
Engineering Algorithms for Scalability
through Continuous Validation
of Performance Expectations

Sergei Shudler , Yannick Berens, Alexandru Calotoiu, Torsten Hoefler,Member, IEEE,

Alexandre Strube , and Felix Wolf

Abstract—Many libraries in the HPC field use sophisticated algorithms with clear theoretical scalability expectations. However,

hardware constraints or programming bugs may sometimes render these expectations inaccurate or even plainly wrong. While

algorithm and performance engineers have already been advocating the systematic combination of analytical performance models with

practical measurements for a very long time, we go one step further and show how this comparison can become part of automated

testing procedures. The most important applications of our method include initial validation, regression testing, and benchmarking to

compare implementation and platform alternatives. Advancing the concept of performance assertions, we verify asymptotic scaling

trends rather than precise analytical expressions, relieving the developer from the burden of having to specify and maintain very fine-

grained and potentially non-portable expectations. In this way, scalability validation can be continuously applied throughout the whole

development cycle with very little effort. Using MPI and parallel sorting algorithms as examples, we show how our method can help

uncover non-obvious limitations of both libraries and underlying platforms.

Index Terms—Software engineering, high performance computing, parallel programming, performance analysis, performance modeling

Ç

1 INTRODUCTION

THE most powerful supercomputers today allow compu-
tations to be run on tens of millions of cores and in the

not-so-distant future this number may even grow to billions
of cores [1]. Since many applications critically depend on
parallel libraries, such as MPI, PETSc, ScaLAPACK, or
HDF5, the scalability of these libraries is of utmost impor-
tance for reaching performance targets at scale. This
becomes even clearer considering that application develop-
ers may be able to remove performance bottlenecks from
their own code, but may find it more challenging to remove
these bottlenecks from the libraries they are using.

Library developers, on the other hand, are confrontedwith
the problem of continuous scalability validation as their code
base evolves. In the past, they often did this by scaling the
library to the full extent of the largest machine available to
them, after which they manually compared the results with

theoretical expectations. This is expensive in terms of both
machine time and manpower. In cases where the library
encapsulates complex algorithms that are the product of
years of research, such expectations often exist in the form of
analytical performancemodels [2], [3], [4]. However, translat-
ing such abstract models into concrete verifiable expressions
is hard because it requires knowing all constants and restricts
function domains to performance metrics that are effectively
measurable on the target system. If only the asymptotic com-
plexity is known, as is very commonly the case, this is in fact
impossible. And if such a verifiable expression exists, it must
be adapted every time the test platform is replaced and per-
formancemetrics and constants change.

To mitigate this situation, we combine empirical perfor-
mance modeling with performance expectations in a novel
scalability test framework. As depicted in Fig. 1, the frame-
work adds empirical performance modeling to the test phase
in the software development cycle, thereby introducing a
new software engineering approach. Similar to performance
assertions [5], our framework supports the user in the specifi-
cation and validation of performance expectations. However,
rather than formulating precise analytical expressions involv-
ing measurable metrics, the user has to only provide the
asymptotic growth rate of the function/metric pair in ques-
tion, making this a simple but effective solution for future
exascale library development. We generate performance
models similar to Calotoiu et al. [6]. However, instead of cre-
ating scalingmodels independently from the expected behav-
ior as they do, we tailor the model search spaces to
expectations and also generate divergence models that help

� S. Shudler is with Argonne National Laboratory, Lemont, IL 60439.
E-mail: sshudler@anl.gov.

� Y. Berens, A. Calotoiu, and F. Wolf are with Technische Universit€at
Darmstadt, Darmstadt 64289, Germany. E-mail: yannick.berens@stud.
tu-darmstadt.de, {calotoiu, wolf}@cs.tu-darmstadt.de.

� T. Hoefler is with ETH Z€urich, Z€urich 8092, Switzerland.
E-mail: htor@inf.ethz.ch.

� A. Strube is with J€ulich Supercomputing Centre, J€ulich 52425, Germany.
E-mail: a.strube@fz-juelich.de.

Manuscript received 15 June 2018; revised 9 Jan. 2019; accepted 18 Jan. 2019.
Date of publication 1 Feb. 2019; date of current version 8 July 2019.
(Corresponding author: Sergei Shudler.)
Recommended for acceptance by M. Yasugi.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2019.2896993

1768 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 8, AUGUST 2019

1045-9219� 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-7238-7353
https://orcid.org/0000-0001-7238-7353
https://orcid.org/0000-0001-7238-7353
https://orcid.org/0000-0001-7238-7353
https://orcid.org/0000-0001-7238-7353
https://orcid.org/0000-0002-9177-6474
https://orcid.org/0000-0002-9177-6474
https://orcid.org/0000-0002-9177-6474
https://orcid.org/0000-0002-9177-6474
https://orcid.org/0000-0002-9177-6474
https://orcid.org/0000-0001-6595-3599
https://orcid.org/0000-0001-6595-3599
https://orcid.org/0000-0001-6595-3599
https://orcid.org/0000-0001-6595-3599
https://orcid.org/0000-0001-6595-3599
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:

in understanding how the difference between expected and
actual behavior would evolve as the number of processes
increases. Moreover, in the absence of a clear expectation, the
framework is able to supply the status quo as a substitute.
This is especially useful during regression testing when the
main task is to prevent newmodifications from reducing scal-
ability. A performance model generator combined with an
automatedworkflowmanager makes sure that the actual and
expected behavior can be continuously compared.

The framework we propose can also be used in algorithm
engineering [7]. Traditionally, algorithm theory does not
focus on implementation and leaves this part to application
development. However, growing complexities of both the
algorithms and the hardware (e.g., parallelism, memory hier-
archy, etc.) create a gap between promising algorithmic ideas
and their practical use. Algorithm engineering, therefore,
aims to bridge this gap by adopting elements from software
engineering. In other words, it defines a cycle that consists of
four major phases, namely, design, analysis, implementation,
and experimental evaluation driven by falsifiable hypotheses.
We show that our methodology can be beneficial to the algo-
rithm engineering cycle in a number ofways.

Use cases of our framework include initial validation,
regression testing, and benchmarking to compare imple-
mentation and platform alternatives. Although our work is
not restricted to a specific type of software, we focus on
library development because of its high impact and the
greater availability of theoretical performance models. In
comparison to the state of the art, we make the following
specific contributions:

� An approach to engineer libraries and algorithms for
extreme-scale systems based on incorporating
empirical performance modeling into the develop-
ment process

� Continuous scalability validation based on simple
asymptotic growth rates, which are often easier to
obtain than fully evaluable analytical expressions

� Generation of divergence models to characterize
deviation as a function of the number of processes

� Targeted model search through expectation-driven
construction of the search space

� Automatic workflow including execution of perfor-
mance experiments and generation of performance
models

� Testing whether the scaling behavior of the library is
consistent across different functions

In the first case study, involving several MPI implementa-
tions, we demonstrate how our framework can be applied to
(i) uncover growing memory consumption, (ii) reveal archi-
tectural constraints that limit the performance of awide range

of collective operations, and (iii) predict the violation of MPI
performance guidelines. In the case study involving the
Merging of Adaptive Finite IntervAls (MAFIA) code [8], we
demonstrate that our approach is also applicable to algorith-
mic modeling. In this case, the model is a function of an algo-
rithm parameter. Furthermore, we use the framework to
validate the performance of parallel sorting algorithms.

This work extends a previously published paper [9]. It
adds the evaluation of Intel MPI and Open MPI to the main
case study, as well as introduces a new case study of paral-
lel sorting algorithms. The evaluation is performed on two
systems, including a Blue Gene/Q machine, and highlights
the applicability of our methodology to algorithm engineer-
ing. This paper also includes an extended discussion of the
scalability validation workflow, the benchmark design in
the MPI case study, and related work.

2 SCALABILITY VALIDATION FRAMEWORK

The objective of our approach, which is illustrated in Fig. 2, is
to provide insights into the scaling behavior of a library with
as little effort as possible. It includes the following four steps:
(i) define expectations; (ii) design benchmark; (iii) generate scaling
models; and (iv) validate expectations. The first two are manual
because they involve user decisions, while the second two are
automatic.We describe each of them in detail below.

2.1 Define Expectations

We aim to keep our method simple and effective: it has to be
usable in various settings with only an approximate idea of
the expected result. For example, it is very unlikely that a
programmer of a matrix-matrix multiplication can tell the
floating-point rate or the achieved memory bandwidth for
a given matrix size n. Thus, these metrics may be less use-
ful in practice. However, every programmer will know

whether he used the simple Oðn3Þ algorithm or Strassen’s
Oðn2:8074Þ algorithm. Therefore, we let the user define
expectations in big O notation (aka Landau notation). For

Fig. 1. Software development cycle with empirical performance
modeling.

Fig. 2. Framework overview including use cases.

SHUDLER ETAL.: ENGINEERING ALGORITHMS FOR SCALABILITY THROUGH CONTINUOUS VALIDATION OF PERFORMANCE... 1769

some functions, one could even formulate a hypothetical
(black-box) expectation, that is, an expectation based on
either an approximation or an incomplete knowledge of the
algorithm. For example, without any additional information
about a library call sort(int *array, int n) for sorting
an integer array, one might formulate a hypothetical expec-
tation of Oðn lognÞ, although the actual algorithm might
require Oðn2Þ steps in the worst case.

In our expectation-centric performance modeling app-
roach, the user does not have to be a domain expert to pro-
vide expectations. An initial guess of the scalability or a
hypothetical expectation is enough for the scalability valida-
tion framework. However, before being able to define
expectations, the user has to choose the library functions
that will be subjected to the scaling analysis and the relevant
scaling metrics. The more functions the user selects the
more expensive it will become to construct the benchmark,
which is why it can make sense to restrict the selection to
those deemed most relevant. On the other hand, making too
narrow a choice poses the risk of overlooking hidden scal-
ability issues. Another important decision concerns the
selection of scaling metrics. For some rarely called func-
tions, memory consumption might be the primary concern,
but for many others it will probably be runtime or floating-
point operations. In general, we can distinguish between
measured metrics such as runtime and metrics that can be
counted as discrete units such as floating-point operations.
Very often, the latter yield better empirical scaling models
because they are less prone to jitter. If only a hypothetical
expectation is available, as in the sorting example above, the
model generator can use it to generate a model that better
describes the current behavior. This model can then become
the new expectation. This is especially useful when the user
has little knowledge of the library or during regression test-
ing when the main task is to prevent later modifications
from introducing scalability bugs.

Sometimes, the functionality offered by one library func-
tion is a subset or a superset of the functionality offered by
another library function. Or a library API may offer conve-
nience functions with functionality that can be regarded as
a short cut for a combination of other API functions. In such
cases, it is possible to define optional cross-function rules that
specify relationships between the scaling behavior of differ-
ent functions [10]. For example, a short cut should not scale
worse than the spelled-out implementation.

2.2 Design Benchmark

The benchmark must provide or generate valid library
inputs and measure the selected performance metrics for
the selected functions in various execution configurations
(e.g., different numbers of processes or input sizes).

Occasionally, unexpected architectural constraints such as
the network topologymay increase the observable complexity
of an implementation—without such factors, the software
could be blamed in the sense of a performance bug that
requires a fix. To help distinguish such effects from program-
ming bugs, it is advisable to manually re-implement one or
more representative library functions in a way that has been
proven to show the expected behavior under ideal condi-
tions—for example, using a known optimal algorithm from
the literature. The difference between this performance litmus

test and the original library functions is that the tester can usu-
ally trust the replica more than the original function because
he thoroughly knows its internals. Should the original library
function now show performance deviations, they can be com-
pared with the results obtained for the litmus test. A similar
deviation observed for the replica could then be seen as a
strong indicator of architectural constraints that might also
influence the behavior of other regular library functions. We
discuss an example as part of our first case study in Section 3.1.

2.3 Generate Scaling Models

Our expectation-centric performance modeling approach
assumes that the user provides an initial expectation func-
tion EðxÞ. Together with this expectation the user either
provides a deviation limitDðxÞ or a default deviation is cho-
sen automatically. Looking at how most computer algo-
rithms are designed and their complexity, we can identify a
number of function classes with distinct rates of growth.

F1ðxÞ ¼ log
i1
2 x

n o

F2ðxÞ ¼ xi2
� �

F3ðxÞ ¼ 2i3x
� �

:

This division into classes provides the foundation of our
performance-modeling technique; however, we do not
claim that the above classes are exhaustive, and new ones
can be added on demand to reflect changes in algorithms
and applications. The basic modeling technique will never-
theless be the same.

We first classify the leading-order term of the expectation
EðxÞ according to our scheme. Note that expectations that
combine components from different classes FkðxÞ are classi-
fied according to the component from the highest class. For
example, an expectationOðp log pÞwill be classified as belong-
ing to F2ðxÞ. Since we assume thatEðxÞ is sound and our goal
is to validate it, we are not interested in a wide deviation limit.
Therefore, if the user provides no such limit we choose a
default deviationDðxÞ from the same class. In other words, if
EðxÞ was classified as belonging to FkðxÞ we define DðxÞ by
halving the leading-order term exponent ik of EðxÞ. The
lower deviation limit is then defined as DlðxÞ ¼ EðxÞ=DðxÞ,
and the upper deviation limit is defined as DuðxÞ ¼
EðxÞ �DðxÞ. By default, the model search space boundaries
extend beyond the deviation limits DlðxÞ and DuðxÞ, thus the
lower boundary is defined asBlðxÞ ¼ 1 and the upper bound-
ary as BuðxÞ ¼ E2ðxÞ. These boundaries limit the search
space of possible models. The deviation limits DlðxÞ and
DuðxÞ, on the other hand, define our bug criteria—if a model
falls outside these limits, we classify this as a scalability bug.
Fig. 3 demonstrates the difference between the search space
boundaries and deviation limits. This difference also defines
the match criteria. The checkmark @@ in the figure indicates an
exact match between the generatedmodel and the expectation
EðxÞ. The approximation sign �� indicates that the generated
model is within the deviation limits, thereby resulting in
approximate match. The x sign indicates that the generated
model is outside the deviation limits, resulting in no match.
The default choice of DðxÞ ensures a reasonable tolerance
for an approximate match. Users that need a lower or higher
tolerance can specify a differentDðxÞ.

1770 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 8, AUGUST 2019

The next step is to choose the functions inside the model
search space, and thus define its resolution. The user can pro-
vide his own search space or let it be generated automatically
using the expectation EðxÞ. The construction of the search
space is analogous to placing ticks on a ruler. The bigger ticks
(e.g., centimeters) are the terms from the class FkðxÞ to which
EðxÞ belongs. The outermost ticks are by default Bl and Bu,
while the inner ticks are constructed by recursively halving
the intervals between existing ticks. The recursion terminates
after a defined number of steps, which can be configured
before the model generation step. The default, however, is
two steps. Each new tick corresponds to a new term and is
added to the search space. Practically, this is achieved by
averaging the exponents of adjacent terms that are already
in the search space. We denote the set of exponents of the
terms already in the search space as Ik � Q, which means
we can define the search space up to this point as
ffðxÞ 2 FkðxÞ j ik 2 Ikg. By introducing smaller ticks (e.g.,
millimeters), we can increase the resolution even further. In
contrast to the bigger ticks, smaller ticks are constructed by
multiplying the terms from the class FkðxÞ that are already
elements of the search space with terms from Fk�1ðxÞ. As a
rule of thumb and a default choice, the first term we select
from Fk�1ðxÞ has an exponent of 1. We can then expand this
selection as needed by incrementing and decrementing the
exponent by a step of 1, 1=2, 1=3, and so on. Selecting more
terms from Fk�1ðxÞ increases the search space resolution,
which incurs more overhead and is not always needed. We
do not consider any terms from a class lower than Fk�1ðxÞ
because it would result in ticks that are too fine-grained to
characterize significant deviations. Finally, we multiply each
term in the search space with a coefficient placeholder a and
add another coefficient placeholder c, such that each term
fðxÞ becomes a function cþ a � fðxÞ. Both coefficients will be
instantiated when fitting the functions in the search space to
actual measurements.

We offer both simplicity and flexibility to the user. The
only input that the user has to provide is the expectation.
The deviation limit and the search space can then be gener-
ated automatically, thus relieving the user of the complexity
of too many choices. If more flexibility is required the devia-
tion limit and the search space can be modified manually by
expanding the default boundaries or increasing the resolu-
tion. There is a trade-off, however, between accuracy and
speed; therefore, applying these modifications might
increase the model-generation time. As an approximate ref-
erence, the model generation process in each of our case
studies, including all the functions under investigation,
never took more than a few seconds.

As an example, let us consider the expectation EðpÞ ¼ p.

In this case, the default deviation limit is DðpÞ ¼ p
1
2 since it

is exactly half of the power of p. The default lower and
upper search space boundaries are 1 and p2, respectively.
At this point, our search space is f1; p; p2g. By averaging the

exponents of adjacent terms we construct the models p
1
2 and

p
3
2, which results in a search space f1; p12; p; p3

2; p2g. In the
next step, in which we average the exponents of adjacent
terms again, we add the terms fpj j j ¼ 1

4 ;
3
4 ;

5
4 ;

7
4g. We then

select a term with exponent 1 from the next lower class,
log p in this case, and multiply it by the terms that are
already inside the search space. Note that we skip the upper
boundary p2 in order to keep the search space within our
defined boundaries:

1; log p; p
1
4; p

1
4 log p; p

1
2; . . . ; p; p log p; . . . ; p

7
4 log p; p2

n o
:

We use the performance-model generator in Extra-P [11],
a tool for automated performance modeling of HPC applica-
tions. The model generator has already shown to confirm
known performance models of real applications as well as
discover previously unknown scalability bottlenecks [6],
[12], and has also been validated using a wide range of syn-
thetic functions [13]. Furthermore, specific usage examples
include modeling the performance of OpenMP con-
structs [14] and the isoefficiency functions of task-based
programs [15]. The generator requires a set of measure-
ments as input whose precise nature depends on the scaling
objective (e.g., number of processes versus input size, weak
versus strong). As a rule of thumb derived from our experi-
ence, the generator needs at least five different settings of
the model parameter (e.g., five different numbers of pro-
cesses). First, it starts by fitting each function in the search
space to the measurements using linear regression and
leave-one-out cross-validation. In other words, each func-
tion in the search space becomes a candidate model. Note
that cross-validation allows us to reduce the error when the
model is applied to new data. The generator then selects the
candidate model with the highest adjusted coefficient of
determination �R2. The coefficient of determination is the
ratio of the variation explained by the model to the total var-
iation [16]. In general, a higher value of this coefficient indi-
cates a better fit (the range is [0,1]). The adjusted coefficient
of determination penalizes higher numbers of terms in the
model, which offers protection against overfitting.

2.4 Validate Expectations

Since we accept expectations in big O notation, we first need
to transform the generated models accordingly. This
involves isolating the leading-order term in a model and
stripping off its coefficient.

Unfortunately, run-to-run variation, which affects almost
any system, may introduce a certain degree of noise into the
measurement data. This means that we are confronted with
a trade-off decision. On the one hand, if we increase the
search space resolution, we have to accept that the model
would not only reflect the behavior we are interested in but
potentially also the noise. On the other hand, if we restrict
the resolution too much, we have to accept models that do
not fit the data precisely, increasing the likelihood that they

Fig. 3. Search space boundaries and deviation limits relative to the
expectation EðxÞ.

SHUDLER ETAL.: ENGINEERING ALGORITHMS FOR SCALABILITY THROUGH CONTINUOUS VALIDATION OF PERFORMANCE... 1771

will misguide the user. Since according to our experience
the latter option is more dangerous, we decided to allow
more fine-grained model choices.

To assist the user in understanding the results we define
the divergence model to be dðxÞ ¼ GðxÞ=EðxÞ, where GðxÞ is
the generated model and EðxÞ is the expectation provided
by the user. This model characterizes the degree of diver-
gence between the expectation and the observed behavior.
It can also be used to visualize the severity of the deviation.
Thus, the output we present to the user consists of GðxÞ,
dðxÞ, and a match rank with three possible indications, as
depicted in Fig. 3: total match (meaning GðxÞ corresponds
to EðxÞ), approximate match (GðxÞ is within the deviation
limits), and no match (GðxÞ is outside the deviation limits).

Severe divergence can either point to a bug in the algo-
rithm, a bug in its implementation, a constraint of the
underlying architecture, an unrealistic expectation, or a
combination of several factors. The root cause is not always
obvious. For example, even if the implementation seems
correct at the first glance, it is always possible that bugs,
such as false sharing, unnecessary synchronization, or poor
communication schedules, increase the actual complexity of
the implementation. Nonetheless, the performance litmus
test introduced earlier can help separate architectural from
implementation constraints. Based on the generated mod-
els, we can now also verify the compliance of the actual
behavior with the optional cross-function rules. As defined
above, cross-functions rules specify relationships between
the scaling behavior of different functions. For this purpose,
we combine the models involved in such rules before trans-
forming them into their asymptotic form. Finally, if the gen-
erated models fall within the deviation limit (i.e., match the
expectations either exactly or approximately) the user may
instantiate them to predict the scaling limits of selected
library functions at specific target scales.

3 CASE STUDY: MPI

MPI is a fundamental building block in most HPC applica-
tions, and previous work identified the runtime of collective
operations and memory consumption as two potential scal-
ability obstacles [17], [18]. This makes MPI an ideal case
study for testing our approach. First, we discuss the

framework workflow in the context of MPI, and then we
continue with the initial evaluation of MPI collective opera-
tions on three different machines, namely a Blue Gene/Q
system, an Intel CPU-based cluster, and a Cray XC-30 sys-
tem. We finish with an evaluation of Intel MPI and Open
MPI on a single, Intel CPU-based system.

3.1 Scalability Validation Workflow

We now present the steps of our framework in the context of
the MPI case study. The benchmark design is discussed in
more detail as it is important to understand how we bench-
mark and measure our target functions and metrics. This
case study can be used as a guideline for applying the test
framework to other libraries.

3.1.1 Expectations

The first step in theworkflow requires us to choose themetric
and the evaluated functions, as well as identify our perfor-
mance expectations. In this case, we choose to focus on the
most common MPI collective functions and their latency-ori-
ented (i.e., small messages) execution times, as well as on the
memory overhead of communicators and the resident mem-
ory size of an MPI process. Specifically, we look at: Barrier,
Bcast, Reduce, Allreduce, Gather, Allgather, and Alltoall. By
focusing on latency, that is, message sizes of 800 bytes (i.e.,
100 doubles), we limit ourselves to only one aspect of perfor-
mance. It is sufficient for the initial study, but the message
size is a changeable parameter and the study could be exte-
nded to include bandwidth as well. Wemeasure the memory
overhead of communicators by measuring the memory
overhead of the Comm_create, Comm_dup, Win_create, and
Cart_create functions. Lastly, we analyze the residentmemory
size by estimating the process memory allocated during the
benchmark execution.

Table 1 depicts the expectations for the runtime of collec-
tive operations in our MPI case study. These expectations
come from a number of sources, including studies by Bruck
et al. [20] and Chan et al. [2] and MPICH [21], a well-known
implementation of MPI from which numerous other imple-
mentations are derived. The cost models from these sources
incorporate years of research and optimizations that make
them a good reference for comparison. Many implementa-
tions of MPI collective operations (includingMPICH) use dif-
ferent algorithms depending on the message size and the
number of processes. Since we use a small message and num-
bers of processes equal to a power of two, we selected the
expectedmodels such that they reflect this setup. The expecta-
tions for communicator memory overheads are taken from
MPICH and the analysis by Balaji et al. [17], which also points
out that a scalable MPI library should consume a fixed
amount ofmemory, independent of the number of processes.

MPI performance guidelines specify internal performance
consistency rules betweenMPI functions [10], [22], [23]. These
rules define consistency expectations, and we specifically
evaluate two guidelines: Allreduce � Reduce þ Bcast and
Allgather � Gather þ Bcast. These define the cross-function
rules that we focus on. The first guideline states that, since
semantically it is the same operation, it is reasonable to expect
from a correct and optimized MPI implementation that the
model for the execution time of MPI_Allreduce does not

TABLE 1
Performance Expectations of MPI Collective Operations

Assuming a Message Size of 800 Bytes and
Power-of-Two Number of Processes

1772 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 8, AUGUST 2019

grow faster than the combination of models for the execution
time of MPI_Reduce and MPI_Bcast. Specifically, we com-
bine models using their leading order terms. The same logic
also applies to the second guideline.

3.1.2 Benchmark Design

Although the benchmark we designed focuses on MPI, the
general structure and principles can be adapted to other
libraries as well. It consists of a series of smaller micro-bench-
marks that evaluate different collective functions, either in
terms of execution time or memory consumption. Each one
produces results that are later used as input to themodel-gen-
eration phase of the framework. It is important to note that
contrary to a previous work on automated performance
modeling [6], we do not use Scalasca [24] or Score-P [25] in
our workflow. The collective operations are benchmarked,
but are not instrumented internally. This allows us to use a
more suitable mechanism for timing collective operations. To
obtain timings for collectives, we adopted the approach by
Hoefler et al. [26], which first forces all processes to start the
collective operation at the same time, and then finds themaxi-
mum runtime across all processes. According to this method,
we first calculate clock differences relative to the root process,
and then set a time window in the future, relative to the this
process, in which every process should start the operation.
An earlier version of this window-based technique was sug-
gested in the SKaMPI benchmark [27].

Listing 1. Micro-Benchmark Pseudocode for MPI
Collectives

1: Perform warm-up runs
2: repeat
3: msi Current memory consumption
4: Synchronize function start time
5: si Operation’s start time in process i
6: Run collective operation
7: ei Operation’s end time in process i
8: mei Current memory consumption
9: Continue to next iteration if synchronization errors

occurred
10: tj maxi¼1...P ðei � siÞ
11: mj maxi¼1...P ðmei �msiÞ " Memory overhead
12: Write tj andmj to the output
13: until R valid runs performed

Listing 1 presents the pseudo-code for the micro-bench-
mark. It starts with a number of warm-up runs and continues
to execute the collective operation R times. The warm-up is
necessary to eliminate the effects of a cold cache and make
sure that the MPI library is fully loaded. Before each run, the
window-based technique on line 4 ensures that the collective
operation starts approximately at the same time on each pro-
cess. Even with the most precise synchronization, distributed
processes will not be able to start the operation at exactly the
samemoment in time due to local OS-related noise. However,
the window-based synchronization we use eliminates the
effect of long delays caused by imbalances in previous com-
putation and communication phases on the timing of coll-
ective operations. We measure the memory overhead by
wrapping malloc and free and, for operations that create a
new communicator, it gives us exactly the memory overhead

of the new communicator. The results of each repetition (both
the runtime and thememory overhead) are reduced to amax-
imumvalue across all processes.

The number of repetitions R should be high enough to
get statistically sound results, especially if the benchmarks
are executed in a noisy environment. However, if R is
too high it could result in spending too much time bench-
marking a single collective operation. This is particularly
true for time-consuming collective operations such as
MPI_Alltoall. As a rule of thumb, we can deem R to be
high enough when the 95 percent confidence interval is no
larger than 5 percent of the mean.

One way to estimate the resident memory allocated to a
process on Linux and Unix-like systems is to analyze the
mapped memory regions in the /proc/self/smaps file. Follow-
ing this approach, we count either the shared and the pri-
vate regions, or the proportional set size (PSS) of the
process. On Blue Gene/Q the compute nodes run a special
minimal version of the Linux kernel that preallocates the
memory for the process in advance and does not provide
the actual status of the memory in /proc/self/maps. As an
alternative, we use the Kernel_GetMemorySize function
to obtain the desired value.

To help identify architectural constraints, or negative
effects of neighbor network activity, we calibrate the bench-
mark by running a manually implemented binomial-tree
broadcast [2] as our performance litmus test. It is imple-
mented using point-to-point MPI functions and we under-
stand the precise behavior of this implementation under
ideal conditions. If its generated performance model does
not correspond to the expected analytical model, it suggests
that other factors, such as network contention or neighbor
activity, are influencing the runtime. After this calibration,
we can attribute unexpected behavior with greater confi-
dence to either problematic implementations or to machine-
related overheads.

The benchmark runs are orchestrated by the J€ulich
Benchmarking Environment (JuBE) [28], which allows the
user to configure a wide choice of execution parameters and
specify ranges for some of them. For example, the user
specifies the number of processes per node and a range for
the requested nodes. JuBE iterates over the ranges provided
by the user independently and creates a batch job for each
combination. After the execution is finished it runs optional
scripts for results verification and data analysis.

3.1.3 Generation of Scaling Models

The inputs of themodel generation phase are runtimes of col-
lective operations, communicator memory overheads, and
the estimate of the resident memory size, measured for an
increasing number of processes. Many benchmarks reduce
the results of multiple iterations to a single value by using an
average. In our case, however, to mitigate significant noise
we use the first quartile. By choosing this approach, we shift
our focus from the average case toward the best case and
reduce the risk of false positives that can occur when the lev-
els of noise are very high. At any rate, the divergence model
in the average case is as big as in the best case.

As depicted in Table 1, there were four different expecta-
tions in this case study: Oð1Þ, Oðlog pÞ, OðpÞ, and Oðp log pÞ.

SHUDLER ETAL.: ENGINEERING ALGORITHMS FOR SCALABILITY THROUGH CONTINUOUS VALIDATION OF PERFORMANCE... 1773

The first two were classified as belonging to the class F1ðxÞ,
and the other two as belonging to F2ðxÞ. Note that Oð1Þ is a
special case; it can be assigned to any one of the classes by
choosing the exponent of 0. The default choice, therefore, is
to classify it as belonging to F1ðxÞ. For more consistency, we
decided to set the search space in all the cases to the default
search space of expectation Oðp log pÞ. In other words, the
search space in all the cases was defined by logarithms with
powers of 0 and 1, and powers of 0; 14,

1
3 and all their multi-

ples up to 2 for p. We also used the same deviation of
ffiffiffi
p
p

for
all the expectations.

3.1.4 Validation of Expectations

In this step, we automatically validate the generated perfor-
mance models against our expectations. We compute the
divergence models and evaluate the cross-function consis-
tency expectations. The final output is a list of generated
models, in which each model has an adjusted coefficient of
determination, a divergence model, and a match indicator.
Table 4 is an example of such a list. The divergence model
and the match indicator have already been discussed in
Section 2.4.

3.2 Evaluation with Three Native MPI
Implementations

In this section, we evaluate our approach on three different
machines with a different native MPI implementation on
each of them. As already explained, we measured the run-
time of collective functions, thememory overhead of commu-
nicators, and the memory allocated by the process during the
benchmark execution. We first present the experimental
setup includingmachine details and then discuss the results.

3.2.1 Experimental Setup

Table 2 presents the specifications of the three machines on
which we conducted our experiments and tested our
approach. The first one is Juqueen [29], a Blue Gene/Q
machine built by IBM. It is specifically designed for highly
scalable codes and features improved energy efficiency. The
specialized Compute Node Kernel (CNK) on the compute
nodes reduces jitter and allows for reproducible measure-
ments. The second machine, which is based on an Intel
architecture, is Juropa. At the time the evaluation was
conducted, Juqueen was the capability supercomputer at
Forschungszentrum J€ulich (FZJ) and Juropa was the capac-
ity machine. The third machine is Piz Daint, an x86-based
Cray-XC30 machine at the Swiss National Supercomputing

Centre (CSCS). It was built by Cray and therefore has both a
different network topology and a different MPI implemen-
tation [30]. To enable better scalability and reduce jitter, the
compute nodes on Piz Daint run an optimized version of
Linux called Compute Node Linux (CNL). At the time the
evaluation was conducted, it was the flagship system of
CSCS. We believe the differences between these machines
make them good choices for our case study and allow us to
evaluate the scalability of different MPI implementations.

The MPI implementation on Juqueen is based on the
PAMI interface [31] and uses special hardware components
to accelerate collective functions [32]. Users have a choice
of various protocols for some of the frequently used collec-
tive functions, for example, binary or binomial tree for
MPI_Allreduce. They also have the option to revert to the
plain MPICH implementation from which the Blue Gene
version was derived. Juqueen provides an extension of MPI
that makes it possible to query which algorithm was actu-
ally used during the execution of a collective function. The
ParaStation MPI on Juropa is based on MPICH as well. It is
optimized to select the most appropriate of all available
interconnects at runtime. For intra-node communication,
for example, it will use shared memory and revert to Infini-
Band for inter-node communication [33]. Piz Daint is a Cray
machine and uses Cray MPI, which is a vendor implementa-
tion of MPI and is quite closely coupled to the machine
itself. In these cases, support for non-native implementa-
tions, such as Open MPI, is quite limited. Therefore, we
chose to focus our initial evaluation on supported imple-
mentations, that is, PAMI on Juqueen, ParaStation MPI on
Juropa, and CrayMPI on Piz Daint. In a later work that we
discuss in Section 3.3, the scalability validation framework
was applied to Intel MPI and Open MPI as well. This point
is particularly important since MPICH algorithms have
known formulae for their execution time, which allows the
generated empirical model to be compared to the analytical
one. Open-source, PAMI-based algorithms also provide
analytical models for their execution time, thus allowing us
to get clear expectations about their performance.

Vendor implementations of MPI are quite strongly cou-
pled to the actual machine. Comparing them to a non-native
MPI implementation would be unfair since the latter cannot
use specialized vendor hardware to run faster. Therefore,
instead of evaluating different implementations on the same
machine, we looked at native implementations on different
machines. It is important to remember that differentmachines
may have different network topologies with varying network
latencies and contention points. On Juqueen, the 5D torus
topology and the built-in messaging unit (MU) component
allow for higher bandwidth and lower latency compared to
more conventional 3D torus and fat-tree topologies [32].
Therefore, each native implementation should be considered
separately and compared to corresponding analytical models
rather than to an implementation on a differentmachine.

All three machines in our experiments provide highly
accurate, high-resolution hardware cycle counters in the
form of registers that can be read very quickly with an
atomic instruction: MFTB on PowerPC, and RDTSC on x86.
All the experiments were performed with a fixed CPU fre-
quency, and to obtain execution time the frequency was
multiplied by the cycle count.

TABLE 2
Machine Specifications for the Evaluation of the Native MPI

Implementations (Cores and Memory Size are Given Per Node)

1774 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 8, AUGUST 2019

We note that the experiments on Piz Daint were per-
formed with default Cray MPI library optimizations. Newer
versions of Cray MPI have additional algorithms that may
improve scaling and can be used by setting appropriate
environment variables.

Table 3 presents the execution parameters for the evalua-
tion. Note that the number of MPI processes per node
equals the number of cores in the node. The reason is that
oversubscribing, namely running more processes than the
number of cores, can cause network contention at the node
level. On the other hand, undersubscribing, namely having
fewer processes, can potentially cause insufficient utiliza-
tion of the node’s computational resources. This is because
the adoption of multithreaded programming models is nei-
ther ubiquitous among HPC applications nor can every
application readily benefit from multithreading.

3.2.2 Analysis of the Results

Tables 4 and 5 present the results of our analysis. Both tables
show the generated models next to our expectations. Table 4
refers to runtime and Table 5 to memory metrics. Since the
size of the memory growth coefficients may be significant,
we show full models of memory overheads and estimated
memory consumption by MPI. The �R2 row lists the adjusted
coefficient of determination, which indicates how well the
data fits a statistical model. It is used in the model genera-
tion phase to create models that fit the data better [6]. Note
that �R2 is not applicable to constant models. Following �R2 is

the row with the divergence models d as defined in Section
2.4. Finally, the match row specifies whether the generated
model meets our expectations. If the two are in agreement,
a checkmark @ is shown. If the match is approximate
according to the definition in Section 2.4, an approximation
sign � is shown. A solid x represents an unquestionable
mismatch. A warning sign ~! indicates the violation of a
performance guideline. Fig. 4 depicts the runtime models
for the collective functions we benchmarked. The circles,
squares, and triangles depict the actual measurements,
whereas the lines are the predictions. Each curve is anno-
tated with the corresponding model that sits on top of the
curve. Since we focus on the scalability behavior of the mod-
els, we chose not to show the constant terms. The discussion

TABLE 4
Generated (Empirical) Runtime Models of MPI Collective Operations on Juqueen, Juropa, and Piz Daint Alongside

Their Theoretical Expectations

TABLE 3
Execution Parameters for the Scalability Validation

of MPI Collective Operations

The table also includes the parameters for the experiments on Lichtenberg
(Intel MPI and Open MPI) discussed in Section 3.3.

TABLE 5
Generated (Empirical) Models of Memory Overhead
on Juqueen, Juropa, and Piz Daint Alongside Their

Theoretical Expectations

SHUDLER ETAL.: ENGINEERING ALGORITHMS FOR SCALABILITY THROUGH CONTINUOUS VALIDATION OF PERFORMANCE... 1775

below starts with Juqueen, on which almost all the gener-
ated models correspond almost fully to expectations. We
then continue with Juropa and Piz Daint, on which the
results differed from our expectations to some degree.

Juqueen. On Juqueen, the performance of collective func-
tions was generally better than on the other machines and
we found that almost all of our expectations were met. All
the models on Juqueen are either logarithmic or linear with
respect to the number of processes p. As can be seen in
Table 4, all the generated models on Juqueen correspond
exactly to the expected models with the exception of
MPI_Alltoall, which is identified as linear when, in fact,
the expectation would be Oðp log pÞ. The difference between
reality and expectation is small enough to be explained by
noise and other system effects. The manually implemented
binomial-tree (BT) version of the broadcast is shown in
the rightmost column of Table 4. The expected cost of this
algorithm for small messages is: ðaþ bÞ log p, where a is the
message startup time and b is the transmission time per
data element; and though it is slower in absolute terms
than the native MPI_Bcast, the generated model is still

logarithmic. Table 5 presents the models for the communica-
tormemory overheads and the estimated fraction of themem-
ory allocated by the process that is consumed by MPI.
Although the generatedmodels on Juqueen correspond to the
expectations, the linear growth of some of the communicator
constructors can still become an issue at very large scale.

Juropa and Piz Daint. On Juropa and Piz Daint, the pre-
dicted performance models of some collective functions do
not fully match their expectations. These discrepancies
between predicted and expected behavior suggest potential
scalability issues. Almost all the generated models, including
the ones for MPI_Barrier, MPI_Bcast, and MPI_Reduce,
do not correspond to the expected logarithmic models. The
generated model of the binomial-tree broadcast falls outside
the deviation limits and clearly fails to match the expected
logarithmic model, too. Since we have a clear understanding
of this algorithm and its complexity, we can point to a number
of external factors as potential causes of this discrepancy:

1) The network model that was used to calculate the
expected cost of the binomial-tree broadcast algorithm

Fig. 4. Measurements (circles, squares, triangles) and generated runtime models (plot lines) on Juqueen, Juropa, and Piz Daint.

1776 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 8, AUGUST 2019

is a simplistic abstraction of a real-world network such
as the IB fat-tree interconnect on Juropa.

2) Network hardware and topology can influence the
runtime of various collective functions and make
them slower than expected [34], [35].

3) On some machines, the performance of applica-
tions that use communication extensively strongly
depends on the node allocation they receive and
the neighborhood of each node [36]. An applica-
tion that runs on a neighbor node and produces
heavy network load creates more perturbation for
our benchmark.

4) System noise and jitter could potentially be signifi-
cant factors that influence the performance [37], [38].
These factors mostly affect Juropa, since it does not
have a specialized kernel that has been optimized for
noise reduction.

The performance models of MPI_Gather on both Juropa
and Piz Daint, as well as the MPI_Allgather model on
Juropa, are linear as expected. On Piz Daint, however, the
performance model of the latter does not match the expecta-
tion, but still falls within the deviation limits. In Table 4, the
warning sign underMatch signals that a performance guide-
line violation was detected. As discussed in Section 3.1, the
automatic validation evaluates two performance guidelines,
one for Allreduce and one for Allgather. Although the actual
measurements on Piz Daint do not violate the Allreduce
guideline, the generated models predict that the guideline
might be violated at larger scales. Note that a performance
guideline violation does not imply whether there is a mis-
match or an approximate match to the expectation.

The communicator memory overheads on Juropa and Piz
Daint are presented in Table 5. On Juropa, the generated
models correspond to expectations, and it is interesting to
note that the initial overheads (the constants) are very small.
This is in direct contrast to Juqueen, on which these con-
stants are much higher. The model for communicator dupli-
cation on Piz Daint is linear, although it is expected to be
constant. The development team at Cray confirmed that the
implementation of MPI_Comm_dup was taken from MPICH
3.1.2. We then inspected the source code of this MPICH ver-
sion and discovered that MPI_Comm_dup creates an internal
communicator that includes representative processes (mas-
ters) from each node. This behavior is also discussed in an
MPICH memory usage study [18]. It is clear that this result
points to a scalability bottleneck in this operation.

Fig. 4i presents the models for the resident memory size
of an MPI process on all three machines. In the case of
Juropa, the generated model reveals a severe scalability
problem. Even with smaller values of p, it is non-scalable.
Starting with 1024 nodes, it is impossible to have 8 MPI pro-
cesses per node since all the processes would require 35 GB
in total and the node’s memory is just 24 GB. Our experi-
ments confirmed this memory wall: memory allocation
failed when the total number of processes was 8192 (with 8
processes per node). Our findings are confirmed by the doc-
umentation; the reason for the linear increase in allocated
memory is that ParaStation MPI uses by default the Reliable
Connected (RC) InfiniBand service, which needs 0.55 MB of
memory for each MPI connection [33]. When using
MPI_Alltoall each process will allocate 0:55p MB of

memory, which is exactly the linear behavior we discovered
through our scalability validation framework.

3.3 Intel MPI and Open MPI

This section presents an evaluation of two additional imple-
mentations of MPI collective operations [39], namely Intel
MPI and Open MPI. We follow the same workflow as
described in Section 3.1, but used a different benchmark (step
2), which will be described in more detail below. Unlike the
initial evaluation that used three different machines, we eval-
uate Intel MPI 2017 update 1 and OpenMPI 2.0.1 on the same
system, that is, the Lichtenberg cluster at the Technische Uni-
versit€at Darmstadt [40]. No other MPI implementations (e.g.,
MPICH) are officially supported on this system.

The first step in the workflow, in which expectations are
defined, stays mostly the same. The focus is on the same
latency-oriented execution time, but without memory over-
head of communicator-related functions and MPI memory
consumption. We chose to evaluate the same set of MPI col-
lective operations, that is Barrier, Bcast, Reduce, Allreduce,
Gather, Allgather, and Alltoall, so the expectations in Table 1
still apply. The third and the fourth step, namely the genera-
tion of models and the validation of expectations, respec-
tively, stay the same as well.

3.3.1 Benchmark Design

Following recent studies onMPI benchmarking accuracy [41],
[42], we used the ReproMPI benchmark [43] rather than the
benchmark suggested earlier in Section 3.1. Although the
basic structure of ReproMPI resembles our earlier benchmark,
it features an improved version of the window-based syn-
chronization technique, as well as a flexible mechanism for
predicting the number of repetitions that are required to
obtain statistically sound results. We configured ReproMPI to
use the same timing mechanism suggested earlier, namely
the RDTSC register available on x86 platforms and a fixed
clock frequency. By default, ReproMPI outputs the runtime of
an operation for each process. To be consistent with the
benchmark in Section 3.1, an additional script was used to
find themaximum result across all the processes.

3.3.2 Experimental Setup

The benchmarks were executed on a separate island of 32
nodes on Lichtenberg. Each node comprises two Intel Xeon
E5-2670 processors with 8 cores (hyper-threading disabled)
and 16 GB of memory, which means 16 cores and 32 GB of
memory per node. Table 3 presents the input parameters
for our evaluation. We used the same configuration of one
MPI process per core as before and the same message size
of 800 bytes. Following the observations in Section 3.2, the
whole island was reserved for each benchmark run. This
ensured that no other program used resources within this
island and the negative effects of a busy neighborhood [36]
were eliminated.

3.3.3 Analysis of the Results

Table 6 shows the evaluation results. The rows follow the
same format as in Table 4. Note that MPI_Gather is missing
from the table because the results indicated that both Intel

SHUDLER ETAL.: ENGINEERING ALGORITHMS FOR SCALABILITY THROUGH CONTINUOUS VALIDATION OF PERFORMANCE... 1777

MPI andOpenMPI changed the underlying algorithm of this
operation when the number of processes was increased. At
the time of the study, wewere unable to find a way to disable
the algorithm switch. This is an example for a use case for the
segmented modeling approach [44] that aims to solve the prob-
lem where the algorithm changes its behavior substantially
for some range of the input parameter. A substantial change
means that a different model is needed to explain the new
behavior. In other words, the measurements cannot fit accu-
rately just one model, hence, we need to find an inflection
point or possibly a number of inflection points and fit a diff-
erent model for each segment between these points. The
segmented modeling technique tries different potential
inflection points and checks whether the two new models
give us a better fit. Naturally, this approach requires using
more values for the input parameter, since each segment is
smaller than the whole range of values we have. In our case,
however, the maximum number of processes per island is

512, which means increasing the number of processes would
have required using two separate islands and this would
have exacerbated the influence of the network topology on
themeasured runtime [34], [35].

Intel MPI. In the case of Intel MPI, about half of all the the
predicted performance models do not match the expecta-
tions. MPI_Bcast and MPI_Allgather are particularly
problematic. Figs. 5b and 5e demonstrate that the models for
these operations grow much faster than the corresponding
models for Open MPI, which are closer to the expectations.
The last column of Table 6 shows the Intel MPI model for the
binomial-tree version of the broadcast operation. The imple-
mentation of this litmus test is based on MPI point-to-point
communication, and since the benchmarks were performed
on a separate, exclusively reserved island, the results clearly
point to potential implementation issues in Intel MPI. In the
case of MPI_Barrier and MPI_Reduce, Figs. 5a and 5c
show that the execution times of IntelMPI are better or on par

TABLE 6
Generated (Empirical) Runtime Models of Intel MPI and Open MPI Collective Operations

Alongside Their Theoretical Expectations

Fig. 5. Measurements (circles, squares) and generated runtime models (plot lines) of some of the collective operations in Intel MPI and Open MPI.

1778 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 8, AUGUST 2019

with OpenMPI. Furthermore, the predicted models have rel-
atively small coefficients. This means that the mismatch in
this case is most likely caused by OS jitter and noise in gen-
eral, rather than by implementation issues.

Open MPI. In the case of Open MPI, there are no mis-
matches at all and almost half of themodels correspond to the
expectations. Table 6 shows that the model for the binomial-
tree version of the broadcast operation is slightly worse than
expected. Since the benchmarks were executed on a separate
island of Lichtenberg, network interference was not a factor
in this case. Lichtenberg nodes do not have a specialized ker-
nel, thus the likely cause of discrepancies is OS jitter [38].

From the Intel MPI and Open MPI results it is not possi-
ble to derive any conclusion as to how well either of these
MPI implementations perform relative to MPICH, which is
the basis for the MPI implementations in Section 3.2. The
reason is that the evaluation was performed on different
machines and under different conditions (e.g., unique net-
working hardware on Juqueen and separate island of 32
nodes on Lichtenberg).

4 CASE STUDY: MAFIA

No matter how large the degree of parallelism, optimizing
sequential code is still essential to achieve good perfor-
mance. The subject of our next case is therefore Merging
of Adaptive Finite IntervAls, a sequential data-mining pro-
gram. One of the basic problems in data mining is identi-
fying regions of similarity in a multi-dimensional data
set. Many applications, however, exhibit a high degree
of dimensionality in the data, which makes traditional
approaches of all-attribute clustering problematic. A possi-
ble solution is to use subspace clustering methods to iden-
tify clusters in a subset of dimensions. MAFIA is one
example of such a method. It is a serial algorithm for sub-
space clustering based on adaptive grid methods [8]. The
cluster dimensionality k is a critical parameter in this algo-
rithm since the ultimate goal is to identify clusters across all
dimensions. Users of MAFIA will start with a smaller k but
will be interested in increasing it to catch all the dimensions.
We are interested in applying our framework to see whether
the scaling expectations as a function of k are valid. This use
case is an example of algorithmic modeling since the model
parameter k is a parameter of the algorithm itself.

Following the four steps of our approach, we start by
defining the expectations. Along with k, the parameters of
MAFIA are the number of data points n, the dimensionality
of the points d, and the number of clusters m. We further
identify four main functions (i.e., kernels) in the main
computation phase of MAFIA: (i) gen—generation of candi-
date subsets; (ii) dedup—de-duplication of these subsets;

(iii) pcount—identification of dense subsets (i.e., clusters);
and (iv) unjoin—determination whether lower dimensional
subsets were not already absorbed by the higher ones [45].

Table 7 presents the expectations for these functions pro-
vided by Adinetz et al. [8] in their effort to optimize MAFIA.
In contrast to the MPI study, all the expectations are expo-
nential: Oðk2kÞ, Oðk32kÞ, and Oðk42kÞ. The focus in this use
case was the runtime of the algorithm as k increases; there-
fore we set the other parameters as follows: n ¼ 105, d ¼ 20,
andm ¼ 3. The benchmarking process was much simpler in
this case since MAFIA is a serial code and we were not
modeling scalability on an increasing number of cores. In
other words, the experiments were conducted on one node
of Juropa and repeated for k ¼ 3; 4; . . . ; 16. In all of these
experiments we did not change the default deviation limits
or the search space boundaries. As Table 7 shows, all the
generated models match our expectations completely or are
inside the deviation limits. This example illustrates the flexi-
bility of our approach, which can be adapted to different
scalability problems with different expectations.

5 CASE STUDY: PARALLEL SORTING

In this section, we present another use case for the scalability
validation framework, namely validation of performance
expectations of parallel sorting algorithms. In general, parallel
sorting focuses on techniques to solve the sorting problem
using parallel processing [46], [47], [48]. Sorting is a funda-
mental problem in computer science and has many uses.
However, with the increasing scale of HPC systems the prob-
lems scientists and engineers focus on increase in scale as
well. In other words, the input for a sorting algorithm no lon-
ger fits into one node andwe need, therefore, to formulate the
parallel sorting problem [49] in terms of distributedmemory:

Input: A distributed sequence of n ¼Pp�1
i¼0 jNij elements

such that each block of elements Ni has
n
p elements and

is assigned to process pi.
Output: A permutation of the distributed input sequence

such that each process pi has a block N 0i , in which all

elements are sorted, and [p�1i¼0N
0
i ¼ [p�1i¼0Ni. Moreover,

for every i � j we have N 0i � N 0j, where Ni � Nj means
that every element of Ni is less than or equal to every
element in Nj. Note that the blocks do not have to be
balanced, that is, equal in size across all processes.

Our focus in this use case is on five parallel sorting
algorithms: (i) Sample sort [49]; (ii) Histogram sort [47];
(iii) Exact-splitting sort [46]; (iv) Radix sort [50]; and (v)
Mini sort [51]. The first three are so called splitter-based algo-
rithms. The fourth is a parallel variant of the well-known
sequential Radix sort [52], and the fifth algorithm addresses
a special case of the parallel sorting problem where n

p ¼ 1.
For the evaluation, we developed a library with implemen-
tations of these algorithms called libparsort [53]. As a starting
point, we used existing implementations of Sample sort,
Exact-splitting sort, Radix sort, and Mini sort created by
Elmar Peise and Christian Siebert. We then refactored these
implementations and implemented Histogram sort from
scratch, as well as added a number of improvements to the
Exact-splitting and Mini sort implementations. Note that
since we studied the available implementations in detail as

TABLE 7
Generated (Empirical) Runtime Models of MAFIA Functions

Alongside Their Theoretical Expectations

SHUDLER ETAL.: ENGINEERING ALGORITHMS FOR SCALABILITY THROUGH CONTINUOUS VALIDATION OF PERFORMANCE... 1779

well as developed our own code, there was no need for a
performance litmus test as in the MPI case study.

Solutions that try to gather too many elements in one node
or that fail to exploit the available parallel resources will not
scale. Splitter-based algorithms address these two issues by
first letting processes sort their part of the input and then by
solving the merging-redistribution problem without relying
on any one process in particular. Fig. 6 shows the steps of
Exact-splitting sort [46], a variant of a splitter-based algo-
rithm. These algorithms have a common scheme of four steps,
namely, sorting the elements locally, finding pþ 1 splitters
(the first and the last splitter are implicit) , redistributing the
elements according to the splitters, such that all the elements
between splitter si and siþ1 end up in process pi, and finally,
merging all the parts in process pi locally. The main differen-
ces between the splitter-based algorithms is in the order of the
solution steps and the technique to find the splitters. A simple
variant of a splitter-based algorithm is Sample sort [49]. In
this algorithm, each process i selects a sample of p� 1 candi-
dates from Ni, which it sorts beforehand, and sends them to
the root process. The root then sorts these candidates and
selects p� 1 splitters. Eventually it broadcasts the splitters
back to the processes. As p increases, gathering and sorting
the splitter candidates in the root processwill become a signif-
icant bottleneck. Histogram sort circumvents this bottleneck
by selecting a random sample of splitter candidates across the
whole range of the input data. It then computes the prefix
sum of local histograms based on the sample. The prefix sum
produces the location of each candidate within the eventual
sorted array. This allows the algorithm to check whether a

candidate falls within the range of an ideal splitter (splitter i
location is n

p ðiþ 1Þ). Histogram sort repeats this step until all
the splitters are found. The range is a parameter of the algo-
rithm, but by keeping it reasonably small, blocksN 0i will have
roughly the same size in the end [47]. The Exact-splitting algo-
rithm aims to find the ideal splitters as well, but instead of
relying on histograms it uses an efficient scheme for approxi-
mating global medians. By repeating this scheme for every
splitter, it guarantees thatwe find exactly the ideal splitters, in
other words,N 0i ¼ n

p for each process. Although finding better
splitters comes at the cost of more communication steps, both
Histogram and Exact-splitting sort eliminate the bottleneck in
the Sample sort algorithm.

Radix sort is not a comparison-based sorting algorithm.
Instead it takes advantage of the binary representation of
the keys. The idea is to break the keys into digits of one or
more bits and then sort one digit at a time. To work prop-
erly, the algorithm proceeds from the least significant to the
most significant bit using a stable sorting algorithm for each
digit. In most cases, Counting sort [52] is used to sort the
digits, since it is stable and well suited for this type of input.
The parallel variant of Radix sort parallelizes the Counting
sort by efficiently counting in parallel using collective
reduction operations in MPI.

Mini sort assumes that each process has just one element
of input data, that is n ¼ p. The idea behind it is similar to
Quicksort. Specifically, it uses an efficient scheme to
approximate the global median among a group of processes,
which is then used as a pivot to partition the processes into
three groups: the ones with a smaller value than the pivot,
the ones with an equal value, and the ones with a higher
value. After exchanging the data elements, the sorting con-
tinues recursively in the first and third partitions and stops
when a partition contains just one element.

Initial implementations of Exact-splitting sort and Mini
sort approximated global medians based on a ternary tree
selection proposed by Rousseeuw and Bassett [54]. How-
ever, for more robustness and accuracy, we changed the
approximation method to a binary tree-based technique
proposed by Axtmann and Sanders [48].

5.1 Expectations

The first step in the scalability validation workflow requires
us to choose the metric and identify the performance expect-
ations of the algorithms. In this case, the metric is execution
time and the generated models are functions of the number
of MPI processes p. Table 8 presents the theoretical runtime
complexities of the sorting algorithms [46], [49], [51], [52].
Note that the three splitter-based algorithms have a com-
mon component Oðnp log n

pÞ for the local sorting step, but

Fig. 6. Parallel sorting algorithm based on finding exact splitters (taken
from Siebert and Wolf [46]).

TABLE 8
Expected Runtime Complexities of Parallel

Sorting Algorithms

1780 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 8, AUGUST 2019

they differ in their approaches for finding the splitters. In
the case of the Histogram sort, r is the number of repetitions
required for the splitter finding phase to converge. Radix
sort assumes that the input values are integers of b bits and
it breaks these integers into digits of k bits. There are b

k digits
and for each digit it runs a parallelized Counting sort [52].
Mini sort works with minimal data (i.e., n ¼ p) and there-
fore its complexity is based only on p.

5.2 Benchmarking Approach

The second step in the scalability validation workflow
instructs us to define the benchmarking approach. Previous
case studies adopted custom solutions to instrumentation
that allowed us to adhere to certain constraints and high-
light specific aspects of performance (e.g., MPI collective
functions had to start at the same time). In the parallel sort-
ing case, however, we can adopt a more standard approach
and use an existing instrumentation solution. Since our
model generation tool Extra-P [11] provides direct support
for Score-P [25], we used this instrumentation platform to
instrument the sorting functions in the library. One advan-
tage of Score-P is that it measures execution times of the
whole call tree, such that we obtain not only the execution
time of the sorting function itself, but also the times of the
functions called within that function. In other words, we
can get models for every logical step of the algorithms (e.g.,
local sorting, splitter finding, and so on).

We ran the benchmarks on two systems, the first one is
Lichtenberg (see Section 3.3) and the second one is Juqueen
(see Section 3.2). Table 9 presents the input parameters for the
evaluation. The input elements were 64-bit integers generated
randomly in uniform distribution. For Histogram sort, we
also used the Gaussian distribution. The number of elements
per process was set to be constant with n

p ¼ 107 (except for
Mini sort with n

p ¼ 1), which ensured that we modeled only
the influence of p on the performance. The choice of input
sizes is based on a previous study of parallel algorithms [48].

5.3 Analysis of the Results

Table 10 presents the results of the evaluation. The expecta-
tions are leading order terms of simplified expressions of

the runtime complexities from Table 8. Since n ¼ Cp, the
expression Oðnp log n

pÞ turns into a constant. In Histogram
sort, r depends on the distribution of the input data. We ran
the evaluation both with uniform and Gaussian distribu-
tions and in both cases r ¼ 2. Therefore, we assume that r is
constant in the expectation. In Radix sort, b and k do not
change during the benchmarking and are considered con-
stant, which means the expectation turns into Oðlog pÞ.
However, depending on the value of k, the hidden constant
coefficient could become quite large.

The models for Sample sort on both Lichtenberg and
Juqueen match the expectation and reflect the splitter-find-
ing complexity. Although on Lichtenberg the execution
time of the splitter-finding step was smaller than that of
other steps, the model for this step is Oðp2 log pÞ and domi-
nates the other steps.

The models for Histogram sort reflect both the evaluation
with uniform and Gaussian distributions. In both cases, the
splitter-finding step converged after two iterations, which
means the models for both distributions are the same. The
model for Lichtenberg matches the expectation, whereas the
model for Juqueen is actually better than the expectation.

In the case of Exact-splitting sort, the model for Lichten-
berg does not match the expectation exactly, whereas the
model for Juqueen is an exact match. The reason is that Exact-
splitting sort requires more communication steps to find the
splitters. Specifically, it runs the global approximation step,
which uses collective operations, for every splitter (i.e., p
times). This means it invokes a large number of collective
operations in the splitter-finding step and any potential over-
heads or inefficiencies are accumulated. Since Juqueen has
highly optimized collectives, the accumulated overhead is
smaller compared to Lichtenberg and this results in a perfor-
mancemodel thatmatches the expectation.

We evaluated Radix sort with two different digit sizes,
namely k ¼ 4 and k ¼ 8. Since the input values were 64-bit
integers (i.e., b ¼ 64), the number of the Counting sort steps
(i.e., b

k) was 16 and 8, respectively. A higher number of
Counting sort steps is translated into a larger constant coef-
ficient in the expectation. Table 10 shows that for k ¼ 4 the
Juqueen model does not correspond to the expectation,
while the Lichtenberg model matches only approximately.
One possible explanation lies within the implementation of
the Counting sort step, which is based on MPI point-to-
point communication. Counting sort determines the desig-
nated locations of the digits in the global sorted array and
uses point-to-point communication to exchange the digits
between the processes. Since there were much more pro-
cesses on Juqueen than on Lichtenberg, the cost of this com-
munication is higher on Juqueen and this is reflected in the
generated model. For k ¼ 8, the number of Counting sort
steps was twice as small leading to a reduced number of
point-to-point operations. Besides, the memory consump-
tion of our implementation of the Counting sort step
increases with k and p. This forced us to restrict the process
counts on Juqueen for k ¼ 8 and use up to p ¼ 214 processes.
A smaller number of processes reduces the cost of the point-
to-point communication, which results in models that
match the expectations more closely.

The model for Mini sort on Lichtenberg does not match
the expectation, whereas on Juqueen there is an exact

TABLE 9
Execution Parameters for the Scalability Validation

of Parallel Sorting Algorithms

Input elements are 64-bit integers and there are 16 processes per node
in all cases.

SHUDLER ETAL.: ENGINEERING ALGORITHMS FOR SCALABILITY THROUGH CONTINUOUS VALIDATION OF PERFORMANCE... 1781

match. Since both Exact-splitting sort and Mini sort are
based on global median approximation, the reason for the
non-matching models is similar. The difference between the
Lichtenberg model and the Juqueen model in both cases is
the same as well, that is Oðp0:75Þ.

6 RELATED WORK

The scalability validation framework combines two earlier
ideas, performance assertions [5] and automated empirical
modeling of performance [6], into a new approach for prac-
tical, scalability-oriented software engineering. Performance
assertions are source-code annotations that specify perfor-
mance requirements in terms of conditional expressions
consisting of performance metrics, program variables, and
constants. At runtime, the expressions are instantiated with
measurements and subsequently evaluated. After the exe-
cution finishes, violations are reported. If the number of
processes is included in such an expression, performance
assertions can be used to verify the compliance with scal-
ability requirements as long as these can be specified in
terms of performance data acquired during a single run.
Even though assertions support tolerance thresholds, their
design necessitates a rather precise notion of how the appli-
cation should perform at a given number of processes.
Because of the detailed understanding of the code and the
underlying system this requires, it is often unrealistic to
expect such a precise notion. Furthermore, it is rarely porta-
ble. The scalability validation framework, in contrast,
requires users to specify scalability expectations in terms of
the more prevalent asymptotic complexities, ignoring plat-
form-dependent coefficients. Rather than looking at a single
run, we determine and evaluate the growth rate of a given
metric across multiple runs with an increasing number of
processes. Thus, our approach would be more practical in
the common scenario where the developer has only a vague
idea of how the code scales.

The model generator we apply to create our performance
models is based on the one used by Calotoiu et al. [6]. How-
ever, while their generator uses a manually configured
search space, our extended generator builds the search
space automatically around an expected performance
model, leveraging the user’s available knowledge. It means
that it can also find exponential models—something which

is not supported by the original generator. We also compute
divergence models as an indicator of how the deviation
would grow as the scale increases. We expect that our meth-
odology integrates well with other performance modeling
frameworks such as Palm [55] or PMaC [56]. Palm uses
source code annotations to generate hierarchical perfor-
mance models from formal descriptions. It provides a com-
piler that produces an instrumented executable that collects
performance measurements and integrates them into the
analytical models derived from the annotations. The PMaC
framework, on the other hand, uses a modeling approach
based on simulation to analyze the performance impact of
hardware accelerators such as GPUs and FPGAs.

The main case study of scalability validation framework,
namely the scalability of MPI implementations, was
inspired by various MPI benchmarking efforts. Notably,
SKaMPI [27] defined a way to accurately measure the run-
time of collective operations, which was later extended in
NBCBench [26], [57] and which we adapted for our work.
Our idea of comparing the scalability of different parts of
the target library was motivated by mpicroscope [10]. Instead
of giving the users direct time metrics, the benchmark
searches for violations of performance guidelines. One
guideline, for example, states that MPI_Allreduce should
take a smaller or equal amount of time when compared to
MPI_Reduce followed by MPI_Bcast. A violation of this
guideline suggests that there is some optimization flaw in
an MPI implementation. Our approach, however, offers a
different perspective since it evaluates the violations using
empirical models of execution time. In this way, it takes into
account much larger scales.

Algorithm engineering is an emerging field that com-
bines algorithm theory with software engineering [7].
Growing complexities of both the algorithms and the hard-
ware (e.g., parallelism, memory hierarchy, etc.) create a gap
between promising algorithmic ideas and their practical
use. Algorithm engineering aims to bridge this gap by
adopting elements from software engineering. In other
words, it defines a cycle that consists of four major phases,
namely, design, analysis, implementation, and experimental
evaluation driven by falsifiable hypotheses. Existing studies
show examples of applying this cycle to a number of algo-
rithmic problems [58]; in particular, to parallel external
sorting [7].

TABLE 10
Generated (Empirical) Runtime Models of Five Parallel Sorting Algorithms: Sample Sort, Histogram Sort,

Exact-Splitting Sort, Radix Sort, and Mini Sort

1782 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 8, AUGUST 2019

7 CONCLUSION

In this study, we propose a new approach for engineering
parallel applications and algorithms for extreme-scale sys-
tems.With our scheme,we identify scalability issues in librar-
ies and algorithm implementations that are thought to be
scalable and pinpoint possible performance bugs and room
for improvement. In contrast to previous approaches, our
technique only requires the performance engineer to have a
vague (asymptotic) idea of the scalability.

To achieve this, our tool chain utilizes empirical perfor-
mance modeling to generate models that describe the
behavior of functions in a target HPC library. To under-
stand the scaling behavior, users can model execution time
as the number of processes increases, and divergence mod-
els, derived from the generated models, reveal how severe
the discrepancy between the observed and expected per-
formance is. We demonstrate the effectiveness of our
mechanism using a number of use cases, namely MPI col-
lective operations, the MAFIA code, and parallel sorting
algorithms.

Our first case study, however, examines what is probably
the most important library interface in HPC, that is, the MPI
library. We chose to focus on it first because many commer-
cially mature and well-tested implementations are available
and clear performance expectations exist in the literature.
We show how our approach enables MPI developers to spot
scalability bugs early on, before commencing full-scale tests
on the target supercomputer. For this, we used automated
experiments on four different machines with five different
MPI libraries, and our tool discovered a number of scalabil-
ity issues that can be grouped into the following cases:
(a) key collective functions on Juropa and Piz Daint dis-
play unexpected behavior; (b) the performance guideline
Allreduce � ReduceþBcast is potentially violated on Piz
Daint; (c) memory consumption on Juropa limits the num-
ber of possible processes; (d) communicator duplication
on Piz Daint consumes more memory than necessary; and
(e) on Lichtenberg, Open MPI generally has a better scalabil-
ity than Intel MPI.

The case studies, and parallel sorting in particular,
show that our approach is beneficial for the algorithm
engineering process in three aspects. First, the MAFIA case
study demonstrates that we can use algorithmic parame-
ters, such as cluster dimensionality k, to model sequential
performance. Second, in the design phase of algorithm
engineering, the framework can quickly provide models of
execution time that can guide designers in the decision to
reuse existing code or implement a new solution. Third, in
the implementation phase of algorithm engineering, the
framework can provide models that allow for a faster and
easier way to compare alternative implementations. This
alleviates the challenge algorithm engineers face of com-
paring several implementations of an algorithm across
multiple architectures.

We conclude that our approach is a viable technique that
can both point to limitations of the systems and provide
important hints for improving the scalability of algorithms
and libraries. We also expect that this will motivate the
development of clear performance expectations for other
parallel libraries, such as ScaLAPACK or the parallel BLAS.

ACKNOWLEDGMENTS

This work was supported in part by the German Research
Foundation (DFG) and the Swiss US National Science Foun-
dation (SNSF) through the DFG Priority Programme 1648
Software for Exascale Computing (SPPEXA) in the project Cat-
walk and the DFG project ExtraPeak. Additional support
was provided by the German Federal Ministry of Education
and Research (BMBF) through the TaLPas project under
grant no. 01IH16008D, and by the US Department of Energy
through the PRIMA-X project under grant no. DE-
SC0015524. Furthermore, we would like to thank Patrick
Reisert for his contribution to the Intel MPI and Open MPI
evaluation, as well as thank Andrew Adinetz and Marius
Poke for their contribution to the MAFIA study. We also
wish to express our gratitude to Elmar Peise and Christian
Siebert for their parallel sorting code. We would also like to
acknowledge the following organizations for providing us
with access to their supercomputers: J€ulich Supercomputing
Centre (JSC), Swiss National Supercomputing Centre
(CSCS), and the University Computing Center (Hochschul-
rechenzentrum) of Technische Universit€at Darmstadt.
Finally, we would like to express our gratitude to the Cray
software development team, and specifically Mark Pagel,
for their help and support.

REFERENCES

[1] J. Shalf, S. Dosanjh, and J. Morrison, “Exascale computing technol-
ogy challenges,” in Proc. 9th Int. Conf. High Perform. Comput. Com-
put. Sci., 2010, pp. 1–25.

[2] E. Chan, M. Heimlich, A. Purkayastha, and R. van de Geijn,
“Collective communication: Theory, practice, and experience,” Con-
currency Comput.: Practice Experience, vol. 19, no. 13, pp. 1749–1783,
Sep. 2007.

[3] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of col-
lective communication operations in MPICH,” Int. J. High Perform.
Comput. Appl., vol. 19, no. 1, pp. 49–66, 2005.

[4] C. V€omel, “ScaLAPACK’s MRRR algorithm,” ACM Trans. Math.
Softw., vol. 37, no. 1, 2010, Art. no. 1.

[5] J. S. Vetter and P. H.Worley, “Asserting performance expectations,”
in Proc. ACM/IEEE Conf. Supercomput., Nov. 2002, pp. 1–13.

[6] A. Calotoiu, T. Hoefler, M. Poke, and F. Wolf, “Using auto-
mated performance modeling to find scalability bugs in com-
plex codes,” in Proc. ACM/IEEE Conf. Supercomput., Nov. 2013,
pp. 45:1–45:12.

[7] P. Sanders, “Algorithm engineering – An attempt at a definition,”
Efficient Algorithms Lecture Notes Comput. Sci., vol. 5760, pp. 321–340,
2009.

[8] A. Adinetz, J. Kraus, J. Meinke, and D. Pleiter, “GPUMAFIA: Effi-
cient subspace clustering with MAFIA on GPUs,” in Proc. 19th Int.
Eur. Conf. Parallel Distrib. Comput., 2013, pp. 838–849.

[9] S. Shudler, A. Calotoiu, T. Hoefler, A. Strube, and F. Wolf,
“Exascaling your library: Will your implementation meet your
expectations?” in Proc. 29th ACM Int. Conf. Supercomput., Jun.
2015, pp. 165–175.

[10] J. L. Tr€aff, “mpicroscope: Towards an MPI benchmark tool for
performance guideline verification,” in Proc. Eur. MPI Users’
Group Meeting, Sep. 2012, pp. 100–109.

[11] Extra-P – Automated performance-modeling tool, [Online]. Avail-
able: http://www.scalasca.org/software/extra-p, Accessed on:
Apr. 24, 2018

[12] A. Vogel, et al., “10,000 performancemodels perminute - Scalability
of the UG4 simulation framework,” in Proc. 21st Int. Eur. Conf. Paral-
lel Distrib. Comput., 2015, pp. 519–531.

[13] A. Calotoiu, et al., “Fast multi-parameter performance mod-
eling,” in Proc. IEEE Int. Conf. Cluster Comput., Sep. 2016, pp. 1–10.

[14] C. Iwainsky, et al., “How many threads will be too many? On the
scalability of OpenMP implementations,” in Proc. 21st Int. Eur.
Conf. Parallel Distrib. Comput., 2015, pp. 451–463.

SHUDLER ETAL.: ENGINEERING ALGORITHMS FOR SCALABILITY THROUGH CONTINUOUS VALIDATION OF PERFORMANCE... 1783

http://www.scalasca.org/software/extra-p

[15] S. Shudler, A. Calotoiu, T. Hoefler, and F. Wolf, “Isoefficiency in
practice: Configuring and understanding the performance of task-
based applications,” in Proc. 22nd ACM SIGPLAN Symp. Principles
Practice Parallel Program., Feb. 2017, pp. 131–143.

[16] N. R. Draper and H. Smith, Applied Regression Analysis, 3rd ed.
Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014.

[17] P. Balaji, D. Buntinas, D. Goodell, W. Gropp, S. Kumar, E. Lusk,
R. Thakur, and J. L. Tr€aff, “MPI on millions of cores,” Parallel Pro-
cess. Lett., vol. 21, no. 1, pp. 45–60, Mar. 2011.

[18] D. Goodell, W. Gropp, X. Zhao, and R. Thakur, “Scalable memory
use in MPI: A case study with MPICH2,” in Proc. Eur. MPI Users’
Group Meeting, Sep. 2011, pp. 140–149.

[19] D. Hensgen, R. Finkel, and U. Manber, “Two algorithms for barrier
synchronization,” Int. J. Parallel Program., vol. 17, no. 1, pp. 1–17,
Feb. 1988.

[20] J. Bruck, C.-T. Ho, E. Upfal, S. Kipnis, and D. Weathersby,
“Efficient algorithms for all-to-all communications in multiport
message-passing systems,” IEEE Trans. Parallel Distrib. Syst.,
vol. 8, no. 11, pp. 1143–1156, Nov. 1997.

[21] MPICH – High-performance portable MPI, [Online]. Available:
https://www.mpich.org, Accessed on: Apr. 24, 2018

[22] J. L. Tr€aff, W. Gropp, and R. Thakur, “Self-consistent MPI perfor-
mance guidelines,” IEEE Trans. Parallel Distrib. Syst., vol. 21, no. 5,
pp. 698–709, May 2010.

[23] S. Hunold, A. Carpen-Amarie, F. D. L€ubbe, and J. L. Tr€aff,
“Automatic verification of self-consistent MPI performance guide-
lines,” in Proc. 22nd Int. Eur. Conf. Parallel Distrib. Comput., 2016,
pp. 433–446.

[24] M. Geimer, F. Wolf, B. J. N. Wylie, E. �Abrah�am, D. Becker, and
B. Mohr, “The scalasca performance toolset architecture,” Concur-
rency Comput.: Practice Experience, vol. 22, no. 6, pp. 702–719,
Apr. 2010.

[25] A. Kn€upfer, et al., “Score-P – A joint performance measurement
run-time infrastructure for Periscope, Scalasca, TAU, and
Vampir,” in Proc. 5th Parallel Tools Workshop, 2011, pp. 79–91.

[26] T. Hoefler, T. Schneider, and A. Lumsdaine, “Accurately measur-
ing collective operations at massive scale,” in Proc. 22nd IEEE Int.
Parallel Distrib. Process. Symp., Apr. 2008, pp. 1–8.

[27] R. Reussner, P. Sanders, and J. L. Tr€aff, “SKaMPI: A comprehen-
sive benchmark for public benchmarking of MPI,” Sci. Program.,
vol. 10, no. 1, pp. 55–65, 2002.

[28] JuBE: J€ulich benchmarking environment, [Online]. Available:
http://www.fz-juelich.de/jsc/jube, Accessed on: Apr. 24, 2018

[29] JUQUEEN - J€ulich blue Gene/Q, [Online]. Available: http://
www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/
JUQUEEN/JUQUEEN_node.html, Accessed on: Apr. 24, 2018

[30] Piz Daint supercomputer at Swiss National Supercomputing Cen-
tre (CSCS), [Online]. Available: http://www.cscs.ch/computers/
piz_daint/index.html, Accessed on: Feb. 17, 2015

[31] S. Kumar, et al., “PAMI: A parallel active message interface for
the Blue Gene/Q supercomputer,” in Proc. 26th IEEE Int. Parallel
Distrib. Process. Symp., May 2012, pp. 763–773.

[32] D. Chen, et al., “The IBM Blue Gene/Q interconnection network
and message unit,” in Proc. ACM/IEEE Conf. Supercomput., Nov.
2011, pp. 26:1–26:10.

[33] ParaStation MPI user’s guide, [Online]. Available: http://docs.
par-tec.com/html/psmpi-userguide/index.html, Accessed on:
Apr. 24, 2018

[34] T. Hoefler, T. Schneider, and A. Lumsdaine, “The impact of net-
work noise at large-scale communication performance,” in Proc.
23rd IEEE Int. Parallel Distrib. Process. Symp., May 2009, pp. 1–8.

[35] T. Hoefler and M. Snir, “Generic topology mapping strategies for
large-scale parallel architectures,” in Proc. 25th ACM Int. Conf.
Supercomput., Jun. 2011, pp. 75–84.

[36] A. Bhatele, K. Mohror, S. H. Langer, and K. E. Isaacs, “There goes
the neighborhood: Performance degradation due to nearby jobs,”
in Proc. ACM/IEEE Conf. Supercomput., Nov. 2013, pp. 41:1–41:12.

[37] P. Beckman, K. Iskra, K. Yoshii, and S. Coghlan, “The influence of
operating systems on the performance of collective operations at
extreme scale,” in Proc. IEEE Conf. Cluster Comput., Sep. 2006,
pp. 1–12.

[38] T. Hoefler, T. Schneider, and A. Lumsdaine, “Characterizing the
influence of system noise on large-scale applications by simu-
lation,” in Proc. ACM/IEEE Conf. Supercomput., Nov. 2010, pp. 1–11.

[39] P. Reisert, “Automated Refinement of Performance Models,”
Dept. of Computer Science, Master’s thesis, Technische Uni-
versit€at Darmstadt, Darmstadt, Germany, Apr. 2017.

[40] Lichtenberg high performance computer of Technische Uni-
versit€at Darmstadt, [Online]. Available: http://www.hhlr.tu-
darmstadt.de/hhlr/index.en.jsp, Accessed on: Apr. 24, 2018.

[41] S. Hunold and A. Carpen-Amarie, “MPI benchmarking revisited:
Experimental design and reproducibility,” CoRR, vol. abs/
1505.07734, 2015, http://arxiv.org/abs/1505.07734

[42] S. Hunold and A. Carpen-Amarie, “Reproducible MPI bench-
marking is still not as easy as you think,” IEEE Trans. Parallel Dis-
trib. Syst., vol. 27, no. 12, pp. 3617–3630, Dec. 2016.

[43] ReproMPI benchmark, [Online]. Available: https://github.com/
hunsa/reprompi, Accessed on: Apr. 24, 2018

[44] K. Ilyas, A. Calotoiu, and F. Wolf, “Off-road performance model-
ing – How to deal with segmented data,” in Proc. 23rd Int. Eur.
Conf. Parallel Distrib. Comput., Aug. 2017, pp. 36–48.

[45] M. Poke, “SymPtOM: Informed automatic performance mod-
eling,” Laboratory for Parallel Programming, Master’s thesis, Ger-
man Res. School Simulation Sci., Aachen, Germany, Oct. 2013.

[46] C. Siebert and F. Wolf, “A Scalable Parallel Sorting Algorithm
Using Exact Splitting,” RWTH Aachen Univ., Aachen, Germany,
Tech. Rep. RWTH-CONV-008835, 2011.

[47] E. Solomonik and L. V. Kal�e, “Highly scalable parallel sorting,” in
Proc. IEEE Int. Symp. Parallel Distrib. Process., Apr. 2010, pp. 1–12.

[48] M. Axtmann and P. Sanders, “Robust massively parallel sorting,”
in Proc. 19th Workshop Algorithm Eng. Experiments, 2017, pp. 83–97.

[49] A. Grama, A. Gupta, G. Karypis, and V. Kumar, Introduction to
Parallel Computing, 2nd ed. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 2002.

[50] G. E. Blelloch, et al., “A comparison of sorting algorithms for the
connection machine CM-2,” in Proc. 3rd ACM Symp. Parallel Algo-
rithms Archit., 1991, pp. 3–16.

[51] C. Siebert and F. Wolf, “Parallel sorting with minimal data,” in
Proc. 18th Eur. MPI Users’ Group Meeting, Sep. 2011, pp. 170–177.

[52] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and S. Clifford, Intro-
duction to Algorithms, 3rd ed. Cambridge, MA, USA: The MIT
Press, 2009.

[53] Y. Berens, “Scalability validation of parallel sorting algorithms,”
Dept. of Computer Science, Bachelor’s thesis, Technische Uni-
versit€at Darmstadt, Darmstadt, Germany, Oct. 2017.

[54] P. J. Rousseeuw and G. W. Bassett Jr, “The remedian: A robust
averaging method for large data sets,” J. Amer. Statistical Assoc.,
vol. 85, no. 409, pp. 97–104, 1990.

[55] N. R. Tallent and A. Hoisie, “Palm: Easing the burden of analytical
performance modeling,” in Proc. 28th ACM Int. Conf. Supercomput.,
Jun. 2014, pp. 221–230.

[56] M. R. Meswani, et al., “Modeling and predicting performance of
high performance computing applications on hardware acceler-
ators,” Int. J. High Perform. Comput. Appl., vol. 27, no. 2, pp. 89–108,
May 2013.

[57] T. Hoefler, A. Lumsdaine, andW. Rehm, “Implementation and per-
formance analysis of non-blocking collective operations for MPI,”
in Proc. ACM/IEEEConf. Supercomput., Nov. 2007, pp. 52:1–52:10.

[58] L. Kliemann and P. Sanders, Algorithm Engineering: Selected Results
and Surveys. Berlin, Germany: Springer International Publishing,
2016.

Sergei Shudler received the BSc and MSc
degrees in computer science from theHebrewUni-
versity of Jerusalem, and the PhD degree from
Technische Universit€at Darmstadt, in 2018. He is a
postdoctoral researcher at Argonne National Lab-
oratory. In his work, he focuses on techniques to
engineer parallel programs for extreme-scale sys-
tems. He also works on in-situ techniques to ana-
lyze and visualize data on-the-fly. Before starting
the PhD program, he worked in the industry and
co-developed a number of projects. His research

interests include parallel programming, performance analysis, and
machine learning.

1784 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 8, AUGUST 2019

https://www.mpich.org
http://www.fz-juelich.de/jsc/jube
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUQUEEN/JUQUEEN_node.html
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUQUEEN/JUQUEEN_node.html
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUQUEEN/JUQUEEN_node.html
http://www.cscs.ch/computers/piz_daint/index.html
http://www.cscs.ch/computers/piz_daint/index.html
http://docs.par-tec.com/html/psmpi-userguide/index.html
http://docs.par-tec.com/html/psmpi-userguide/index.html
http://www.hhlr.tu-darmstadt.de/hhlr/index.en.jsp
http://www.hhlr.tu-darmstadt.de/hhlr/index.en.jsp
http://arxiv.org/abs/1505.07734
https://github.com/hunsa/reprompi
https://github.com/hunsa/reprompi

Yannick Berens received the BSc degree in
information systems technology from Technische
Universit€at (TU) Darmstadt, in 2017. Currently,
he is working toward the MSc degree and works
at Continental Teves AG & Co. oHG. He worked
as a student assistant with the Laboratory for Par-
allel Programming, TU Darmstadt. In his studies,
he focused on software engineering and system
programming. His research interests include con-
currency and memory safety in software design
along with parallel and functional programming.

Alexandru Calotoiu received the PhD degree
from Technische Universit€at (TU) Darmstadt, in
2017, and was awarded the prize for best PhD
thesis of the year in the computer science depart-
ment for outstanding scientific performance by
the Association of Friends of Technische Uni-
versit€at zu Darmstadt e.V. He works as a senior
research associate with the group of Prof. Wolf.
He has worked as part of the Laboratory for
Parallel Programming at the German Research
School for Simulation Sciences since 2011 and is

now part of the Laboratory for Parallel Programming at the Computer
Science Department of TU Darmstadt. His research interests are perfor-
mance modeling, parallel programming, and machine learning. He is the
main designer and developer of the automated performance-modeling
tool Extra-P.

Torsten Hoefler is an associate professor of
computer science at ETH Z€urich, Switzerland.
Before joining ETH, he led the performance
modeling and simulation efforts of parallel petas-
cale applications for the NSF-funded Blue Waters
project at NCSA/UIUC. He is also a key member
of the Message Passing Interface (MPI) Forum
where he chairs the “Collective Operations
and Topologies” working group. He won best
paper awards at the ACM/IEEE Supercomputing
Conference SC10, SC13, SC14, EuroMPI’13,

HPDC’15, HPDC’16, IPDPS’15, and other conferences. He published
numerous peer-reviewed scientific conference and journal articles and
authored chapters of the MPI-2.2 and MPI-3.0 standards. He received
the Latsis prize of ETH Zurich as well as an ERC starting grant in 2015.
His research interests revolve around the central topic of “Performance-
centric System Design” and include scalable networks, parallel program-
ming techniques, and performance modeling. For additional information,
please visit Torsten’s homepage at htor.inf.ethz.ch.

Alexandre Strube received the MSc degree in
advanced informatics and multimedia design,
and the PhD degree in high-performance com-
puting from the University Aut�onoma of Barce-
lona, in 2011. He is a scientific staff member with
the J€ulich Supercomputing Centre, where he
works at the User Support and Application Opti-
mization team, responsible for the optimization
and scaling of applications in terms of perfor-
mance, efficiency and parallel I/O. Between 2011
and 2016, he worked at the Performance Analy-

sis group of the J€ulich Supercomputing Centre, where he co-developed
tools to analyze parallel programs. Between 2002 and 2006, he worked
for the Ubuntu Linux project in partnership with a computer manufac-
turer, deploying hundreds of thousands of free software machines.

Felix Wolf received the PhD degree from RWTH
Aachen University, in 2003. He is full professor
with the Department of Computer Science of
Technische Universit€at Darmstadt in Germany,
where he leads the Laboratory for Parallel Pro-
gramming. He works on methods, tools, and
algorithms that support the development and
deployment of parallel software systems in vari-
ous stages of their life cycle. After working more
than two years as a postdoc at the Innovative
Computing Laboratory of the University of Ten-

nessee, he was appointed research group leader at the J€ulich Super-
computing Centre. Between 2009 and 2015, he was head of the
Laboratory for Parallel Programming at the German Research School
for Simulation Sciences in Aachen and full professor at RWTH Aachen
University. He has published more than a hundred refereed articles on
parallel computing, several of which have received awards.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

SHUDLER ETAL.: ENGINEERING ALGORITHMS FOR SCALABILITY THROUGH CONTINUOUS VALIDATION OF PERFORMANCE... 1785

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

