CS 498 Hot Topics in High Performance Computing

Networks and Fault Tolerance

9. Routing and Flow Control

Intro

- What did we learn in the last lecture
 - Topology metrics
 - Including minimum diameter of directed and undirected topologies (Moore bound)
 - Common network topologies
- What will we learn today
 - Some more topologies
 - Routing (schemes and metrics)
 - Flow control

Butterfly vs. Hypercube

- One can "flatten" a 2-ary k-fly by collapsing all straight connections into one node
 - Class Question: What is the degree of the resulting network?

Butterfly vs. Hypercube vs. Flat Fly

- One can "flatten" a 2-ary k-fly by collapsing all straight connections into one node
 - log₂(P)
- High-radix routers become more common, one can also "flatten" higher-arity flys
 - Results in so called flat-fly networks
 - Similar to generalized hypercubes
 - − Less connections (saves straight connections)
 → cheaper

More Topologies

- Many more topologies exist
- Most are hybrids of the discussed ones
- Research is ongoing but:
 - Topologies alone are not enough
 - Routing and Flow Control determines performance of a network!
 - Will be discussed next

What is Routing?

- Select a path from a source PE to a destination PE
 - Picking the routing function is the next logical step after picking a topology!
- Topology determines ideal performance
 Routing determines how much of this is realized!
- A quick example: 8-PE ring
 - Only binary routing decision (right or left)

8-PE Ring

- Routing options:
 - Shortest path: pick direction with shortest distance to target
 - Uniform random: randomly pick direction
 - Weighted random: pick randomly but with probability 1-x/8 short and x/8 long (x is the min. distance)
 - Adaptive: send packet in the direction where the outgoing channel has the lowest load

8-PE Ring Tornado Pattern

- Each PE i sends to PE i+3 mod 8
- The throughput of each pattern is:
 - Shortest path: 0.33
 - Random: 0.40
 - Weighted Random: 0.53
 - Adaptive: 0.53
- PS: the same problem was given as part of a Ph.D. qualifying exam and 90% picked shortest path!

Taxonomy of Routing Functions

- Oblivious: does not utilize the state of the network for routing decisions
 - Deterministic: chooses always the same path between PEs x and y
 - Random: picks a path between x and y randomly
- Adaptive: utilizes the state of the network for routing decisions
 - Local adaptive: only considers local ports
 - Global adaptive: uses global knowledge

Minimal vs. Non-minimal Routing

- Minimal routing: all paths have minimal length
 - Same properties as minimum diameter networks
 - Lower power consumption and latency

 Non-minimal routing can lead to higher throughput for certain traffic patterns and certain topologies (not generally though)

Deterministic Routing - Butterfly

- Example: 2-ary 3-fly with 2 PEs at each leaf
 - Routing from 2->3 (top->bottom)
 - Destination address as binary: 011

Left, right, right

- Can be generalized to n-ary numbers for n-ary fly networks
 - Very simple routing (element in stage k picks k-th number to choose egress port)

Deterministic Routing - Cubes

- Dimension-order (e-cube) routing in k-ary ncube networks
 - Interpret destination as radix-k number
 - Each digit is used to select dimension
 - Route in dimension order until destination reached! (each dim. may require multiple hops)
- Example: 2-d 4x4 torus routing from 1,1 to 3,2
 Used in Cray T3D

Random Routing

- Valiant's random routing: route from PE x to y through random intermediate node z. Routes x->z and z->y are deterministic.
 - Balances traffic
 - Increases latency and channel utilization some topologies (cubes)
- Provides good worst-case performance
 - Asymptotically optimal
 - Looses locality (nearest neighbor traffic becomes global is this practical?)

Minimal Random Routing on Flys

- Benes networks: pick random middle-level node!
 Same minimal length, good load distribution
- Not minimal but close: fat-trees (pick random top-level node)
 - Only log(P) paths will be longer
 - Same good load distribution (turns every pattern into a random pattern, good worst-case performance)
 - Example: CM-5

Minimal Random Routing on Cubes

- K-ary n-cubes have multiple minimal routes for k>1 and d>1
 - Those routes form a minimal sub-cube (or quadrant) which can be used to distribute load
 - Pick random node within this minimal sub-cube
 - Preserves locality!
 - − Does not improve worst-case performance ⊗
 - See Tornado pattern
 - Example: Avici Terabit Switch Router (TSR) Internet SONET router

Adaptive Routing

- Local vs. global adaptive routing
 - Local often has bad worst-case performance
 - Show example
 - Global state is hard to maintain in each router and hard to process fast enough (log(P))
- Minimal Adaptive Routing
 - Adaptively pick from set of minimal routes
 - Example: k-ary n-cube: IBM Blue Gene/P, Myrinet