CS 498
Hot Topics in High Performance Computing

Networks and Fault Tolerance

2. Introduction to Parallel Computer
Architecture (I1)

Intro

* What did we learn in the last lecture
— HPC as “Formula 1” of computing
— Parallelism will be inevitable
— Networks will grow

 What will we learn today
— 101 Parallel Architectures and Programming

— A first simple network model
— Multicast/Broadcast in a simple model

Computational Microscope

Klaus Schulten (lllinois)

« Discipline & science goals
— Classical molecular dynamics

— Simulate large (10s of millions of
atoms) molecular structures for
sufficiently long time scales

— Capture time-dependent behavior

- Difficult to discern, even by X-ray | @ B~
Crystallography OI' Cry0-8|eCtr0n > ﬁml a(;o;\rput ﬁ% laI Biopl;ysics Group
m |CrOSCO py University of ITIlCnOIS at Ust!;atr::—Champaign
: A BAR domains sculpting membranes
* Appllcatlon. NAMD into tubes. Yin, et al., Structure,
— Active development for many years 17:882-892, 2009.

— Large user base

Torsten Hoefler: CS 498 Hot Topics in HPC 32

Computational Microscope (cont'd)

Poliovirus _ =a%

Structural transitions in poliovirus entry (10M atoms + 5M coarse-grain
beads

— Virus binds to cell surface receptor CD155 & externalizes buried capsid
protein domains

— Capsid interacts with host cell to form membrane pore through which viral
RNA enters

Torsten Hoefler: CS 498 Hot Topics in HPC 33

Computational Microscope (cont'd)

« Computational 100 5
challenges -_ Lt ea™
. > ' * = A
— ~1B time steps g L Nl
ags . - E : ,.-“/’ [|)
— Scalability limited by % A ,
communication 5 ¥ s R
latency : Y. b
S @ p p
— Load balance z o -
= * - A ’
e Solutions & * Yw &/ ®nrP(55Katoms)
_ s 01 ® o » v ¢ LYSOZYME (40K atoms)
— Assign 1 patch per - ® APOAT1 (92K atoms)
SMP to reduce use E * u A A ATPase (327K atoms)
. [z ¥ » X STMV (1M atoms)
of interconnect L . BARG. (1.3M atoms)
— Hierarchical load 1 10 100 1000 10000 100000
balancing scheme Processors

Torsten Hoefler: CS 498 Hot Topics in HPC 34

Petascale Computations for Complex Turbulent Flows

P. K. Yeung (Georgia Tech)

« Discipline & science goals
— Computational Fluid Dynamics
— High Reynolds number flows

— Study effects of stratification, chemical
reactions, & wall boundaries on flow
structure, mixing & dispersion

— Need adequate resolution of wide
range of length and time scales
 Code names
— PSDNS - fluid code
— P3DFFT - 3D FFT package

Torsten Hoefler: CS 498 Hot Topics in HPC 35

PSDNS, Yeung (cont'd)

spectral method

W

> A

Pseudo-

2 sunn lwen | nan
') - ..”l {mww

— Fixed,

structured grid in 3D

Pencil decomposition

n
T
LL
LL
o)
i
[Fa—

o
©

)

1%0)

o

Q.

S

o

o

n
T
LL
LL
Q
™

[]

0
®
=
O
+—
-
e
—
o
S
Y
@
n
-
O
—
M®
-]
(@n
)

Y
o
0
&
| -
O
')
1)
o = 5
E5S
m&
O
D — O
c O ®©
S - Q
s5c?
o= 2
=
S 5 &
o TS
L O C
_

c >
C ©
c o ?
O O ®
T O =
0 o &
g ()]
c S m
c 273
aa..w.
p.Ub
S;&.H
)

5 25
< =5

)
| -
)
T ©
g3
5
55
M0 o
o =
= n
v C
cC O
.mm

-
S E
mS
a !

(@)
=
>
|-
)
>
>
=
)
-
)
©
©
C
©
)
c
O
]
&)
qv)
@
-

%)
o)
| -
[e)
O
hved
o
o
N
%~
c 2
S 5
w0 =
© ©
-
@ O
o
wz
C o
2 A
< ©
|

Slab decomposition

36

Torsten Hoefler: CS 498 Hot Topics in HPC

PSDNS, Yeung (cont d)

o e]
« Computational challenges TS] t .
— 3D array transposes require v F N v o T]
transferring a large amount of data PR R ‘_; s N
— Run times bounded by interconnect = 10 i*: l, E
bandwidth T F : > *v A
— Communication time dominates wall - NI 5

clock time 10° ”“1':];. — ““‘;ff - ‘““;ff

M [(# cores)

CPU time per step at grid resolution
2048 (green), 4096(blue), 8192(red).
On IBM BGI/L, Sun and Cray
clusters, Yeung et. al, 2009.

Torsten Hoefler: CS 498 Hot Topics in HPC 37

Simulation of Contagion on Very

+ Goal
— Develop the Scalable Petascale Contagion Environment Simulator
(SPACES), which uses agent-based models to evaluate mitigation
strategies for contagion on extremely large social contact networks
« Approach
— Build on EpiSims code (pure MPI)

— Design and implement an environment for executing large, semi-
adaptive experimental designs to support realistic case studies on
national and global-scale social networks

Torsten Hoefler: CS 498 Hot Topics in HPC 38

Understanding Tornadoes and Their Parent
Supercells Through Ultra-High Resolution
Simulation/Analysis

Bob Wilhelmson (UIUC), et al
 Goal

— Simulate development, structure, & demise
of large tornadoes in supercells

— Resolution sufficient to capture low-level
tornado inflow, thin precipitation shaft that
forms “hook echo” adjacent to tornado, &
other smaller scale structures

« Approach
— Use finite differences to solve
equations of motion for air and water
substances (droplets, rain, ice, ...)

Torsten Hoefler: CS 498 Hot Topics in HPC 39

Earthquake System Science

Tom Jordan, Phil Maechling

Ground-motion amplification
factors are higher in areas of
softer rock and thicker
sediments

Prepare 3 seismic & engineering codes for Blue Waters
1. AWP-Olsen: finite difference dynamic rupture & wave propagation

2. Hercules: finite element wave propagation
3. OpenSees: structure modeling for earthquake engineering

Amplification

,
SC/EC EUSGS © 2 W

Torsten Hoefler: CS 498 Hot Topics in HPC 40

Formation of the first galaxies

Brian O’Shea (MSU) & Michael Norman (UCSD)

* New science

— Simulation of galaxies with
self-consistent radiation
transport & magnetic fields

— Predictions for upcoming
James Webb Space Telescope
and 30-meter telescope

« Application Code

— ENZO SC++ with F77 kernels,
optional UPC or Global Arrays

— Cello — object-oriented
redesign of ENZO using
Charm++

— Adaptive (nested) Mesh
Refinement (up to 35 levels)

Torsten Hoefler: CS 498 Hot Topics in HPC 41

Galaxy formation and virtual astronomy

Nagamine (UNLV), Bryan (Columbia), Ostriker & Cen (Princeton)

« Overall questions addressed
— When and how did galaxies form?
— How did galaxies evolve?

— Do predictions of the ACDM
cosmological model agree with
observations?

« Quantitative predictions

— Star formation and mass assembly
history

— Luminosity functions and colors in
various bands at different epochs

— Light-cone output and galaxy number
counts

— Galactic clustering and evolution as
functions of luminosity, color, and
environment

* Numerical method

— Compare Enzo and new hydro tree
particle mesh code (HTPM)

Lattice Quantum
Chromodynamics

Pl: Robert Sugar (UCSB) with LQCD community

« Discipline & science goals

— Determine predictions of lattice field
theories (QCD & Beyond Standard
Model)

— Compute Feynman path integrals for a
given theory using importance-sampling
technigues to generate field
configurations which are used to
evaluate a large range of physical
properties

« Masses, internal structures, particle
interactions

3D slice of topological charge
density iso-surface.

Torsten Hoefler: CS 498 Hot Topics in HPC 43

Addendum to Grading

e Only for the 4cr students (mostly grads):
— 25% Midterm
— 25% Final
— 25% Presentation

— 25% Group project
e Groups of 2-3 students work on a class project
* Will be applied (involve coding and running)

Section Il: Parallel Architectures

* What is a parallel platform?
— Parallel Computer Hardware
— + Operating System (+Middleware)
— (+ Programming Model)

* Historically, architectures and programming
models were coupled tightly

— Architecture designed for PM (or vice versa)

Some (Historical) Examples

e Systolic Array
— Data-stream driven (data counters)
— Multiple streams for parallelism
— Specialized for applications (reconfigurable)

e Dataflow Architectures

— No program counter, execute instructions when all
input arguments are available

— Fine-grained, high overheads
 Example: compute f = (a+b) * (c+d)

More Recent Examples

 Von Neumann Architecture (program counter)

* Flynn’s Taxonomy:
— SISD — standard serial computer (nearly extinct)
— SIMD - vector machines or additions (MMX, SSE)
— MISD - fault tolerant computing (planes etc.)
— MIMD — multiple autonomous PEs

e Typical supercomputers use a combination of
techniques to achieve highest performance!

Parallel Architectures 101

* Two general platform types:
— Shared Memory Machines (SMM)

e Shared address space
 Hardware for cache-coherent remote memory access
e Cache-coherent Non Uniform Memory Access (cc NUMA)

— Distributed Memory Machines (DMM)

* Either pure distributed memory or ncc-NUMA
* ncc-NUMA may support global address space (GAS)

Programming Model Basics

* The PM reflect machine concepts/model for the
programmer to use
— How to make elements work together
— Performance is key!
— E.g., communication and synchronization
* Four major classes
— Multiprogramming (multiple applications)
— Shared address space (cf. SMM, bulletin board)

— Message passing (cf. postal system)
— Data parallel (cf. factory, coordinated actions on data)

Shared Memory Machines

e Two historical architectures:

— “Mainframe” — all-to-all connection between memory, 1/0
and PEs

e Often used if PE is the most expensive part
* Bandwidth scales with P!

* PE Cost scales with P, Question: what about network cost?
e Cost can be cut with multistage connections (butterfly)

— “Minicomputer” — bus-based connection
 All traditional SMP systems

* High latency, low bandwidth (cache becomes important)
 Tricky to achieve highest performance (contention)
* Low cost, extensible

SMM Architecture

* Today’s architectures blur together

— E.g., Hypertransport, Advanced Switching
Interconnect, or Quick Path Interconnect

— Switch-based networks
— Use “traditional” topologies
— Similar issues as we will discuss but at smaller scale

e Often basic building blocks in Supercomputers,
i.e., networks are hierarchicall

SMM Capabilities

Any PE can access all memory
Any 1/O can access all memory (maybe limited)
OS (resource management) can run on any PE

— Can run multiple threads in shared memory
Communication through shared memory

— Load/store commands to memory controller

Coordination through shared memory

SMM Programming Model

 Threads (e.g., POSIX threads) or processes
e Communication through memory

* Synchronization through memory or OS objects
— Lock/mutex (protect critical region)
— Semaphore (generalization of mutex (binary sem.))
— Barrier (synchronize a group of activities)
— Atomic Operations (CAS, Fetch-and-add)
— Transactional Memory (execute regions atomically)

An Example: Compute Pi

* Using Gregory-Leibnitz Series:

— |terations of sum can be computed in parallel
— Needs to sum all contributions at the end

Pthreads Compute Pi Example

int main(int argc, char *argv(])

{

// definitions ...

thread_arr = (pthread_t*)malloc(nthreads

* sizeof(pthread_t));
resultarr= (double*)malloc(nthreads *
sizeof(double));

for(i=0; i<nthreads; ++i) {
int ret = pthread_create(&thread_arrfi],
NULL, compute_pi, (void*) i);
}
for(i=0; i<nthreads; ++i) {
pthread_join(thread_arr[i], NULL);
}
pi =0;
for(i=0; i<nthreads; ++i) pi += resultarr[i];

printf("pi is approximately %.16f, Error is
%.16f\n", pi, fabs(pi - PI25DT));

int n=10000;
double *resultarr;
int nthreads;

void *compute_pi(void *data) {
inti, j;
int myid = (int)(long)data;
double mypi, h, x, sum;

for (j=0; j<n; +4j) {
h =1.0/(double) n;
sum =0.0;
for (i = myid + 1; i <= n; i += nthreads) {
x=h * ((double)i - 0.5);
sum += (4.0 / (1.0 + x*x));

}
mypi = h * sum;
}
resultarr[myid] = mypi;
}

Some More Comments

* OpenMP would allow to implement this
example much simpler (but has other issues)

* Transparent shared memory has some issues
In practice:

— False sharing (e.g., resultarr([])

— Race conditions (complex mutual exclusion
protocols)

— Little tool support (debuggers need some work)

* Achieving performance is harder than it seems!

DMM Capabilities

Explicit communication between PEs
— Message passing or channels

Only local memory access, no direct access to
remote memory

— No shared resources
Communication through packets or channels
Synchronization through packets or hardware

DMM Programming Model

Typically Message Passing (MPI, PVM)

Communication through messages or group
operations (broadcast, reduce, etc.)

Synchronization through messages
(sometimes unwanted side effect) or group
operations (barrier)

Typically supports message matching and
communication contexts

Message Passing Example

Match ReceiveYt P
Addess Y

Local ppcess ;ggglsgm sC eascfe
addess space g

Send X, Q,t

Addess X

Process P Piocess Q

Send specifies buffer to be transmitted

Recv specifies buffer to receive into

Implies copy operation between named PEs
Optional tag matching

Pair-wise synchronization (cf. happens before)
Explicit buffer copy is an overhead

MPI Compute Pi Example

int main(int argc, char *argv[])

{
// definitions
MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&myid);

double t = -MPI_Wtime();
for (j=0; j<n; +4j) {
h =1.0/(double) n;
sum = 0.0;
for (i=myid + 1; i <= n; i += numprocs) { x = h * ((double)i - 0.5); sum += (4.0 / (1.0 + x*x)); }
mypi=h * sum;
MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
}
t+=MPI|_Wtime();

if('myid) {
printf("pi is approximately %.16f, Error is %.16f\n", pi, fabs(pi - P125DT));
printf("time: %f\n", t);

}

MPI_Finalize();

DMM - PGAS

* Partitioned Global Address Space
— Shared memory emulation for DMM
— “Distributed Shared Memory”

e Simplifies shared access to distributed data
— Has similar problems as SMM programming
— Sometimes lacks performance transparency

* Local vs. remote accesses

 Examples:
— UPC, CAF, Titanium, X10, ...

How to Tame the Beast?

* How to program large machines?

* No single approach, PMs are not converging yet
— MPI, PGAS, OpenMP, Hybrid, ...
* Architectures converge

— General purpose nodes connected by general
purpose or specialized networks

— Small scale often uses commodity networks
— Specialized networks become necessary at scale

Performance Matters

* Developers need to understand expected
performance
— Serial performance is not topic of this class
— Focus on communication performance

e Simplest metric for networks: bandwidth
— Same for Internet connection and HPC networks
— Example: 10 Gbit/s = 1.25 GB/s

* 1 MiB transfers in 800 microseconds

e Class Question: What other network metric do
you know? And how is it different?

A Simple Model for Communication

* Transfer time T(s) = a+3s
— a = startup time (latency)
— B = cost per byte (bandwidth=1/B)

* As s increases, bandwidth approaches 1/
asymptotically

* Convergence rate depends on a

* Sy =0/P

« Often assuming no pipelining (new messages can
only be issued from a process after all arrived)

Bandwidth vs. Latency

* s,, = a/p often used to distinguish
bandwidth- and latency-bound messages

0.5 | % %
e e |
0.35 | L B
% 0.3 |
% 0251 ¢
015+ i/ / S S
01 . /

/ bandwidth, a=8, b=2 ——

0.05 [z bandwidth, a=4, b=2
X / bandwidth, a=2, b=2 -
0 2 4 6 8 10

Message Size

Quick Example

e Simplest linear broadcast

— One process has a data item to be distributed to
all processes

* Sending s bytes to P processes:
—T(s) =P * (a+Ps) = O(P)

* Class question: Do you know a faster method
to accomplish the same?

k-ary Tree Broadcast

e Origin process is the root of the tree, passes
messages to k neighbors which pass them on

— k=2 -> binary tree
e Class Question: What is the broadcast time in
the simple latency/bandwidth model?

