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Abstract. Remote Memory Access (RMA) programming is one of the
core concepts behind modern parallel programming languages such as
UPC and Fortran 2008 or high-performance libraries such as MPI-3
One Sided or SHMEM. Many applications have to communicate non-
contiguous data due to their data layout in main memory. Previous stud-
ies showed that such non-contiguous transfers can reduce communication
performance by up to an order of magnitude. In this work, we demon-
strate a simple scheme for statically optimizing non-contiguous RMA
transfers by combining partial packing, communication overlap, and re-
mote access pipelining. We determine accurate performance models for
the various operations to find near-optimal pipeline parameters. The pro-
posed approach is applicable to all RMA languages and does not depend
on the availability of special hardware features such as scatter-gather
lists or strided copies. We show that our proposed superpipelining leads
to significant improvements compared to either full packing or sending
each contiguous segment individually. We outline how our approach can
be used to optimize non-contiguous data transfers in PGAS programs
automatically. We observed a 37% performance gain over the fastest of
either packing or individual sending for a realistic application.

1 Introduction

Communication of non-contiguous data is of utmost importance for real ap-
plication performance. The traditional approach, called “packing” is to copy
non-contiguous data into a single contiguous buffer that is then communicated
over the network. This practice originated in times where the network was or-
ders of magnitude slower than local processing and copying. However, today,
local copies (read and write from/to main memory on one machine) are only
slightly faster than remote copies using remote direct memory access (RDMA)
over high-performance interconnects (that offer read from main memory at the
source machine and write to main memory at the target machine).

The significance of RDMA networking goes beyond the higher bandwidth. It
also motivates new Remote Memory Access (RMA) programming models (e.g.,
UPC [21], Fortran 2008 Coarrays [14], or MPI-3 One Sided [13]) that allow full



exploitation of the new hardware. RMA programming exposes the direct memory
access to the user who can issue remote memory writes and reads directly. In
addition, such RMA programs are easier to analyze by compilers than message
passing programs because the complex message matching problem [4] does not
apply (each remote access specifies the target buffer explicitly). This motivates
us to explore automatic optimizations, such as pipelining and partial packing,
for remote memory accesses.

We now demonstrate a typical parallel application using a simple two-
dimensional Laplacian stencil example. The serial version iterates over a two-
dimensional array and computes the value of each point from the old value at
that point and the old value at the neighboring points (aka. “five-point stencil”).
A two-dimensional decomposition for distributed memory parallelism requires
communication at the boundaries of each process. Depending on the array layout
in memory, one or more directions of communication will access non-contiguous
data.

For example, if matrices are stored in row-major order, then data exchanged
in the north-south direction is contiguous in local memory, while data exchanged
in east-west direction is non-contiguous. More formally, we can describe any
transfer of k Bytes (in total) as a set of k pairs (si, di) where 1 ≤ i ≤ k. Each
pair describes a single Byte of the transfer, which is copied from the address si at
the sender to di at the receiver. Without changing the semantics of the transfer,
we can sort the pairs, using si as a key in ascending order. A transfer is contiguous
if (∀i ∈ {1, . . . , k} : si = di + s1 − d1) ∧ (∀i ∈ {1, . . . , k − 1} : si = si+1 − 1),
otherwise, it is non-contiguous.

Programmers often pack data for all communication directions in order to
retain easy maintainability and portability of their code. The following listing
shows pseudo-code for the communication part of the Laplacian stencil applica-
tion:

1 for ( int i t e r s =0; i t e r s <n i t e r s ; i t e r s++) {
compute_2d_stencil ( array , . . . ) ;

3 // swap arrays ( omit ted f o r b r e v i t y )
for ( int i =0; i<b s i z e ; ++i ) sbufnorth [ i ] = array [ i +1 ,1 ] ;

5 // . . . omit ted south , east , and west pack l oops
RMA_Put( sbufnorth , rbufnorth , bs i ze , north ) ;

7 // . . . omit ted south , east , and west communications
RMA_Fence( ) ;

9 for ( int i =0; i<b s i z e ; ++i ) array [ i +1 ,0] = rbufnorth [ i ] ;
// . . . omit ted south , east , and west unpack l oops

11 }

The loop at line 4 exemplifies the packing of data from the array (potentially
non-contiguous) into sbufnorth, a contiguous buffer. The contiguous buffer is
then communicated at line 6 (RMA_Put represents the language-specific remote
write, e.g., assignment to a shared pointer in UPC). The call to RMA_Fence
represents the language-specific synchronization method (e.g., upc_fence).



As mentioned before, similar packing loops can be found in most parallel
distributed memory applications, for example WRF [20], MILC [3], NAS LU,
MG, SP and BT [22], and SPECFEM3D_GLOBE [6]. In the following we will
not differentiate between packing and unpacking as they are symmetric — with
“packing” we refer to both packing and unpacking.

If copy overheads (in time and energy) have to be avoided, then one could
simply issue all the contiguous pieces using a separate transfer for each. This is
exemplified in the following pseudo-code for the same Laplacian application:

1 for ( int i t e r =0; i t e r <n i t e r s ; ++i t e r ) {
compute_2d_stencil ( array , . . . ) ;

3 // swap arrays ( omit ted f o r b r e v i t y )
for ( int i =0; i<b s i z e ; i++) {

5 RMA_Put( array [ i +1, 1 ] , array [ i +1, 0 ] , s i z e , north ) ;
// . . . omit ted south , east , and west communications

7 }
RMA_Fence( ) ;

9 }

Instead of packing the array using a pack loop, all consecutive blocks are sent sep-
arately in the loops around lines 4 and following. We call this approach maximal
block communication. However, sending many small pieces (e.g., a single floating
point number in our example) can be very inefficient due to fixed overheads for
each transfer.

In this work, we demonstrate how partial packing combined with (su-
per)pipelining can improve the communication performance of many scientific
codes significantly. Figure 1 provides a high-level overview.

Fig. 1. Methods for sending non-contiguous data in one-sided programming models.

Explicit Datatype Specification Some programming environments offer high-level
abstractions for specifying non-contiguous data accesses. MPI, for example, al-
lows the specification of datatypes that simplify and optimize non-contiguous
communications. We have shown in a previous study that runtime compilation
techniques can speed up the packing of MPI DDTs by a factor of seven [19], and
therefore make it competitive with manual packing. The proposed techniques in
this work automatically overlap packing and communication to enable further



optimization. In addition, most RMA programming models do not support ex-
plicit datatype specifications making our technique necessary for optimizations.

Even if explicit datatype specification is offered, users tend to utilize pack
loops [18]. One can go as far and argue that explicit data-access declarations are
not necessary because copy loops and other communication constructs can be
easily identified using static analysis and transformed into more efficient repre-
sentations. For example, Kjolstad et al. demonstrated a simple static analysis
that detects and optimizes common pack loops [12].

Our work applies to both, library implementations and compiled code. How-
ever, we argue that (super)pipelining techniques are most efficient when the
communication and partial packing can be integrated into the application com-
putation. In this work, we step into this direction by modeling the optimization
of non-contiguous transfers by pipelining and overlapping packing and sending.

The detailed contributions of this paper are the following:

– We show how a compiler can generate an instruction sequence for near-
optimal copying of data into a temporary buffer. Our tuned copy code is
up to two times faster than copy functions such as bcopy and memcpy. The
resulting code shall be inlined as partial pack-code.

– We show how modeling communication and copy performance can be uti-
lized to transform a sequence of communication and pack statements into an
efficient pipelined schedule for a near-optimal combination of packing and
communicating.

2 Pipelining for non-contiguous Put operations

In the rest of this paper we assume that we have a set S whose elements are
tuples of the form (s, r, l). Each element of this set describes one block of data
which is l Bytes in size and resides on the sender at s and has to be transferred
to the receiver at address r. Furthermore we assume that S is minimal, that
means there exists no set S′ that describes the same data-movement pattern
with a smaller number of elements in the set.

A minimal set S can be constructed by simulating a program execution.
Each put operation would be recorded as one tuple of the set K. The set K can
be minimized to S using the following procedure: The tuples in K are sorted
according to their s elements and elements are checked pair-wise in the sorted
list. If (si + li = si+1) ∧ (ri + li = ri+1) then we can combine the tuples i and
i+1 into a new tuple (si, ri, li+ li+1). This procedure is repeated until a fixpoint
is reached. This can be extended to symbolic analysis, for example, by using
abstract interpretation [7].

Maximal block communication would now put every block (as identified by
a tuple) separately. Let the cost to issue a single put operation of length l be
Tput(l), and let x.l identify the l element in tuple x. The overall cost of maximal
block communication is:

T =
∑
a∈S

Tput(a.l)



Another option would be to search for certain features in the set S and exploit
them. One such feature is that, while the data is non-contiguous at the sender, it
is actually placed in a consecutive buffer at the receiver. A very common example
for this is the transposition of a matrix which is distributed across multiple
processes. Such a communication pattern is required in multi-dimensional FFT
codes and seismic wave propagation codes, such as SPECFEM3D_GLOBE [18].
In such a case, instead of sending each element of S individually, we could also
copy all elements into a single temporary buffer on the sender side, and transfer
this buffer to the receiver using a single RMA put operation. In that case the
cost for the entire transfer would not only depend on the performance of the put,
but also of the copy operation, which we denote as Tcopy(l). The overall cost of
this scheme can therefore be expressed as:

T =
∑
a∈S

Tcopy(a.l) + Tput

(∑
b∈S

b.l

)
When compared to the first scheme, it is clear that the second one can only
be faster if the difference between many small put operations and one big put
operation is big enough to offset the time required for the copy operations.
This has been exploited before [9], especially by systems which perform message
vectorization. Small transfers attain a smaller bandwidth than bigger ones, due
to a constant latency and send overhead. In Figure 2 we plot the time it takes
to send 800 KB of data, with a different number of put operations, so that the
size of each put varies between 8 and 1000 Bytes.
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Fig. 2. Varying the number (and therefore the size) of put operations to transfer
800 KB of data shows that bigger puts are more efficient than small ones.

We can see that if the transfer is realized with small puts, i.e., one double
precision floating point value per put, it takes 110 times longer to transfer the
data then using puts of size 1 KB. The reason is that each put operation has
some constant overhead on the host CPU and also on the Network Interface Card
(NIC). It seems like minimizing the number of put operations can lead to higher
performance. However, the benchmark above only considered communication
(on the NIC and CPU) and no parallel packing (on the CPU).



The LogGP network model [1] models CPU and NIC overheads separately
as o and g. Those two terms may overlap and a put operation can be performed
in max(o, g). Therefore to minimize the total transfer time T it is beneficial to
overlap some of the packing with put operations. This can be done by parti-
tioning the data movement operation expressed by the set S into a series of
(non-empty) partitions Pi (1 ≤ i ≤ n, we assume that elements in S can be
split into multiple pieces that belong to different partitions Pi). Copying the
first partition P1 into the temporary buffer cannot be overlapped, similarly the
sending of the last partition Pn cannot be overlapped. Therefore the total time
can be expressed as:

T =
∑
a∈P1

Tcopy(a.l)+

n∑
i=2

max

Tput

 ∑
b∈Pi−1

b.l

,∑
c∈Pi

Tcopy(c.l)

+Tput

(∑
d∈Pn

d.l

)

Fixed pipeline To minimize the total transfer time we would need to minimize
this function over all possible partitionings of S. This optimization problem can
be solved with traditional optimization methods or heuristics. A simple heuristic
would be to fix the size of the put operations we want to perform, and partition
S in such a way that all puts (except the last) are of this size. We call this
method the fixed pipeline method.

Superpipelining The simple fixed-size-put scheme can be improved by increasing
the size of each partition Pi as we progress. The rationale for this is that we
should keep the size of the first put operation low, as the copy operations before
it cannot be overlapped with anything. On the other hand we want to minimize
the total number of puts. If we assume that ∀s : Tcopy(s) < Tput(s) we can
increase the size of each put. The goal is to keep the network (which is then the
bottleneck of the transfer) saturated. This will be the case if we ensure that the
time to pack the data for the i-th put operation is smaller than the time taken
to perform the i − 1st put operation with which the copying is overlapped. To
compute the optimal pipeline, we need to know the functions Tput(s) and the
inverse of the function Tcopy(s), since we want to know how many Bytes we can
copy for the next put. This approach of gradually increasing the size of pipeline
stages to achieve optimal overlap and throughput is called superpipelining.

In the following we show a semi-analytic performance model for the perfor-
mance of RDMA put operations to get an approximation for Tput(s). Unfortu-
nately the performance of copy operations cannot be modeled that nicely due to
the vast number of influencing factors (cache state, cache sizes, cache associativ-
ity, instruction choice for the copy operation, unrolling of copy operations, etc.).
Therefore we propose a method to generate a fast copy code, which at the same
time gathers performance measurements which can be used to approximate the
inverse of Tcopy(s).



3 Data Movement Operations

Modern CISC architectures offer a plethora of instructions capable of copying
data in main memory. For this study we focus on x86-64, since it is the most
prevalent architecture in parallel computing today. On modern x86-64 archi-
tectures copying data between memory locations can be done in two different
ways. Most data-movement instructions only copy between registers and mem-
ory, therefore a copy between memory locations consists of two parts: Copying
the data from memory into a register and copying it back from the register into
a different memory location. In addition, the movs instruction family is able to
copy directly from memory to memory. There are many different ways how to
copy data in and out of a register. Perhaps the most well known one is the mov
instruction family (this includes all variants of the mov instruction for different
widths, i.e., movb to copies a single Byte, movw copies two Bytes, movl copies
four Bytes and movq copies eight Bytes). Being a CISC design, the x86 instruc-
tion set also includes specialized instructions to copy strings: the load-string lods
and store-string instruction family stos. They essentially behave like the mov in-
struction, however, the programmer is free to choose where he places operands
for the mov instructions, those use the registers %rsi, %rdi for the source and
destination address and use %rax as temporary buffer. All those instruction can
only operate on up to eight Byte at a time. With the SIMD extensions (i.e., SSE2
and AVX) load/store instructions became available that are able to load/store
16 (SSE2) or 32 (AVX) Byte from/to a register in one instruction.

SIMD instructions offer another interesting set of features to the programmer:
Not only can loads and stores be performed using much wider registers, but also
special loads and stores are offered for aligned data. Another novelty is the
introduction of non-temporal stores, which bypass the cache and write directly
into memory. Of course, writing directly into memory is much slower than writing
into the cache. However, when copying large blocks of data (larger than the
last level cache) it is useless to write any (but the last chunk) of data to the
cache, since this data will be evicted from the cache anyway by later writes.
Knowingly bringing useless data into the cache is of course suboptimal, since it
inflicts additional overhead because of the cache coherency protocol. Therefore
temporal store instructions also have to be considered carefully.

Another important choice the programmer (or compiler) has to make when
writing a copy-loop is the choice of the loop instructions he uses. When data is
copied using a movs instruction, a loop can be formed by simply prefixing this
instruction with the rep prefix. This prefix repeats the prefixed instruction until
the %rcx register is zero and decrements the %rcx register after each iteration.
The direction of operation (decrementing or incrementing %rsi and %rdi) is set
with the direction flag. Of course the rep prefix is only an option when the movs
instruction is used, as all other alternatives require more than one instruction
to perform a memory to memory copy operation. For those cases we again have
multiple options: We can use the loop instruction, which jumps to a label if
%rcx is not zero and decrements this register before each jump. However, with
this variant we have to adjust the value of the source and destination pointers



manually in the loop. The third option is to manually do a comparison at the
end of the loop body and then use an instruction of the jmp family to jump to
the start of the loop, depending on the result of the comparison.

Figure 3 gives an overview over the possibilities of combinations of data-
movement and loop forming instructions offered by the x86-64 instruction set.
Another variable the programmer has to consider is the unrolling factor of the
copy loop: the overhead of the branching instruction can be alleviated by per-
forming several copy operations inside of the loop body. However, since copy
operations are memory bandwidth bound, too much unrolling can also be detri-
mental to the performance since loading of the instruction stream also creates
memory pressure.

The x86-64 instruction set offers even more data-movement instructions (i.e.,
push/pop, compare-and-swap) which are not considered here since they are spe-
cialized instructions with more functionality than data movement and should
therefore always be slower than the simpler instructions.

We optimize the code used for copying automatically, using algorithm out-
lined in Figure 4 select the optimal combination of data-movement instruction
and unroll factor combination for selected block sizes.

Fig. 3. Data-movement and loop-
forming instructions on x86-64.

for all s ∈ {20, 21, ..., 220} do
for all i ∈ {copy inst. × loop type} do

for all f ∈ {20, 21, ..., 210} do
tfi ← time to copy s Byte with

instruction i, unrolled f times
(median of 1000 runs)

end for
end for
copyroutine(s) ← min(tfi )

end for

Fig. 4. Algorithm used to generate optimized
copy code.

For each block size all possible combinations of instruction(-swidth) and un-
roll factor is computed, since not every combination supports all sizes. The mea-
surement of the performance of each combination is repeated several times (1,000
times in our case) and for each combination the median of those times is com-
puted. The optimal combination of instruction and unroll factor for a given block
size is then chosen.

This algorithm is performed for a number of sizes and assuming the source
data is in cache or not in cache. We tuned only sizes up to one Megabyte because
our superpipelining does not require larger blocks. The gathered information is
then used to construct a near-optimal sequence of CPU instructions to perform
the copy for packing.

The performance of our copy code, which we call fcopy is shown in Figure 5.
We compare it to the memcpy() and bcopy() function. We optimize for two cases:
(1) the source data resides in cache (“Cache Hot”) and (2) the source data needs
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Fig. 5. Performance of our copy code fcopy compared to the performance of memcpy
and bcopy on JYC and Daint. Our optimized code is up to seven times faster than
memcpy and up to 2.6 times faster than bcopy. Note that we optimized the code for
block sizes up to 1 MB (left of the dotted line).

to be loaded from main memory (“Cache Cold”). We assume that a compiler
analysis could determine the reuse distance of the to-be-copied data and decide
on the best instruction sequence.

For the performance data presented in this paper, we use two different ma-
chines: JYC, the Blue Waters test system at the National Center for Supercom-
puting Applications, which consists of a single cabinet Cray XE6 (approx. 50
nodes with 1,600 Interlagos 2.3 — 2.6 GHz cores) and Piz Daint, a Cray XC30
at CSCS with dual-socket 8-core 64-bit Intel SandyBridge CPUs clocked at 2.6
GHz.

4 Modeling Communication

To be able to model the performance of one-sided non-contiguous data transfers,
we need to model not only the performance of the local copying of data, but also
the performance of the remote memory copies.

One-sided data transfers follow the same general scheme, independent of the
actual API in which they are implemented: A synchronization epoch is started,
then a number of remote memory operations is started, after which the syn-
chronization epoch is again closed. Those operations are combined into a single
statement if synchronization is not relaxed. In our case however, the goal is to
overlap packing with RMA operations. Thus, we utilize a relaxed synchronization
model for our communication. In this model the time to execute n put opera-
tions, with sizes si can be modeled as t = L+n×oput+G

∑n
i=1 si. This model is

similar to the LogGP model [1]. The constant overhead (latency, synchronization
overhead) is denoted as L, where oput is the overheads for the put operation,
which is independent of the size of the data buffer being transferred. In LogGP
we would differentiate between the overhead on the NIC, g and the overhead



on the host CPU o, however, in practice these values are hard to measure inde-
pendently. Therefore we model max(o, g) as oput. The inverse bandwidth of the
transfer is expressed by G.

We parametrize this model by performing between 1 and 50 puts in a loop,
each with the same data buffer size. The data buffer size is varied between a
single Byte and 800 KB. Then we fit the above model to the measured data.
Each measurement is repeated 50 times, and we use the median value to minimize
the effects of outliers due to noise.

The results of these measurements on JYC are plotted in Figure 6 for out-
of-cache inter-node communication. We focus on inter-node communication in
this work, because on our test system intra-node communication is handled by
copying the data directly from the target to the destination buffer, using the
XPMEM [23] kernel module to access another processes address space. Since
this copy operation is not performed in an extra progression thread, overlapping
intra-node communication is therefore not possible.
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Fig. 7. Relationship between put and
copy performance for different block
sizes. Below 10 KB puts are much more
expensive than additional copies, while
above 500 KB it is slower to pack more
data than to send it over the network
directly.

If we use the data collected on JYC to parametrize our model we get L
= 1µs, o = 0.68 µs (0.44 µs for in-cache data), G = 0.17 ns/B. This model fits
the measured data quite well, the R2 value is 0.999. This means 99.9% of the
variance observed in the data is explained by the model. For Daint the values
are L = 1 µs, o = 0.66 µs (same for in-cache data), G = 0.6 ns/B and an R2 of
0.979.

We can now use the performance model for communication and the data
collected during the construction of the copy method to determine optimal sizes
for the partitions of S which are transferred with a single put operation, and by
which factor we can increase this size for consecutive puts. To do this we look
at the quotient r =

Tput (s)
Tcopy(s)

for different sizes s. This ratio is plotted in Figure 7.
If r < 1 it means that we should never copy this much data into a temporary

buffer, the put will be faster than copying this data was, therefore we will not
enlarge the partitions of S beyond this point. If we plot that ratio for our test
system, we can see that for 500 KB and larger, collecting more data (for a larger



put operation) takes longer than sending it immediately, therefore we stop to in-
crease the size of the partitions, once we copied a block of size 500 KB. Note that
Tcopy(s) is an upper bound for the performance of filling the temporary buffer
for a put of size s. The real performance of this operation is

∑
a∈Pi

Tcopy (a.l)
which can be much lower in case of very small consecutive blocks in the data
layout on the sender side, therefore the start value and the rate at which to in-
crease partition sizes have to be computed for each data layout. Furthermore we
can see that below 10 KB puts are much more expensive than additional copies
(the ratio is above 2), therefore it would be inefficient to perform smaller puts.
Because of that we start our superpipeline protocol with an initial partition size
of at least 10 KB.

5 Results

In this section we will demonstrate the performance of our optimization with two
examples. The first example is the matrix transpose part of an FFT code. The
consecutive blocks on the sender side are (depending on the total size) between
128 and 1792 Byte in size. On the receiver the data is stored in one contiguous
buffer. The stride between the blocks on the sender side (for a given total size)
is constant.
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Fig. 9. Performance of differ-
ent pipelining approaches on
JYC for a data transfer in
SPECFEM3D_GLOBE. For this
transfer, each block is 12 Byte in size.

We show the performance of the three strategies to transfer non-contiguous
data with RMA put operations explained in this paper in Figure 8. When each
consecutive block is transferred individually, the achieved bandwidth is very
low, and grows for bigger problem instances due to the growth of the size of the
consecutive blocks. This method is labeled as Maximal Block (cf. Figure 1). The
performance of this approach can be improved considerably by packing data on
the sender, prior to sending it. We can either pack all data and send it with
one put operation (labeled as Packed), or overlap packing and put operations.
If all (except the last) chunks have the same size, 20 KB in our example, labeled



as FP(20K) for fixed-pipeline we can improve the total bandwidth by 1.3 GB/s
(42%, compared to Maximal Block). Our superpipeline protocol can achieve
an additional performance increase for the larger problem instances of about
652 MB/s (13%, compared to FP) when the size of each put is increased by a
factor of 1.3, while the first put is again 20 KB in size. This variant is labeled
as SP(20K, 1.3) where SP stands for superpipeline protocol.
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In Figure 9 we conduct the same
experiment with a send data lay-
out from the SPECFEM3D_GLOBE
seismic wave propagation simulation
code [6]. Here the individual consec-
utive blocks are much smaller, only
12 Bytes in size, and their size re-
mains constant when the problem size
is increased. The sender stride between
blocks is 24 Byte while the data is put
into a contiguous buffer at the receiver.
Since the blocks are so small, Maxi-
mal Block performs much worse than
in the FFT example. In this plot, one
can clearly see that the performance
gain attainable by superpipelining de-
pends heavily on the speed of the copy operations. As long as the extent of
the data layout fits (together with the pack buffer) in the 2 MB L2 cache, the
performance of superpipelining is much better than that of fixed size pipelining.
After that point their performance becomes similar again. Superpipelined pack-
ing is 148 times faster than sending each block individually, up to 37% faster
than packing everything into one block before sending and 17% faster than fixed-
pipeline packing. To show the portability of our method we conduct the same
experiments on Daint, a Cray XC30 with Intel SandyBridge CPUs. The results
are plotted in Figures 11 and 12. In Figure 10 we perform the same comparison
with another data layout present in the SPECFEM3D_GLOBE code, where the
data blocks on the sender are not stored with a regular stride, but in a irregular
fashion (indexed type in MPI). Each block is four Byte in size and the data is
stored consecutively on the receiver. Because of the small block size and the re-
sulting high copy overhead, the difference between the packing methods is small.
Superpipelining is 118 times faster than Maximal Block, 18% faster than Packed
and up to 8% faster than fixed size pipelining.
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Daint for a data transfer in
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transfer, each block is 12 Byte in size.

6 Related Work

Many compiler optimizations are based on peephole optimization techniques:
Matching rules are applied to an intermediate compilation result and if a match is
found, the code is replaced with a functionally equivalent, but faster, alternative.
Those transformations are often created manually by domain experts. However,
approaches where the optimization opportunities are automatically generated,
similar to our approach of optimizing copy code, also have been suggested. Su-
peroptimization [2] tries to optimize an instruction sequence by generating all
possible instruction sequences up to a certain length and checking if they are
functionally equivalent to the target instruction sequence. The problem with su-
peroptimization is the exponential growth of the search space with the length
of the considered instruction sequence and the number of available instructions.
The interest in superoptimization also seems to have become smaller since this
technique has been initially proposed — to the best of our knowledge, there is no
publicly available superoptimizer which includes the whole instruction set (incl.
AVX, SSE4, etc.) of a modern x86 CPU. Recent applications of superoptimiza-
tion techniques [17], use heuristics to keep the search space manageable.

Superpipelining [8] was first proposed to overlap memory registration with
RDMA operations. We extended this technique for copying non-contiguous data.
Santhanaraman et al. [16] suggested to use gather/scatter support offered by
modern network stacks [5,15] to implement MPI datatypes for two-sided point to
point transfers and collectives. Since MPI allows that sender and receiver specify
different datatypes in the respective send or receive call, this information (the
datatype layout) has to be communicated first. After that the non-contiguous
data is sent using an InfiniBand gather operation [15]. At the receiver, the data
is stored (possibly in a different layout) using an InfiniBand scatter operation. In
this work we are focusing on the one-sided programming model, where the sender
has complete knowledge over the data layout at the receiver. Furthermore we do
not rely on special hardware features for the transfer. The problem of transferring



data does not only occur in message passing and RDMA programming, but also
when programming for accelerators, which have a private memory, such as GPUs.
Jablin et al. [10] for example strive to optimize CPU to GPU communication
by using compiler passes and a run time layer which optimize the scheduling of
the communication, i.e., achieve communication-computation overlap by early
binding. Jenkins et al. [11] propose GPU kernels to pack MPI datatypes, which
gives large improvements over packing them with the host CPU.

Schneider et al. [19] also optimized the packing of MPI derived datatypes.
MPI DDTs are traditionally interpreted at runtime, which is often slower than
manual pack loops written for a specific case and optimized by the compiler
at compile time. We mitigate that by generating machine code to pack MPI
DDTs at runtime. This increased packing performance by up to a factor of
seven. However, none of the pipelining techniques described in this work have
been used, the generated pack function pack the complete message into a buffer
before sending.

7 Conclusions

In this work we showed which optimizations a compiler for partitioned global
address space languages can perform, in order to accelerate non-contiguous data
transfers, without the requirement of special purpose hardware. We showed two
main targets for optimization: the scheduling of RMA put operations and the
instruction sequence used to copy small chunks of data into a temporary buffer
for sending them. We show an algorithm to optimize the copy code and show
that the resulting code outperforms readily available compiler builtins such as
memcpy and system functions such as bcopy. We show how pipelining copying
data and transferring it can improve performance and how we can leverage per-
formance models of the network operations, as well as performance data of the
copy code to choose suitable parameters for the suggested pipelining protocols.
All optimizations can be implemented in compilers for PGAS languages or RMA
libraries using well-known techniques.
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