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ABSTRACT
Relaxed synchronization offers the potential of maintain-
ing application scalability by allowing many processes to
make independent progress when some processes suffer de-
lays. Yet, the benefits of this approach in important parallel
workloads have not been investigated in detail. In this pa-
per, we use a validated simulation approach to explore the
noise mitigation effects of nonblocking allreduce in work-
loads where allreduce is a major contributor to total exe-
cution time. Although a nonblocking allreduce is unlikely
to provide significant benefit to applications in the low-OS-
noise environments expected in next-generation HPC sys-
tems, we show that it can potentially improve application
runtime with respect to other noise types.
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1. INTRODUCTION
Nonblocking collective operations [13, 17], newly intro-

duced in MPI-3.0 [21], allow application programmers to
overlap collective communication with the application’s com-
putation. At scale, blocking collective operations can signif-
icantly degrade application performance because, in most
cases, each application process must participate in the col-
lective before any process can make further progress. As a
result, a laggard process can slow the progress of all of its
peers and consequently the entire application. Nonblocking
collectives have the potential to alleviate the impact of pro-
cess variability by allowing a process to make progress even
if its peers are late entering a collective.

Delayed participation in a collective operation can be
caused by several phenomena, including load imbalance,

∗Sandia National Laboratories is a multi-program laboratory
managed and operated by Sandia Corporation, a wholly-owned
subsidiary of Lockheed Martin Corporation, for the U.S. Depart-
ment of Energy’s National Nuclear Security Administration un-
der contract DE-AC04-94AL85000.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EuroMPI/ASIA ’14, September 9-12 2014, Kyoto, Japan
Copyright 2014 ACM 978-1-4503-2875-3/14/09 ...$15.00.
http://dx.doi.org/10.1145/2642769.2642786.

fault tolerance activities, and operating system noise. While
noise exists on most computing platforms, it has a dispro-
portionate effect in HPC systems because the applications
that run on these systems tend to be highly synchronized.
For many important HPC applications, operating system
noise has been shown to have serious consequences for over-
all application performance [7].

The effects of operating system noise on high-performance
computing (HPC) applications have been examined for in-
sights into designing scalable hardware, system software,
and applications [1,22]. Recently, system designers have in-
vested time and effort to reduce or eliminate sources of noise
in the OS. These efforts have signficantly reduced the noise
introduced by system software on HPC systems; there now
exist operating systems that are essentially noiseless (e.g.,
IBM’s CNK) [14, 25]. As a result, the need for nonblocking
collectives to address the performance impact of OS noise
appears to be waning1.

Although the impact of OS noise may no longer be a
significant issue, there are many potential sources of noise
in future extreme-scale systems. For example, fault toler-
ance is projected to be a significant challenge on future sys-
tems. The dominant approach to fault tolerance is check-
point/restart. Because checkpointing activities deprive the
application of CPU cycles, they can be modeled as OS
noise [20]. Other trends in extreme-scale system design (e.g.,
adaptive runtimes, in situ analytics) also have the potential
to introduce noise-like events that impact application per-
formance. As a result, even if OS noise is itself no longer
an issue, emerging sources of noise mean that nonblocking
collectives may still yield a performance benefit on next-
generation extreme-scale systems.

In this paper, we investigate the impact of nonblocking
collective operations on application performance at scale. In
particular, we focus on MPI_Allreduce() because, as we will
show, it is the dominant communication operation in many
important parallel workloads. To examine the potential up-
side of a nonblocking MPI_Allreduce(), we use a validated
simulator to compare the standard MPI_Allreduce() with an
idealized cost-free MPI_Allreduce() version. Specifically, we
show that:

• MPI_Allreduce() is a dominant contributor to applica-
tion runtime for a set of important parallel workloads;

• in low-noise environments that are typical of current

1Other uses for nonblocking collectives include overlapping
computation and communication as well as complex syn-
chronization protocols [16].



and expected future systems, nonblocking allreduce
operations are unlikely to provide significant benefits
without algorithmic changes; and

• for other sources of noise such as resilience proto-
col overheads, nonblocking allreduce operations may
have a signficant beneficial effect on application per-
formance.

2. APPROACH
Our simulation-based approach is based on capturing

and examining the communication structure of applications.
This structure reflects synchronization of applications and
exposes dependencies through the establishment of happens-
before relations [19]. This is especially useful for the ex-
amination of asynchronous operations because of the possi-
ble formation of transitive dependencies between processes
which do not communicate directly. For MPI programs,
static analysis of communication structure is complicated by
the difficulty of both offline message matching [3] and model-
ing interactions analytically. We use instead a discrete-event
simulator and model application communication as events.

Our simulator framework comprises LogGOPSim [15] and
the tool chain developed by Levy et al. [20]. LogGOPSim

uses the LogGOPS model, an extension of the well-known
LogP model [4], to simulate application traces that contain
all exchanged messages and group operations. In this way,
LogGOPSim reproduces all happens-before dependencies and
the transitive closures of all delay chains of the application
execution. It can also extrapolate traces from small appli-
cation runs with p processes to application runs with k · p
processes. The extrapolation produces exact communication
patterns for all collective communications and approximates
point-to-point communications. Noise injection into simula-
tions is done by constructing a time-indexed list of detours
and their durations; this list is given as input to the simula-
tor which introduces the described delays into the execution
of the simulated application.
LogGOPSim and its trace extrapolation features have been

validated [14, 15]. The complete tool chain has been vali-
dated against experiments and established models [20].

2.1 HPC Workload Descriptions
We present results from the simulation and analysis of a

set of workloads. These workloads represent scientific appli-
cations that are currently in use and computational kernels
thought to be important for future extreme-scale computa-
tional science. They include:

• CTH, a multi-material, large deformation, strong
shock wave, solid mechanics code [5],

• HPCCG, a conjugate gradient benchmark code that is
part of the Mantevo [11] suite of mini-apps,

• LAMMPS (Large-scale Atomic/Molecular Massively
Parallel Simulator) [23], a classical molecular dynamics
code developed at Sandia National Laboratories,

• LULESH, the Livermore Unstructured Lagrangian Ex-
plicit Shock Hydrodynamics proxy application [6, 18],
used by the Extreme Materials at Extreme Scale co-
design center at Los Alamos National Laboratory [6],

• miniFE, the Mantevo [11] finite element mini-
application which implements kernels representative of
the implicit finite-element suite of mini-apps,

• AMG, an algebraic multigrid solver for linear systems
arising from problems on unstructured grids [10].

Taken as a whole, these applications: are typically run
(or are projected to be run) at extreme-scale, run for long
periods of time, and represent a diverse mix of computations
techniques and methods.

3. ALLREDUCE IN HPC APPLICATIONS
Previous investigations [7] have identified MPI_Allreduce()

and other collectives as operations that are particularly sen-
sitive to OS noise. Exploratory implementations of non-
blocking collectives [13] have been developed to address
these and other issues. To support our inquiry into the effect
of noise on a nonblocking MPI_Allreduce(), we quantify the
role that MPI_Allreduce() plays in our set of applications.

Figure 1 shows the percentage of communication time
spent in various MPI functions for each of the applications
we consider. These results were collected using the mpiP

profiling library [24]. The communication time of LULESH
and MiniFE is dominated by MPI_Allreduce() for process
counts up to 1024. Similarly, HPCCG spends more than
80% of its communication time in MPI_Allreduce() at al-
most all the tested process counts. In contrast, CTH spends
less than 30% of its time in MPI_Allreduce() (although the
fraction increases significantly as the size of the applica-
tion increases), and LAMMPS spends comparatively little
time there. These results suggest that a nonblocking MPI_-

Allreduce() implementation might prove beneficial for at
least HPCCG, LULESH, and MiniFE.

The amount of communication time is not by itself the
only factor when considering the impact of noise. Another
relevant perspective is the frequency of collective operations
over the execution time of an application (Figure 2). Ex-
amining the performance of these applications we see that
as execution proceeds, LULESH, HPCCG, and MiniFE per-
form MPI_Allreduce() operations at a high rate. These high
amounts of interprocess communication are presumably sus-
ceptible to noise-based interference; moreover, any mitiga-
tion of noise effects by nonblocking collectives should cer-
tainly be observable for these applications.

4. NOISE, DETOURS, AND NONBLOCK-
ING ALLREDUCE

Nonblocking collective operations allow the application to
overlap collective communication with computation. As a
result, they have the potential to mitigate the performance
impact of system noise [7] by allowing the application to ab-
sorb noise events. However, it is not clear how much noise
absorption nonblocking collectives enable or how much their
noise absorption impacts application performance. There-
fore, we investigate the performance impact of nonblocking
collective using system noise patterns collected on current
systems and a synthetic noise pattern we believe to be rep-
resentative of future extreme-scale systems.

4.1 Characterizing system noise
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Figure 1: Percentage of communication time spent in each MPI function for CTH, HPCCG, LAMMPS,
LULESH, MiniFE, and AMG.

We measure the noise environment on current HPC sys-
tems and consider how might it might differ on future sys-
tems. Figure 3 shows the idle system noise patterns collected
on three systems using the selfish [14] system noise mea-
surement microbenchmark: Volta, a Cray XC30; Muzia, a
Cray XE6; and RedSky, a SunBlade x6275 capacity system
with Infiniband. Both Cray systems run the Cray Linux
Environment (CLE), Cray’s optimized Linux kernel, and
RedSky uses CentOS-based software on the compute nodes.
From the figure, we see that Muzia has the lowest system
noise signature, RedSky has a slightly larger degree of noise,
and Volta has the largest volume of the three. Most im-
portantly, we see from this figure that all of these systems
have comparatively low noise signatures, with all noise event
durations less than 35 microseconds.

As previous work has shown that system noise events can
significantly impact HPC performance [7, 14], great effort
has been made to lower the duration of noise events. For ex-
ample, Cray introduced OS core specialization in the CLE
which allows the user to bind CPU cores to OS and sys-
tem software tasks, thereby reducing the system noise on
the application cores. Figure 4 shows the impact of this
core specialization functionality on selfish noise traces col-
lected on Volta, with 0, 1, and four cores dedicated to system
software tasks, respectively. Core specialization can greatly
“smooth” unpredictable spikes in noise duration, which is
of great benefit to applications even if system noise is not
notably reduced in general.

4.2 Simulating a nonblocking allreduce
By default, our simulator generates patterns of blocking

communications to simulate collective operations. For ex-

ample, when an MPI_Allreduce() is encountered in an ap-
plication trace, the simulator generates SEND and RECV
events using a dissemination algorithm similar to that used
by MPICH and OpenMPI. We added to the simulator the
ability to select different algorithms for implementing the
MPI_Allreduce() operation. For this work, we emulate an
optimal nonblocking implementation, but do so in a manner
that does not require modification of the application. This
operation works as follows: the nonblocking allreduce im-
plementation assumes the the application was able to start
the operation early enough and has sufficient overlapping
progress such that when the MPI_Allreduce() operation is
reached by a node, it completes immediately and incurs no
further overhead. This assumes it is actually possible to
re-factor the application in a manner that the nonblocking
collectives can be fully utilized (cf. [9]). For some applica-
tion workloads, this re-factoring may not be possible due to
algorithmic details. Therefore, our strategy for nonblock-
ing allreduce provides an optimistic upper bound on the
performance speedups that can be realized, but this upper
bound is not necessarily tight. In addition to nonblocking
allreduce, this work may also be useful in studying systems
where collectives are supported by targeted optimizations or
specialized networking and hardware, for example.

4.3 Application simulation results
We conducted simulations of our target applications to ex-

amine how they would respond in the presence of different
types of noise. We used three different noise traces: sys-
tem noise, the worst-case idle system noise signature from
Volta as found in Figure 4(a); Daemon noise, a synthetic
noise trace with detour durations of 2.5ms at a frequency of
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Figure 2: Frequency of collective operations for CTH, HPCCG, LAMMPS, LULESH, MiniFE, and AMG.
For each application, each horizontal line represents either a timeline for a particular collective operation or
a combined timeline of all collectives; the y-axis is not significant.
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Figure 3: Noise profiles for three Sandia cluster systems collected using the selfish detour collection tool.

10 Hz, designed to represent the types of detours that would
be introduced by a typical system-level daemon process and
similar to one used in previous work [7]; and asynchronous
checkpointing noise, a 1-second duration, 120-second period
application interference pattern similar to processes tak-
ing checkpoints in an uncoordinated checkpoint/restart re-
silience scheme at extreme scale [20]. In each case, we mea-
sured the application speedup of our idealized nonblocking
MPI_Allreduce() implementation when compared to the use
of a normal blocking MPI_Allreduce().

The speedup results are presented in Figure 5. Subfigure
5(a) shows that in the presence of system noise, a nonblock-
ing MPI_Allreduce() produces almost no application speedup
for any of the studied applications. Subfigure 5(b) shows
roughly similar results, with only AMG and CTH showing
over 10% speedup as process count increases. The behavior
of AMG in these two noise regimes is largely explained by
its unique (among this set of applications) pattern of collec-
tive inter-arrival times [8], as shown in Subfigure 2(f). These
results indicate that a nonblocking MPI_Allreduce() will not
provide much mitigation effect of system noise to applica-
tions, even for heavy allreduce users (as are HPCCG and

MiniFE, for example). While it is dangerous to extrapo-
late this conclusion to other potential nonblocking collective
implementations, these results suggest that whatever other
benefits they may have for applications, mitigation of system
noise is not among them.

Subfigure 5(c) shows a markedly different result, and in
the process illustrates an important point about the nature
of noise. This figure shows the response of our idealized
nonblocking MPI_Allreduce() to asynchronous checkpoint-
ing noise. This particular type of noise introduces detours
with very long durations compared to the OS or daemon
noise traces (on the order of seconds as opposed to their
millisecond- and microsecond-scale durations). Previous re-
search [7] has shown that noise duration has the greatest
impact on application performance, and the implications of
this point are reflected in this figure. For many of our target
applications, a nonblocking MPI_Allreduce() has significant
potential for mitigating the effect of asynchronous check-
point noise. HPCCG and miniFE both show large speedup
factors, as does CTH. The outlier here is LAMMPS, which
benefits little from this improvement because of its infre-
quent use of MPI_Allreduce(). This result suggests that other
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Figure 4: Impact of Cray’s OS core specialization on the Volta cluster.
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(c) Asynchronous checkpointing noise (0.5 Hz, 1 s)

Figure 5: Observed application speedup achieved
by switching from standard allreduce to an idealized
nonblocking version in the presence of three kinds
of noise.

nonblocking collectives may show similar benefits in appli-
cations using asynchronous checkpointing.

5. RELATED WORK
Techniques for improving the overlap of communication

and computation in MPI applications have been thoroughly
explored over the past decade. These techniques include
offload [2] and nonblocking collectives. Based on results
showing the potential performance benefit of nonblocking
collectives [12], Hoefler et al. have argued for the inclusion
of nonblocking collectives in the MPI standard [17]. They
have also developed a library that implements nonblocking
versions of all of the MPI collectives and characterized its
impact on application performance [13]. Although the early
work only briefly discusses system noise, Hoefler et al. subse-
quently made the connection between nonblocking collective
operations and OS noise explicit [14].

Despite this body of research, our work is the first to ex-
amine the relationship between OS noise characteristics and
nonblocking collectives. We are also the first to explore how
nonblocking collectives could be used to improve the perfor-
mance of emerging resilience techniques (e.g., uncoordinated
checkpointing).

6. CONCLUSION
Nonblocking collective operations are of increasing inter-

est, not only as enablers of continued application scalability
but also as potential mitigators of OS noise effects. We have
in this paper used a simulation approach to investigate how
applications using an idealized nonblocking allreduce opera-
tion might respond in the presence of different noise environ-
ments, at scales likely to be encountered in future extreme
scale systems. Our results indicate that, for noise caused
by operating system activity, a nonblocking MPI_Allreduce()

is unlikely to provide much benefit. We suggest that, by
themselves, nonblocking collective operations of other types
should not be automatically assumed to be able to mitigate
such noise effects. However, we have also shown that the
effect of other noise types, such as that caused by check-
point/restart activity, might be usefully reduced by the in-
troduction of nonblocking collectives. Application designers
should consider carefully the characteristics of all the noise
sources on their target systems to decide whether refactor-
ing their code to take advantage of nonblocking collectives
will be worthwhile.
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