
AM++: A Generalized Active

Message Framework

Jeremiah Willcock, Torsten Hoefler, Nicholas Edmonds,

and Andrew Lumsdaine

Large-Scale Computing

 Not just for PDEs

anymore

 Many new, important

HPC applications

are data-driven

(“informatics

applications”)

 Social network analysis

 Bioinformatics

Data-Driven Applications

 Different from “traditional” applications

 Communication highly data-dependent

 Little memory locality

 Impractical to load balance

 Many small messages to random nodes

 Computational ecosystem is a bad match for

informatics applications

 Hardware

 Software

 Programming paradigms

 Problem solving approaches

Two-Sided (BSP) Breadth-First Search

while any rank’s queue is not empty:

for i in ranks: out_queue[i] empty

for vertex v in in_queue[*]:

if color(v) is white:

color(v) black

for vertex w in neighbors(v):

append w to out_queue[owner(w)]

for i in ranks: start receiving in_queue[i] from rank i

for j in ranks: start sending out_queue[j] to rank j

synchronize and finish communications

Two-Sided (BSP) Breadth-First Search

Rank 0 Rank 1 Rank 2 Rank 3

Get

neighbors

Redistribute

queues

Combine

received

queues

Messaging Models

 Two-sided

 MPI

 Explicit sends and receives

 One-sided

 MPI-2 one-sided, ARMCI, PGAS languages

 Remote put and get operations

 Limited set of atomic updates into remote memory

 Active messages

 GASNet, DCMF, LAPI, Charm++, X10, etc.

 Explicit sends, implicit receives

 User-defined handler called on receiver for each message

Active Messages

 Created by von Eicken

et al, for Split-C (1992)

 Messages sent explicitly

 Receivers register

handlers but not

involved with individual

messages

 Messages often

asynchronous for higher

throughput

Send

Message

handler

Reply

Reply

handler

T
im

e

Process 1 Process 2

Active Message Breadth-First Search

handler vertex_handler(vertex v):

if color(v) is white:

color(v) black

append v to new_queue

while any rank’s queue is not empty:

new_queue empty

begin active message epoch

for vertex v in queue:

for vertex w in neighbors(v):

tell owner(w) to run vertex_handler(w)

end active message epoch

queue new_queue

Active Message Breadth-First Search

Rank 0 Rank 1 Rank 2 Rank 3

Get

neighbors

Send vertex

messages

Check color

maps

Insert into

queues

Active

message

handler

Low-Level vs. High-Level AM Systems

 Active messaging systems (loosely) on a spectrum

of features vs. performance

 Low-level systems typically have restrictions on message

handler behavior, explicit buffer management, etc.

 High-level systems often provide dynamic load balancing,

service discovery, authentication/security, etc.

DCMF GASNet Java RMICharm++/X10

Low High

The AM++ Framework

 AM++ provides a “middle ground” between low- and

high-level systems

 Gets performance from low-level systems

 Gets programmability from high-level systems

 High-level features can be built on top of AM++

AM++
DCMF GASNet Java RMICharm++/X10

Low High

Key Characteristics

 For use by applications

 AM handlers can send messages

 Mix of generative (template) and object-oriented

approaches

 Object-orientation for flexibility and type erasure

 Templates for optimal performance

 Flexible/application-specific message coalescing

 Messages sent to processes, not objects

Example

Create Message Transport

(Not restricted to MPI)

Coalescing layer

(and underlying message type)
Message Handler

Messages are nested to depth 0

Epoch scope

AM++ Design

 Interface to underlying communication layer

 MPI and GASNet currently

 Designed to send large messages produced by

higher-level components

 Object-oriented techniques

allow run-time flexibility

(type erasure)

 MPI-style progress model

 Progress thread optional

 User must call into AM++

Transport

Message Types

 Handler registration for messages within transport

 Type-safe interface to reduce user casts and errors

 Automatic data buffer handling

Termination Detection/Epochs

 AM++ handlers can send messages

 When have they all been sent and handled?

 Termination detection – a standard distributed

computing problem

 Some applications send a

fixed depth of nested

messages

 Time divided into epochs

Message Coalescing

 Standard way to amortize overheads

 Trade off latency for throughput

 Layered on transport and message type

 Can be specific to

application or message type

 Handlers apply to one

small message at a time

 Sends are of a single

small message

Message Handler Optimizations

 Coalescing uses generative programming and C++

templates for performance on high message rates

 Small-message handler type is known statically

 Simple loop calls handler

 Compiler can optimize

using standard techniques

Message Reductions

 Some applications have messages that are

 Idempotent: duplicate messages can be ignored

 Reducible: some messages can be combined

 Detect some at sender

 Cache

AM++ and Threads

 AM++ is thread-safe

 Models for thread use:

 Run separate handlers in separate threads

 Split a single message across several threads

 Coalescing buffer sizes affect parallelism in both

models

Evaluation: Message Latency

Single-data-rate InfiniBand, GASNet 1.14.0 testam section L

Evaluation: Message Bandwidth

Single-data-rate InfiniBand, GASNet 1.14.0 testam section L

Breadth-First Search: Strong Scaling

Single-data-rate InfiniBand, dual-socket dual-core, 227 vertices, degree 4

Breadth-First Search: Weak Scaling

Single-data-rate InfiniBand, dual-socket dual-core, 225 vertices/node, degree 4

Delta-Stepping: Strong Scaling

Single-data-rate InfiniBand, dual-socket dual-core, 227 vertices, degree 4

Delta-Stepping: Weak Scaling

Single-data-rate InfiniBand, dual-socket dual-core, 224 vertices/node, degree 4

Conclusion

 Generative programming techniques used to design

a flexible active messaging framework, AM++

 “Middle ground” between previous low-level and

high-level systems

 Features can be composed on that framework

 Performance comparable to other systems

