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Abstract

In source-based path selection, the sender chooses the path to the
destination from a set of available paths and embeds the forward-
ing information in the packets. Future Internet proposals have em-
ployed this scheme to realize the benefits of source routing without
the inherent scalability problems of path computation at the source.
Furthermore, to address the security concerns of packet-carried for-
warding state, these proposals leverage cryptographic primitives
(e.g., Message Authentication Codes) per packet in the data plane.
However, the implications on the forwarding performance of these
novel routing schemes have not been studied in detail.

In this paper, we study the data plane of source-based path selec-
tion schemes. We take SCION—a future Internet proposal—as an
example and sketch its data plane implementation. We implement a
software switch that can forward up to 140 million minimum-sized
packets per second (limited by the hardware I/O subsystem) and
can achieve line-rate throughput of 120 Gbps.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: Network perfor-
mance; C.2.1 [Network Architecture and Design]: Circuit-switch-
ing networks
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1. INTRODUCTION
Source routing is a routing technique in which the source speci-

fies a complete or a partial path to the destination [1]. The chosen
path is encoded in the packet headers, unlike other routing tech-
niques where distributed forwarding decisions are made at each
forwarding device [2].

Source routing offers several advantages [3]: 1) The data plane
becomes simpler. Intermediate forwarding devices (e.g., switches
and routers) perform very simple operations. 2) Traffic engineer-
ing is more flexible, allowing application-optimized path selection
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at the source. 3) Routing stability is improved (e.g., no transient
loops) since the path computation is centralized at the source.

Despite the advantages, source routing has not been deployed
in the Internet mostly due to scalability and security reasons: 1)
Creating a topology map of the network that the source can use to
compute paths becomes a challenge. More specifically, a scalable
representation of the entire Internet and the granularity of detail for
the topology are challenging problems. 2) An on-path adversary
can manipulate the path or redirect traffic. This allows the adver-
sary to perform man-in-the-middle attacks or to infiltrate a secure
network.

In recent years, future Internet architecture proposals have re-
visited the idea of source routing for its benefits while addressing
its scalability and security problems. In particular, the scalability
problems have been addressed by using source-based path selec-
tion, a system in which the source obtains a list of paths that it can
use to reach the destination, rather than a full topology map as in
generic source routing schemes. In addition, to address the secu-
rity problems of source routing, cryptographic primitives are used
to protect the integrity of the forwarding information in each data
packet. Although new architecture proposals [4, 5, 6] realize the
benefits of source routing without the disadvantages, the effect of
source-based path selection on the data plane has generally been
neglected.

Future Internet architectures, such as SCION [4] and Nebula [5],
use cryptographic operations to prevent forgery of path informa-
tion. In this paper, we focus on the impact of cryptographic op-
erations on packet forwarding for such routing architectures. We
take SCION [4] as an example and design an efficient data plane.
We design and implement a software switch that can forward up to
140M minimum-sized packets per second (limited by the hardware
I/O subsystem) and achieves line-rate throughput of 120 Gbps.

2. BACKGROUND
We use SCION [4] as a use case of an architecture that leverages

source-based path selection and embeds forwarding information in
packet headers. In this section, we describe the basic information
that is needed to understand packet forwarding in SCION.

SCION is an Internet architecture that provides route control,
failure isolation, and explicit trust relationships for end-to-end com-
munication. To achieve end-to-end communication, initially the
ASes—organized in a hierarchical topological structure—explore
the topology and create half-paths. The half-paths are joined to
form end-to-end AS-level paths, which are used in the data plane
to forward packets. In the following we briefly summarize the basic
building blocks to achieve communication.

Topological Structure. The Autonomous Systems (ASes) are
organized in a hierarchical, tree-based structure according to the

http://dx.doi.org/10.1145/2775088.2775090


ASi-1

ASi

PCB

Figure 1: Hierarchical topology of ASes, with tier-1 ISPs in

the core (gray circle). The arrows depict customer-provider

relationships and the dashed lines depict peering relationships.

provider-customer business relationships between them (Figure 1).
The root of the tree, called the core, consists of tier-1 ISPs. Parent-
child relationships in the tree are determined by the provider-customer
relationships, with the provider being the parent node.

Half-Path Construction. Each AS has to discover a set of half-
paths, specifically up-paths and down-paths. The up-paths are a set
of paths that each ASi can use to reach the core. The down-paths
are a set of paths that can be used to reach ASi from the core. Next,
we describe how half-paths are constructed.

The ASes in the core periodically initiate path construction bea-

cons (PCBs) that traverse the hierarchical topology towards the
leaves. Each AS appends information to the PCB to mark its pres-
ence on the path and forwards it to each customer. The total infor-
mation that is appended by the ASes constructs an AS-level path
from the core towards the leaves. This information includes the
following fields:

1. Interface Field (IF): describes the constructed path at the gran-
ularity of interfaces that connect the ASes. Each AS inscribes
the ingress and egress interfaces of the border routers that
connect the AS with the previous and next AS hops corre-
spondingly:

IF (i) = ingress(i)||egress(i)

This means that an AS keeps a numbered list of interfaces
that connect it with other ASes, so that ingress and egress
points can be identified. An AS has full control over the
numbering of its interfaces—the numbering is independent
for each AS.

2. Opaque Field (OF): a cryptographic marking that is used for
data plane forwarding. The term “opaque” refers to the fact
that the information in an OF only needs to be readable by
the AS; other ASes do not access this information.

OF (i) = IF (i)||MACKi
(IF (i)||OF (i − 1 )) (1)

The MAC is computed using a secret key Ki known only
by the corresponding ASi. A collection of OFs forms the
forwarding information in each data packet.

Each AS that receives PCBs learns half-paths that connect it to
the core. It can select some of these paths to be used as up-paths and
some as down-paths; up and down-paths do not need to be disjoint.

Half-Path Joining. In SCION, an end-to-end path between two
ASes is constructed by joining two half-paths. Specifically, the
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Figure 2: Header for SCION data packet

source AS combines one of its up-paths with one of the down-paths
of the destination AS. Since every AS can reach the root of the tree
and can be reached from the root of the tree, an end-to-end path
between any two ASes can be created by combining the half-paths
of the two ASes.

Packet Forwarding. Each data packet contains a list of OFs that
specify the end-to-end AS-level paths at the granularity of border
router interfaces. The border routers look at the appropriate OFs
to forward the packet to the destination. In the next two sections,
we describe the data plane design and provide the implementation
details of a switch1 that forwards packets based on a list of OFs.

3. DATA PLANE DESIGN
We describe the data plane design for highly efficient packet for-

warding. The forwarding operations determine the required for-
warding information in the packet headers; hence, they specify the
packet structure. We describe the packet structure and the neces-
sary operations for packet forwarding.

3.1 Packet Structure
The forwarding state is embedded in each data packet and spec-

ifies an AS-level path at the granularity of ingress/egress interfaces
(Figure 2). As Section 2 describes, the forwarding state consists of
a list of OFs. We describe in more detail each field that is part of
an OF.

Ingress Field: specifies the interface at which the packet should
arrive when it enters an AS. The length of this field is 16 bits, which
suffices to enumerate over 65,000 interfaces.

Egress Field: specifies the interface at which the packet should
be sent out towards the next AS. The length of this field is 16 bits.

MAC Field: protects the forwarding information of each AS
against alteration and is computed according to Equation 1. To op-
timize the packet size, the length of the MAC in the OF is reduced
to 32 bits. We argue that a 32-bit MAC is sufficient to detect an
adversary with high probability if it forges an OF.

A 32-bit MAC is secure under a chosen plaintext attack (IND-
CPA secure) [7]. This security property is defined as follows: an
adversary is given a set of inputs and their MACs. Then the adver-
sary is given two new inputs (which are not in the set), and only one
MAC, which corresponds to one of the two inputs. If the adversary
is not able to tell with probability better than half which of the two
inputs the MAC corresponds to then the MAC is IND-CPA secure.

In our scheme, even if an adversary eavesdrops on data packets
to extract path information (i.e., learning the inputs and the corre-
sponding MACs from the path information), the adversary cannot

1We use the terms switch and router interchangeably since we are
only concerned with the data plane (i.e., packet forwarding effi-
ciency)



learn to distinguish or to compute MACs for new inputs. Hence, to
forge a MAC, an adversary can at best attempt an exhaustive search,
which has a success probability of 1

232
for each OF field (one-hop

path segment). However, to forge a path segment of length n, the
adversary cannot guess each MAC field independently, because the
adversary does not receive feedback on the validity of each gener-
ated MAC. Consequently, forging a path segment of length n re-
quires the adversary to forge all MACs, leading to a success proba-
bility of 1

232n
.

OF Pointer (OF ptr) Field: specifies the OF that the border
router should check, which corresponds to the OF that the AS has
generated during the PCB propagation. The OF ptr is incremented
when a border router sends the packet to the next hop AS; the
SCION specification does not require integrity protection for the
OF pointer [4]. The length of this field is 8 bits, allowing AS paths
up to 256 hops; the average AS path length today is 3.9 hops for
IPv4 and 3.6 hops for IPv6 [8].

3.2 Packet Forwarding
Embedding forwarding state in the packet simplifies the forward-

ing operations at each switch, by eliminating inter-domain forward-
ing tables. Namely, a switch has to check the interfaces specified in
an OF, verify a MAC, and update the OF pointer. We describe the
operations of an ingress and egress switch in more detail.

Ingress Switch: An ingress switch has to verify whether the
packet enters the AS at the correct ingress point. Specifically:

1. The switch checks whether the incoming port for the packet
corresponds to the ingress field in the OF. If the check passes
it proceeds with Step 2.

2. The switch verifies the MAC in the OF, using its local secret
key Ki, which was used to generate the MAC in the con-
trol plane. If the MAC is successfully verified, the switch
forwards the packet towards the egress interface.

If either check fails, the packet is dropped. Note that skipping the
ingress port check would enable attacks where the packet arrives
at an unauthorized ingress port. Such attacks are feasible under a
threat model with colluding ASes [4].

SCION does not specify intra-AS routing; hence, each AS is
responsible to route the traffic from the ingress point to the egress
point.

Egress Switch: An egress switch has to forward the packet to
the next AS at the interconnection point that was specified by the
OF. The required operations are the following:

1. The switch verifies the MAC in the OF, in the same way that
the ingress switch does.

2. It updates the OF pointer to point to the next OF.

3. It forwards the packet through the egress interface.

For both switches, the computational requirements are equiva-
lent and require symmetric-key cryptographic operations. In the
next section we explain how we implement these operations in a
software switch.

4. SWITCH IMPLEMENTATION
The SCION architecture requires cryptographic operations that

can potentially harm the high forwarding performance that is cru-
cial in the data plane. We describe how we combine a state-of-
the-art packet I/O engine, a hardware cryptographic engine, and
optimizations that achieve line-rate forwarding performance.

Packet I/O. We implement the software switch using Data Plane
Development Kit (DPDK) [9], a recent software packet processing
platform. The advantages of DPDK are three-fold: 1) It performs
packet processing in userspace, which provides flexibility to im-
plement SCION forwarding operations as a userspace application.
2) It adopts a pure polling strategy to avoid unnecessary interrupts
and context switches. 3) It modifies the NIC drivers to map packet
buffers in userspace such that only a single copy is needed from
NIC to main memory. The NIC performs a Direct Memory Access
(DMA) via the PCIe bus. This process avoids the overhead of an
additional packet copy from kernel to userspace.

Hardware Cryptographic Engines. Each switch needs to per-
form a MAC verification. To construct the MACs, we use Cipher
Block Chaining mode (CBC-MAC) with AES as the underlying
block cipher. The value for the Initialization Vector (IV) is 0 and
the size of the input and output blocks is 128 bits (16 bytes).

In SCION, the length of the input message to the AES opera-
tion is 96 bits (32 bits for ingress and egress interfaces, and 64 bits
for the previous OF). The constant 96-bit inputs feature two advan-
tages: 1) The input fits into one AES block. 2) It offers resilience
against variable-length input message attacks on CBC-MAC [10].

For computing and verifying the CBC-MACs, we use Intel AES-
NI [11], an instruction set that uses hardware support to speed up
AES operations. Intel reports that AES encryption of a single 16-
byte block consumes 2.01 cycles per byte (CPB) when executed on
Intel Westmere running at 2.67 GHz [11].

Performance Optimizations. To achieve high forwarding per-
formance, we implement the following optimizations:

• Multi-core Parallelization: First, for each NIC port, we as-
sign a dedicated CPU core that handles all packet I/O oper-
ations. Second, we take advantage of the dedicated AES-NI
engine that exists on each physical core. Hence, packets re-
ceived on different ports are processed by the AES-NI en-
gines of the physical core assigned to each port.

• Elimination of Concurrent Access to Same Memory Area:

To realize the processing speed-up of multi-core paralleliza-
tion, we create per-core data structures for read and write
accesses; this approach eliminates unnecessary data cache
misses. Specifically, each NIC is linked with a receive queue
and a transmit queue; these queues are then assigned to a
CPU core to handle the NIC’s traffic. Depending on the sys-
tem’s hardware, we load balance traffic from one NIC over
multiple cores. To this end, we assign multiple queues per
NIC and each queue can be handled by another core. To dis-
tribute the traffic among the queues of a NIC, we use Receive
Side Scaling (RSS) [12].

4.1 Packet Life Cycle
To provide more insight to the operation of the switch, we de-

scribe the life cycle of the packet from the time it enters the switch
until it exits the switch.

First, when the NIC receives packets from the network, the NIC
copies the packets to the userspace buffers and updates the receive
descriptor ring. This process is done by performing a Direct Mem-
ory Access (DMA) from the NIC to the host memory, leveraging
the PCIe bus. Second, through the polling mechanism, a thread
running in the CPU core detects the reception of packets and loads
the packets into the cache from the memory. Then it reads from
the cache the OF pointer to identify the OF corresponding to the
current AS, and extracts the corresponding OF and the previous



OF to perform the MAC verification. Third, the AES-NI instruc-
tion set is used to perform the MAC computation over the ingress
and egress interfaces of the current OF and the previous OF. The
OF verification succeeds if the resulting MAC value equals to the
MAC value in the current OF. The packet is dropped if the MAC
is incorrect. When the OF verification is successful, the thread up-
dates the transmit descriptor ring for the output port and notifies the
NIC of a pending transmission.

5. EVALUATION
We compare the SCION switching performance with traditional

IP forwarding and demonstrate the efficiency of the switch, despite
the cryptographic operations.

5.1 Experimental Setup
To evaluate IP lookup, we create a forwarding table based on a

recent RouteViews snapshot [13] with 500k unique entries, adding
up to 2.5 MB for our Forwarding Information Base (FIB). The IP
lookup implementation is based on DIR-24-8-BASIC [14], which
is a popular software implementation for the Longest Prefix Match
algorithm; it requires only one memory lookup in most cases.

We implement the SCION switch on a commodity server ma-
chine, consisting of two 8-core Intel Xeon E5-2680 2.7 GHz CPUs
(20 MB L3 cache per CPU), equipped with 6 dual-port Intel 82599EB
X520-DA2 10GbE NICs (PCIe Gen2x8), providing a total capacity
of 120 Gbps. Note that the cache size can store the whole FIB and
hence, the traffic pattern does not influence the forwarding perfor-
mance (no cache misses). Furthermore, we utilize a Spirent SPT-
N4U-220 traffic generator [15] for generating load on the switch.
We connect the packet generator back-to-back with the switch and
generate traffic. The switch receives the generated traffic, processes
it, and sends it back to the generator.

5.2 Evaluation Results
We conduct two experiments, comparing SCION and IP for-

warding. At first, we enable only one port for forwarding and
demonstrate that the switching performance saturates line-rate. Next,
we enable all ports and show how performance scales. The pro-
cessing load for SCION switches is independent of the path length:
each switch performs the same operations, and the SCION header
fits in a single cache line.

For a given link capacity, the packet size determines the packet
rate and hence the load on the switch. For example, Ethernet frames
have a minimum size of 84 Bytes (64 bytes data + 7 bytes pream-
ble + 1 byte frame delimiter + 12 bytes interframe gap). Thus,
the maximum rate of 10 Gigabit Ethernet is 14.88 Million pack-
ets per second (Mpps) per NIC port and 178.56 Mpps for all 12
ports. For 1518-byte packets, the packet rate for 1 port is 0.81 Mpps
and for 12 ports 101.4 Mpps. These values are the physical limits
and represent the theoretical peak throughput. We use the packet
I/O forwarding performance without any processing (i.e., no state
processing and no memory lookup) as the performance baseline
(Packet I/O Baseline).

5.2.1 Single-port Experiment

We analyze the switching performance for various packet sizes,
ranging from 64 to 1518 bytes. In Figure 3, for clarity, we only
present two cases, 64 and 1518 byte-packets, which correspond to
the worst and best cases, respectively; however, the results are the
same for the other packet sizes.

When the traffic saturates the bandwidth of the link, the switch
receives packets at the rate of 14.88 and 0.81 Mpps (Million of
packets per second) for 64 and 1518-byte packets, respectively;
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Figure 3: Switching performance of 64- and 1518-byte packets

on a single port; different scales (i.e., y-axis values) are used for

the two packet sizes.
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Figure 4: Switching performance of 64- and 1518-byte packets

on all ports; different scales (i.e., y-axis values) are used for the

two packet sizes.

these are the line-rate performances. For the baseline case, the
switching performance is the same as the line-rate performance.
In addition, the figure shows that SCION forwarding performance
is on par with both IPv4 and baseline performances for both packet
sizes, which means that the optimal switching performance is achieved
for the single-port experiment.

5.2.2 All-ports Experiment

In this experiment, we analyze the forwarding performance of
our switch when the traffic generator generates packets at its full
capacity, using all 12 ports. For the two packet sizes, the line-
rate performance increases to 178.56 Mpps and 9.71 Mpps, respec-
tively.

Figure 4 shows that the switching performance of SCION is
identical to that of both IPv4 and baseline cases. However, for
64-byte packets, we see that the performance is at 79% of the line
rate. The reason for this is that the I/O subsystem of the server ma-
chine hits a bottleneck when both ports of a NIC receive packets at
the maximum rate (each NIC has two 10 Gigabit ports). This bot-
tleneck is system-dependent and not related to SCION processing:
the PCIe Gen2 x8 interface of the NICs cannot handle this packet
rate for two active ports and each port is capped at 11.55 Mpps. For
the same NICs, Zhou et. al., [16] report the same bottleneck.

6. DISCUSSION
The advantages of carrying forwarding state in packets come at

the cost of increased packet size, i.e., packet header increases lin-
early with the number of AS hops on the path. Specifically, each AS
introduces 64 bits (8 bytes) of additional information. To put this
overhead into context, we analyze three hour-long packet traces,
obtained from CAIDA [17]. Based on the number of packets and
the packet sizes of the trace, we calculate the bandwidth overhead,



# Packets Size (GB) BW Overhead (%)

Trace 1 1012841645 704.53 4.42
Trace 2 1878632515 1609.67 3.59
Trace 3 2256208197 1546.03 4.49

Table 1: Bandwidth overhead of SCION according to three

backbone link traces.

assuming an AS path of 4 hops (the average AS-path length today
is less than 4 hops [8], as mentioned). This analysis assumes that
there is no correlation between the distribution of AS path lengths
and packet sizes. Table 1 shows the bandwidth overhead. We see
that the overall bandwidth overhead is low and does not exceed
4.5%.

7. RELATED WORK
To our knowledge, this is the first attempt to design and imple-

ment a highly efficient data plane of a source-based path selection
architecture that leverages cryptographic primitives. Although our
work is not comparable with other software switching proposals
for today’s networks (e.g., IP or SDN) [16, 18, 19], our design
and implementation can prove beneficial to proposals, such as IC-
ING [20] and OPT [21], that leverage symmetric-key cryptography
on the data plane.

ICING [20] is a research proposal for path verification and en-
forcement that relies on cryptographically protected packet-carried
state. More specifically, each router on the path derives a shared
key with every other router. For each packet, a router inserts a
MAC for every other router on the path, hence, each router has to
verify a number of MACs depending on the path length.

OPT [21] proposes light-weight protocols for source authentica-
tion and path validation. OPT also leverages symmetric-key cryp-
tography at each router to generate a local secret key per packet
and perform MAC computations. Specifically, to perform source
authentication a MAC computation is required, and to perform path
validation a chain of nested MACs is constructed.

8. CONCLUSION
Source-based path selection has been known to simplify data

plane design. However, many future Internet architectures have
used cryptographic operations to protect the path information from
forgery, and the impact of cryptographic operations on data plane
has not been studied previously. In this paper, taking SCION as the
example architecture, we have built a software switch that is ca-
pable of forwarding packets with cryptographically protected path
information. We have demonstrated that a per-packet MAC verifi-
cation does not affect the forwarding performance of a switch. Our
results confirms that source-based path selection allows a simple
and efficient data plane design, despite the additional cryptographic
operations.
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