerful than
classical computers. Quantum compilation, as an interface between
the algorithmic high-level and technological low-level aspects of
quantum computing, encapsulates various logic synthesis tasks. Some
of these synthesis tasks are similar to the synthesis tasks in the
design of classical processors and hence allow similar optimization
techniques. Many of those have been investigated by the computer-
aided design (CAD) community [3] [4] [5]. Yet, due to the special
phenomena of superposition and entanglement, certain parts of the
quantum compilation process are very different from the analogous
tasks in classical computing and do not allow us to transfer knowl-
edge.

One of those tasks is quantum state preparation, the process of
creating a specific initial quantum state that may encode input data
or a problem instance. State preparation is an essential part of
quantum computing and much more complex than the analogue in
classical computing [6]. While in classical computing all possible
states of a memory-block of size O(n) can be obtained by setting
the appropriate bits using O(n) NOT-gates, the possible states of
a quantum computer are superpositions of basis states and some of
them can only be created with very complex circuits [7] [8]. In fact,
it has been shown that using a gate library of only one-qubit-gates
and CNOT-gates, some of the states of an n-qubit quantum computer
can only be prepared with circuits of size Ω(2n) [7] [8]. Hence, state
preparation methods that work for general states are unlikely to scale
beyond very few qubits.

However, in contrast to general states, many (if not most) prac-
tically relevant states have the property that only a small propor-
tion of the basis states have nonzero coefficients (we will explain
the concepts of basis states later in more detail). We call states
with this property sparse. To name a few prominent examples, the
proportion of basis states with nonzero coefficient among all basis
states is O(1/

√
2
n
) for generalized Bell states and thermofield double

states [9], O(n/2n) for W-states [10], and O(1/2n) for GHZ-states.
Further, in many quantum algorithms we need to prepare states that

encode a problem instance and depending on the problem instance
these states are sparse too. Examples of this include quantum linear
system solvers [2].

In this paper we show how sparsity can be leveraged to make
state preparation asymptotically more efficient than preparation of
general states. Our main contribution is an algorithm that takes a
quantum state φ with |S| nonzero coefficients as input, and produces
in O(|S|2 log(|S|)n) classical runtime a circuit C of O(|S|n) size
(having O(|S|n) CNOT gates and O(|S| log(|S|) + n) single qubit
gates), such that C maps the initial state |0n〉 to φ.

A. Background and Problem Formulation

1) (Sparse) quantum states: The basis states of an n-
qubit quantum system are a set of 2n orthogonal vectors
that can be naturally identified with boolean n-bit strings:
|0 . . . 00〉,|0 . . . 01〉,. . .,|1 . . . 11〉. A general state φ of an n-qubit
quantum system is an arbitrary normalized linear combination of
basis states. That is,

φ =
∑

x∈{0,1}n
cx |x〉 ,

∑
x∈{0,1}n

|cx|2 = 1. (1)

Hence, in general, describing an n-qubit quantum state classically re-
quires specifying all 2n amplitudes cx. However, in many interesting
quantum states, most of the coefficients cx are zero. We call quantum
states with this property sparse quantum states. Letting S ⊂ {0, 1}n
denote the set of basis states with nonzero coefficients, we have

φ =
∑
x∈S

cx |x〉 . (2)

Hence, if |S| << 2n it is more efficient to specify φ by only storing
the set S and the coefficients cx, x ∈ S.

2) Quantum gates and quantum circuits: In order to transform
one state into another, we need to apply a sequence of elementary
gates from a given gate library to it. In this paper we consider a gate
library that consists of the following types of gates:

• One-qubit-gates: For a given single-qubit-state α |0〉+ β |1〉 we
let Gα|0〉+β|1〉 denote any one-qubit-transformation that maps
α |0〉+ β |1〉 to eiλ |0〉.

• CNOT-gates: these have one control qubit and one target qubit.
Applied on a basis state |x〉, they act by flipping the target bit of
the boolean string x iff the control bit is set. Their action extends
to general superpositions of basis states through linearity.

A quantum circuit is a sequence of quantum gates. For the sake of
readability, we will use in our circuit constructions multicontrolled
operations. However, when we make statements about the size of
our circuits, we refer to the number of gates used in the circuit
when decomposing it (including the multicontrolled operations) into
a sequence of the elementary gates described above.



3) Problem formulation: Sparse Quantum State Preparation:
Given the set S ⊂ {0, 1}n and the nonzero coefficients cx, x ∈
S that describe a quantum state φ, find a sequence of elementary
quantum gates g1, g2, . . . , gk, such that applying the quantum circuit
C := g1g2 . . . gk to |0n〉 creates C |0n〉 = φ.

Obviously, we would like the circuit C to be as small as pos-
sible. Notice that this problem is equivalent to finding a circuit
C′ := g′1g

′
2 . . . g

′
k, such that C′φ = |0n〉, because setting C =

(g′k)−1(g′k−1)−1 . . . (g′1)−1 we have C |0n〉 = φ. Given this direct
equivalence of the problems, in the remainder of this paper we will
use the problem formulation that asks for finding a circuit C that
transforms φ to |0n〉.

B. Previous work

The problems of synthesizing and optimizing quantum circuits
that compute classical functions has been widely investigated by
the CAD community [11] [12] [13] [3] [4] [5] [14]. For a long
time, the problem of synthesizing quantum circuits that prepare
certain states has been investigated from a rather theoretical point
of view [15] [6]. In this theoretical context, the main interest is to
determine which states can be prepared by circuits of polynomial
size. It was known that superpositions of polynomialy many basis
states can be prepared by circuits of polynomial size [6]. However,
the theoretical investigations often disregard the exact degrees of the
polynomials and mainly ask for existence of polynomial-size circuits
rather than providing concrete, optimized constructions. Hence, the
theoretical insights have had no influence on the CAD methods
developed so far: all existing CAD methods are designed for general
states without adapting to the complexity class of the given state.
Shende et al. [16] discuss a method for preparing general states using
O(2n) gates. Möttönen et al. [8] discuss another method for preparing
general quantum states using O(2n) CNOT gates and O(2n) single-
qubit-gates. The work of Kaye and Mosca [17] presents a method for
preparing quantum states with non-negative, real coefficients using
circuits of exponential size. Also the method proposed by Niemann
et al. [18] uses O(2n) CNOT gates and O(2n) single-qubit-gates.
Mozafari et al. [19] present a method for preparing uniform quantum
states, that is, states in which all nonzero coefficients are equal.
Their method uses O(2n) CNOT gates and O(2n) single-qubit-gates.
Araujo et al. [20] propose another method for state preparation.
Interestingly, their method uses circuits of only linear depth. But
this comes at the prize of using an exponential amount of garbage
qubits, and still, the total amount of used gates is Ω(2n).

Overall, there exist many interesting approaches to synthesizing
circuits that prepare general quantum states. However, none of the
CAD methods that solve this problem for general states produces
circuits of size less than O(2n). Although some of these methods
propose instance specific optimizations that result in small circuits
for some specific states, none of them leverages sparsity to produce
generally small circuits for sparse states. In fact, these methods
will produce even for most sparse states circuits of exponential size
because they are based on “uniformly controlled rotations” (uniformly
controlled rotations require in general a number of gates exponential
in the number of control bits).

Using simple dimensionality arguments (as presented for example
in the introduction of Möttönen et al. [8]) one can show that there
cannot exist methods that solve this problem for general states using
circuits of size less than O(2n). They show lower bounds of 2n+1−2
for the number of one-qubit-gates, and d 1

4
(2n+1 − 3n− 8)e for the

number of CNOT-gates. This implies the bound

Tb(n) := d1
4

(5 · 2n+1 − 3n− 10)e (3)

for the total number of gates. In this sense, the existing methods are
even optimal, but they are still too expensive because the problem
they solve is too general. Hence, to find efficient state preparation
methods we need to restrict the states to some special class of states.

II. THE ALGORITHM

A. Intuitive explanation through examples

If φ = |x〉 is equal to a basis state, that is, x ∈ {0, 1}n, the
problem of transforming φ to |0n〉 is trivial: We only need to apply
NOT-gates to all qubits i ∈ {1, 2, . . . , n} with x[i] = 1.

If φ = α |x〉+ β |y〉 is the superposition of only two basis states,
we first find a qubit i ∈ {1, 2, . . . , n} for which x[i] 6= y[i]. Then, for
all other qubits j ∈ {1, 2, . . . , n} with x[j] 6= y[j], we apply CNOT-
gates that target the qubit j controlled on qubit i. This transforms
φ into a state α |x̃〉 + β |ỹ〉, where x̃, ỹ ∈ {0, 1}n are strings that
only differ in the i-th entry. The i-th qubit is now in a pure state,
either α |0〉+β |1〉 or α |1〉+β |0〉. Applying now to the i-th qubit a
gate that transforms this state into eiλ |0〉 (that is, either Gα|0〉+β|1〉
or Gα|1〉+β|0〉), the state of the whole system α |x̃〉+ β |ỹ〉 becomes
either |x̃〉 or |ỹ〉 (the one that has a zero in the i-th entry). So we have
transformed φ into a basis state and can now proceed as described
above.

When φ is the superposition of three or more basis states, say
φ = α |x〉+β |y〉+γ |z〉, we encounter a phenomenon that makes the
problem more difficult. First, we can still find a sequence of CNOT-
gates that transforms this state into a state α |x̃〉+β |ỹ〉+ γ |z̃〉 such
that x̃ and ỹ only differ in one entry i. But now, if we apply to the i-
th qubit a gate that “merges” α |x̃〉+β |ỹ〉 into a single basis state as
we did above, this same gate may have the effect of “splitting” γ |z̃〉
into the superposition of two basis states. To circumvent this problem
we control this operation on a set of qubits so that it is performed
on |x̃〉 and |ỹ〉 but not on |z̃〉. In general, if φ =

∑
x∈S cx |x〉 is the

superposition of |S| basis states, to avoid “splitting” basis states we
need to control the merging operation in such a way that for only
two elements x, y ∈ S the operation is performed, while all other
elements remain invariant. However, the cost of controlled operations
grows linearly with the number of control qubits that are used [21].
The key to the efficiency of our method relies on two tricks:

1) We find a way of “merging” x̃ and ỹ with not more than
O(log(|S|)) control bits. Setting this up is the main technical
difficulty of our algorithm.

2) We choose the gate Gα|0〉+β|1〉 that maps α |0〉+β |1〉 to eiλ |0〉
of the form

M =

[
sin(ω) eiαcos(ω)

e−iαcos(ω) -sin(ω)

]
.

Gates of this form can be multi-controlled efficiently: we can
implement this as a sequence of two one-qubit-gates and a
multi-controlled Tofoli gate [21], and implement the multi-
controlled Tofoli gate with a number of CNOT-gates linear
in the number of control bits [22], adding up to O(log(|S|)
elementary gates.

B. Formal description

First, we describe a method to produce a circuit that transforms
a superposition of |S| basis states into a superposition of less
than |S| basis states. The pseudocode of this method is shown



in Algorithm 1. The following lemmas proof the correctness and
efficiency of Algorithm 1.

Lemma 1. Given a state φ =
∑
x∈S cx |x〉, Algorithm 1 produces

a circuit C such that Cφ =
∑
x∈S′ c

′
x |x〉 with |S′| < |S|.

Proof. Notice that after each iteration through the first WHILE-
loop the elements in T are exactly those strings x ∈ S that have
on the bits dif qubits the entry-values from dif values (that is,
x[dif qubits[i]] = dif values[i] for all 1 ≤ i ≤ |dif qubits|).
Hence, the single element contained in T after we finish the WHILE-
loop, x1, is the only string in S that has on the bits dif qubits the
entry-values from dif values.

Now let l denote the number of iterations we spent at the first
WHILE-loop and notice that l is the length of dif qubits and
dif values. So when we pop the last value of dif qubits and
dif values (line 14 and 15) and define T ′ (line 17) as the set of
strings that coincide now on the bits dif qubits with the values
from dif values, this set coincides with the set T that we had at
the (l−1)-th iteration through the WHILE-loop. As we had |T | > 1
at the (l−1)-th iteration, T ′ contains x1 and at least one more string.
So when we remove x1 from T ′ (line 18), T ′ is not empty, and the
strings that remain are exactly those that were removed from T after
the (l− 1)-th iteration. Hence, recalling that dif denotes the bit that
was popped from dif qubits (and hence the one added at the last
iteration), we have x1[dif ] 6= x′[dif ] for all x′ ∈ T ′.

After finishing the second WHILE-loop the only string x2 ∈ T ′ is
the only string in S that coincides on the bits dif qubits with the
values from dif values, except maybe x1. Yet we have x1[dif ] 6=
x2[dif ]. So when we apply the dif -controled CNOT-gates in lines
32 to 36 we make x1 and x2 become equal on all bits except dif .

In particular, now x1 and x2 equal on all the bits from dif qubits
and, as we will now show, no other strings in S equal with x1 and x2
on these bits. To proof this latter assertion, we consider any y ∈ S
with y 6= x1, y 6= x2 and make a case distinction: The string y
was either removed from T in one of the first l − 1 iterations of
the first WHILE-loop, or it was removed in the last iteration of the
first WHILE-loop. In the first case, y differed (before the CNOT-
gates were added) from x1 and x2 on one of the first l − 1 entries
in dif qubits. But since x1 and x2 equal on all of the first l − 1
entries from dif qubits we did not apply any CNOT-gate targeting
any of those bits and hence y still differs from x1 and x2 on this
bit after the CNOT-gates were applied. In the latter case we have
y[dif ] 6= x1[dif ] and hence for the CNOT-gates that are added the
control bit is not set in y. But since y differs on at least one of the bits
in dif qubits from x2, it will still differ on this bit after the CNOT-
gates are applied. By applying the NOT-gates in line 39 we ensure
that all bits in dif qubits are set for x1 and x2 but they are not
all set for any other y ∈ S. Due to the NOT-gate that we (possibly)
added in line 30 we ensure that x1[dif ] = 1 and x2[dif ] = 0, and
hence the gate Gcx1

|1〉+cx2
|0〉 in line 42 “merges” x1 and x2. And

since the operation in line 42 is controlled on the bits in dif qubits
it will only be applied to x1 and x2 but no other y ∈ S. Hence, it
does not “split” any other y ∈ S, as we wanted.

Lemma 2. Let C denote the circuit that Algorithm 1 outputs. Using
a primitive gate library of one-qubit-gates and CNOT-gates, we can
implement C with O(n) CNOT-gates and O(log(|S|)) one-qubit-
gates.

Proof. To bound the size of |dif qubits|, observe that in each
iteration of the WHILE-loops the sizes of |T | and |T ′| are halved.
Hence |dif qubits| ≤ dlog2(|S|)e+ 1.

ALGORITHM 1: Input: The classical specification of an
n-qubit quantum state φ =

∑
x∈S cx |x〉 (given by the set

S ⊂ {0, 1}n and the list of coefficients cx, x ∈ S). Output:
A circuit C such that Cφ =

∑
x∈S′ c

′
x |x〉 with |S′| < |S|.

1: Initialize an empty quantum circuit C;
2: Initialize an empty stack dif qubits = []; // This is a stack of

bits b ∈ {1, 2, . . . , n} that will hold in the end the bits that we
use as control for the “merging” step

3: Initialize an empty stack dif values = []; // This is a stack of
boolean values

4: Initialize the set T = S;
5: while |T | > 1 do
6: Find a qubit b ∈ {1, 2, . . . , n} such that the sizes of the sets

T0 := {x ∈ T |x[b] == 0} and T1 := {x ∈ T |x[b] == 1}
are as unequal as possible but neither set is empty;

7: Append b to dif qubits;
8: if |T0| < |T1| then
9: Set T = T0 and append 0 to dif values;

10: else
11: Set T = T1 and append 1 to dif values;
12: end if
13: end while
14: Pop the last value appended to dif qubits and store it as dif ;
15: Pop the last value that was appended to dif values;
16: Store the single element in T as x1;
17: Let T ′ ⊂ S denote the set of strings that have the values in

dif values on the bits dif qubits;
18: Remove x1 from T ′;
19: while |T ′| > 1 do
20: Find a qubit b ∈ {1, 2, . . . , n} such that the sizes of the sets

T ′0 := {x ∈ T ′|x[b] == 0} and T ′1 := {x ∈ T ′|x[b] == 1}
are as unequal as possible but neither set is empty;

21: Append b to dif qubits;
22: if |T ′0| < |T ′1| then
23: Set T ′ = T ′0 and append 0 to dif values;
24: else
25: Set T ′ = T ′1 and append 1 to dif values;
26: end if
27: end while
28: Let x2 denote the single element in T ′;
29: if x1[dif ] 6= 1 then
30: Add to C a NOT-gate on line dif ;
31: end if
32: for b in {1, 2, . . . n} \ {dif} do
33: if x1[b] 6= x2[b] then
34: Add to C a CNOT-gate targeting b controled on dif ;
35: end if
36: end for
37: for b in dif qubits do
38: if x2[b] 6= 1 then
39: Add to C a NOT-gate on line b;
40: end if
41: end for
42: Apply on qubit dif a Gcx1

|1〉+cx2
|0〉-gate controlled on the

qubits in dif qubits;
43: return C;



In the first FOR-loop we add O(n) CNOT-gates.
In the second FOR-loop we add up to |dif qubits| one-

qubit-gates, which is O(log(|S|)). Finally, we need to implement
G(cx1 |1〉 + cx2 |0〉) with O(log(|S|)) control bits. We can do this
with the construction proposed by Barenco et al. [21], requiring two
one-qubit-gates and a (dlog2(|S|)e + 1)-control Toffoli gate. Using
the method proposed by Gidney [22], we can implement the multi-
control Toffoli gates with O(log(|S|) CNOT-gates. Since |S| ≤ 2n,
the total number of CNOT-gates is O(n).

Lemma 3. The classical runtime of Algorithm 1 is O(|S| log(|S|)n).

Proof. The WHILE-loops are the bottleneck. Each iteration of the
WHILE-loops takes O(|S|n) time (for each of the n bits we need
to look at the |S| strings). As we have seen earlier, the number of
iterations is O(log(|S|)).

Algorithm 1 allows us to build circuits that transform a given
superposition of |S| basis states into a superposition of |S| − 1 basis
states. Using it, we are now in the position to present Algorithm 2,
the main contribution of this paper.

ALGORITHM 2: Input: The classical specification of an
n-qubit quantum state φ =

∑
x∈S cx |x〉 (given by the set

S ⊂ {0, 1}n and the list of coefficients cx, x ∈ S). Output:
A circuit C such that C |0n〉 = φ.

Initialize an empty quantum circuit C;
while |S| > 1 do

Use Algorithm 1 to find a circuit Ĉ such that Ĉφ =
∑
x∈S′ c

′
x

with |S′| < |S|;
Update the state φ = Ĉφ;
Update the circuit C = Ĉ ◦ C;

end while
Add to C the NOT-gates needed to transform φ into |0n〉;
Invert the gates from C and reverse their order;
return C;

Theorem 1. The circuit C produced by Algorithm 2 can be imple-
mented with O(|S|n) CNOT-gates and O(|S| log(|S|)+n) one-qubit-
gates. The classical runtime of Algorithm 2 is O(n|S|2 log(|S|)).

Proof. Observe that running Algorithm 2 is the same as running
Algorithm 1 and then running Algorithm 2 for an instance of smaller
size. So if we let TCNOT (|S|) denote the maximal number of CNOT-
gates used for instances of φ with sets S of a given size |S|, this
function satisfies a recursive relation. Applying Lemma 2 we get

TCNOT (|S|) ≤ TCNOT (|S| − 1) + cn (4)

for some c ∈ R that is independent of |S| and n. Hence,

TCNOT (|S|) ≤
|S|∑
i=1

cn ∈ O(|S|n). (5)

Defining T1-qubit-gates(|S|) similarly, we get

T1-qubit-gates(|S|) ≤ T1-qubit-gates(|S| − 1) + c log(|S|). (6)

As T1-qubit-gates(1) = n, we get T1-qubit-gates(|S|) ∈ O(|S| log(|S|)+n).
Likewise, letting T (|S|) denote the runtime and applying Lemma 3
we get

T (|S|) ≤ T (|S| − 1) + c|S| log(|S|)n

≤ cn
|S|∑
i=1

i log(i) ∈ O(n|S|2 log(|S|)).
(7)

x1

x2 F

x3 G

Fig. 1: Quantum circuit to prepare the state |b〉 = 1√
168

(2 |001〉 +

8 |100〉 + 10 |111〉, where F is a gate that maps |0〉 to 8√
164
|0〉 +

10√
164
|1〉 and G is a gate that maps |0〉 to 2√

168
|0〉+

√
164√
168
|1〉.

III. APPLICATION EXAMPLES AND EXPERIMENTAL RESULTS

A. Quantum linear system solvers

Harrow et al. [2] presented a quantum algorithm to solve linear sys-
tems of the form A · x = b ∈ R2n . To encode b = (b0, b1, . . . , b2n),
one needs to prepare the state

|b〉 := C
∑

bi |i〉 , (8)

where C is a normalizing constant. Assuming the state |b〉 is
given and the matrix A satisfies certain conditions (conditions that
essentially allow eiAt to be applied in time less than the actual size
of A; for more details see the reference), this algorithms runs on
sparse systems in O(nk2) time, where k is the condition number.
Notice the exponential speedup: Since b has size 2n it would take
Ω(2n) time to solve this problem classically, even if b is sparse.

However, this quantum algorithm assumes that an efficient way for
preparing |b〉 is provided. This is problematic. Preparing a general
state |b〉 can require Ω(2n) time and becomes the bottleneck. Hence,
efficient preparation cannot be assumed for general b when n is large.
Using our method we can generate |b〉 efficiently for vectors b that
are sparse.

Example: When b = (0, 2, 0, 0, 8, 0, 0, 10), we have

|b〉 =
1√
168

(2 |001〉+ 8 |100〉+ 10 |111〉). (9)

Applying our algorithm we can generate this state with the
circuit depicted in Figure 1. The state corresponding to the sparse
vector b ∈ R1048576 with 8 nonzero entries in the positions
1, 5, 50, 8000, 80001, 1000000, 1000100, 1000200 is a sparse 20-
qubit state with 8 nonzero coefficients. The circuit that our algorithm
found to prepare this state had 70 gates.

B. Random states

We test our algorithm on randomly generated sparse states.
Throughout this section we let the parameter k denote the number of
basis states with nonzero coefficients. To sample random sparse n-
qubit states with k nonzero coefficients, we draw uniformly at random
k different basis states |x〉 , x ∈ {0, 1}n and let φ be the uniform
superposition of those states. Although we let this superposition be
uniform (i.e., set the coefficients of the k sampled basis states to
be equal), the size of the circuits produced by our algorithm does
not depend on the exact value of the coefficients (as long as they
are nonzero). Hence, the diagrams in this section would all look
equal if we had chosen the coefficients according to some random
distribution (e.g., sampling them from a complex normal distribution
and then normalizing). To compare the size of the circuits produced
by our method to those produced by methods that do not distinguish



Fig. 2: Increasing nonzero coefficients

Fig. 3: Increasing qubits

between sparse and non-sparse states we include in the following
diagrams Tb(n) as defined by Equation (3), which is a lower bound
for the total number of gates needed for general states [8]. We also
show the cost of a single “uniformly controlled rotation” on n qubits
UCR(n) := 2n, which is the basic building block of most existing
state preparation methods [16], [8], [17], [19], [18] (to the best of our
knowledge, this number of gates is required even if, as in the case of
sparse states, many of their angles are zero). For each combination of
parameters shown in the following diagrams, we sampled 10 random
states and show the average size of the circuits produced by our
algorithm as well as a bar indicating the smallest and largest circuits.

In Figure 2 we see how the size of our circuits grows as we increase
k while fixing n at n = 10 and n = 20. In Figure 3 we see how
the size of our circuits grows as we increase the number of qubits n
while fixing k at k = 10 and k = 20. In Figure 4 we see how the
size of our circuits grows as we increase the number of qubits n and
simultaneously increase k as a function of n. We show the curves for
k = n and k = n1.5. According to Theorem 1 the growth of these

Fig. 4: Increasing n and k as a function of n

State CNOTS one-qubits-gates total
W (100) 295 198 493

W3−banded(100) 289 196 485
INC(100) 196 198 394

Fig. 5: Sizes of circuits produced for special states.

curves should be in O(n2) and O(n2.5) respectively. To verify this
polynomial growth we used in this figure logarithmic scales on both
axes. The linear shape of the curves confirms that the circuits grow
polynomially.

C. Special states

We run our algorithm on the following 3 special 100-qubit states:

W (100) :=
1√
100

100∑
i=1

|0i−110100−i〉

W3−banded(100) :=
1√
98

98∑
i=1

|0i−1111098−i〉

INC(100) :=
1√
100

100∑
i=1

|1i0100−i〉 .

(10)

Notice that 100 qubits is unfeasible for general state preparation
methods: both because of the classical runtime to process 2100

complex amplitudes as well as the sizes of the circuits. The sizes
of the circuits produced by our algorithm are summarized in Figure
5.

D. Implementation details

We implemented our algorithm in Python and ran the experiments
on a 2.5 GHz Intel Core i5. For each state sampled in our experiments,
the computation of the circuit was done in less than a second. Using
Qiskit, we verified that the circuits indeed produce the correct states.

IV. CONCLUSIONS AND FUTURE WORK

We present a scalable algorithm for computer-aided design of
quantum state preparation. The classical runtime of our algorithm
is O(|S|2 log(|S|)n). For the preparation of states that are the
superposition of |S| basis states, our algorithm produces circuits of
size O(|S|n). Hence, for states that satisfy the sparsity condition



|S| ∈ o( 2n

n
), preparation with our method is asymptotically more

efficient than using methods that prepare general states.
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